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ABSTRACT 

The aggressive technology scaling in the feature size has 

propelled the designers to integrate millions of transistors in a 

single die. Thus Multi-Processor System on Chip (MPSoC) 

has become the irrefutable elucidation to meet the demands of 

parallel computing in the domain of embedded systems. The 

gap between software development and actual hardware 

model has led to the emergence of virtual platforms so that the 

performance status can be improved even before the Register 

Transfer Logic (RTL) of the hardware is actualized. This 

paper presents a framework to bring accuracy to Open Virtual 

Platforms (OVP). Several architectures are modeled using this 

functional simulator and they are profiled to achieve a good 

accuracy/speed tradeoff. The accuracy of the simulation 

results is further enhanced by tuning profiling parameters and 

introducing an empirical correction factor which compensates 

the imprecisions of OVP that arise e.g. from missing 

simulated bus- and memory access times. 
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1. INTRODUCTION 
The exponential increase in the number of transistors that can 

be accumulated in a single die has led to aggressive 

technology scaling in the feature size and this has uncovered 

new stakes for high speed, low power and energy efficient 

models [1]. The advancing power voracious applications have 

already started to spark the technology industry to fleetingly 

develop complex and potent architectures which can make a 

concentrated tradeoff between performance, efficiency, and 

low power consumption [2]. The distinct performance 

demands of the autonomous applications has led to a 

fashionable computing platform designated as MPSoC which 

can accommodate multiple processors, different types of 

Processing Elements (PEs), Embedded Field Programmable 

Gate Array (eFPGA), communication architectures, and 

memory hierarchy on a single chip. 

In the early years of the new millennium, with Central 

Processing Unit (CPU) clock speeds finally reaching past the 

1 GHz mark, PC enthusiasts looked forward to a new world 

where CPU clocks kept increasing at an accelerating pace. But 

physics doesn’t allow for exponential increase in clock rate 

without exponential increase in heat, especially since the core 

voltages are already close to the threshold voltage of the 

transistors and can hardly be reduced anymore. Though the 

fastest commercial CPUs have been hovering between 3 GHz 

and 4 GHz for a number of years now, there were a number of 

other challenges to consider, such as manufacturing 

technology. The saturation in clock frequency has impacted 

the Moore’s law as shown in Figure 1. 

 

Figure 1: Exponential Vs Natural Growth 

This has led to a new regime called multi-core technology 

which combines both multi-tasking and hyperthreading [4].  

In today’s mobile computers, like e.g. Tablets and Smart 

phones, Power Performance Area (PPA) is the major 

constraints in defining cost-efficient consumer products. One 

approach to optimize General Purpose Processors for a given 

task is Application Specific Instruction-set Processors (ASIP), 

which enables a more efficient realization towards several 

goals [5]. One of the motivations is that different applications 

have different resource requirements during their execution in 

terms of power and performance. Some applications may have 

large amount of Instruction Level Power (ILP), which can be 

cooped by a core which executes multiple instructions per 

cycle. The same core, however, might be wasted on an 

application with little ILP [6]. Due to huge set of variables, 

which are possible on a multi-core system, a Design Space 

Exploration (DSE) should be carried out during design time. 

These simulations can be executed in a very fast abstract 

manner or in a more accurate way that may result in very slow 

simulations. 

2. VIRTUAL PLATFORMS 
The hardware and software components of an embedded 

system were designed consecutively or in other words 

sequentially until the complexity of the MPSoC blew up. The 

software engineers started to develop their operating system, 

device drivers, and interprocessor communication protocol 

stacks only after getting a very solid hardware prototype for 

their work. The yearn for a technology which can fill in the 
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gap between the software development and the actual 

hardware model is satisfied by the emergence of virtual 

platforms as the software developers start their work earlier 

even before the RTL of the hardware is finalized [7].  

OVP from Imperas encourages the developers to promote this 

concept of virtual platforms for SoC and multiprocessor SoC 

platforms. This simulation environment includes fast 

simulation (OVPsim) free open source models, and it is easy 

to use. It is instruction accurate as it enables the platform to 

run at hundreds of MIPS. They are hierarchical and modular 

as they model not only the platforms of the processors but 

also their bus architecture, memory model and the peripherals. 

They have their own library functions with four C interfaces, 

as shown in Figure 2.  

 

Figure 2: Interfaces in OVP [8] 

The Innovative CPU Manager (ICM) C interface is used for 

platform modeling by tying together the system blocks such 

as processors, memory subsystems, peripherals, and other 

hardware blocks. The Virtual Machine Interface (VMI) is used 

for the communication between the processor models and the 

kernel. The Peripheral Programming Model (PPM) is for 

understanding buses and networks. The Behavioral Hardware 

Modeling (BHM) separates the address space for each model 

and allows communication only with those mechanisms 

provided by API [8]. OVP helps in the expansion of DSE as 

they support innumerable complex architectures in a single 

platform with different configurations. 

2.1 Tracing 
The OVP simulator executes instructions in time slices and 

these results in simulated instructions-per-second which is 

nothing but the number of instructions that are executed in 

one second. One of the ways of application analysis using the 

default instructions-per-second parameter is tracing. It works 

by outputting the destination address of branches. During 

simulation, the execution results are written onto a trace 

which displays the sequence of all the executed instructions 

optionally with embedded source code and allows backtracing 

of the execution flow. Instruction tracing is slower than the 

normal execution as the debugger runs the current thread step 

by step to retrieve all the required register values. This is not 

more efficient as the trace has to be further processed to get 

the instruction count for each individual instruction. It is time 

consuming and also has to deal with unmanageable 

information when used for larger applications. The instruction 

tracing for the MicroBlaze processor when running Bubble 

Sort Benchmark application is shown in the Figure 3. 

 

Figure 3: Tracing for Bubble Sort in MicroBlaze 

From Figure 3, it can be seen that the trace line for each 

executed instruction gives the instruction address and the 

instruction id. 

2.2 Profiling 
Once the requirements for modeling a processor are 

completed, various benchmarks like Bubble sort, Merge sort, 

and Heap sort, Dhrystone, Fibonacci, Linkpack, Peakspeed 

are run on top of them to confirm the testing of the modeled 

processor. Profiling is done at this stage to measure the 

number of times each instruction is executed in a particular 

benchmark for different processors. Profiling in simple words 

is a dynamic program analysis which computes or estimates 

some unknown qualities like complexity of program or usage 

of particular instructions from the known qualities. Instruction 

level profiling helps in evaluating the behavior of the complex 

CPUs, as they run faster than simulation in several orders of 

magnitude [9]. The processor model can be profiled by 

instrumenting the program source code. Tracing has 

engendered the simulator to find out the hot spots from the 

information obtained about the executed instructions and their 

register values whereas profiling makes it user readable. 

2.2.1 Sampling 
The default scheduling algorithm executes 100,000 

instructions for a nominal MIPS rate of 100 with a time slice 

of 1 ms. For instruction level profiling in order to get the 

information about each instruction, scheduling algorithm has 

to be modified. Since 100,000 instructions are executed in a 

time slice, profiling them will give information only about the 

last instruction leaving the rest of the 99,999 instructions. 

Though it gives fast simulation, it leads to poor performance 

as much information cannot be extracted from the profiling of 

the processor. For this reason, the instructions are sampled by 

defining the number of instructions that has to be executed in 



International Journal of Computer Applications (0975 – 8887)  

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013” 

24 

a time slice. The size of the time slice is chosen in such a way 

that only one instruction will be executed per time slice 

having a MIPS rate of 100. As a result, profiling the processor 

with the modified time slice will give insight about the 

instruction set of that processor. 

2.2.2 Stepping 
Stepping is the dynamic way of profiling. Stepping in 

processors can be achieved through time slicing which is a 

short interval of time allotted to each user or program in a 

multitasking or timesharing system. By default the time slices 

are in milliseconds. Time slice also known as time quantum is 

a period of time for which a process is allowed to run 

uninterrupted in a system. Simulation time is broken into time 

slices. For Instruction-Level Profiling as shown in Figure 4, 

the time slice has been set to 100 us so that only one 

instruction will be executed by the processor per time slice. 

The simulator selects the first processor and simulates it for 

one time slice. It calculates the number of instructions that has 

to be executed by the processor in a time slice and then 

simulates for that number of instructions. When the first 

processor simulates the required number of instructions, it is 

then suspended and the next processor is simulated for that 

time slice. When all the processors have simulated the time 

slice, the simulated time is moved on and the next time slice 

starts. Stepping makes the model instruction accurate. 

start

TIME_SLICE=0.0000001
INST_PER_TIME_SLICE: 1

myTime=TIME_SLICE

Has the scheduler 
expired?

Simulate the processor for 
INST_PER_TIME_SLICE

Advance myTime

Function call for Profiling

Write into XML file

stop

NO

YES

 

Figure 4: Instruction-Level Profiling 

2.2.3 Instrumentation 
The information derived from profiling like number of times 

each instruction is executed, number of cycles per instruction, 

and the base cost of each instruction are then written to an 

XML file which is nothing but a textual data format which 

finds its way in many APIs. This modification in the 

scheduling algorithm will give realistic simulation results 

without degrading the performance of the simulator. 

2.3 Custom Functions 
Endianness is an attribute of the system that deals with the 

multi-byte numbers and the order they should be stored, either 

as most significant first (Big Endian) or least significant first 

(Little Endian). To be precise it usually refers to the byte 

orderings in memory and not to the individual bit orderings 

contained within the bytes. Endianness makes sense only 

when breaking a multi byte data and trying to store the bytes 

at consecutive memory locations. It is not significant in 

bitwise or bitshift operations but it matters when using a type 

cast operation. 

3. PROPOSED METHODOLOGY 
The SoC design is a fusion of complex hardware and software 

components [10]. Prototype hardware containing multi-core 

processors either homogeneous or heterogeneous is usually 

handed over to software developers too late in design cycle 

causing project delays or in worst case missing its market 

window. For this reason, software developers work with 

virtual models of SoC hardware which are always have to 

compromise between speed and accuracy. The block diagram 

of the proposed methodology is shown in the Figure 5. 

A hardware prototype, which can be either a processor board 

or an FPGA board with soft- or embedded hard processor 

core, is used for executing benchmarks. The electrical current 

profile during the execution is recorded with a digital 

oscilloscope over a shunt current monitor and exported as 

CSV (comma separated value) file. Then this data is imported 

to a numerical computing environment and the energy and 

power profiles are derived as well as their effective values per 

benchmark and per instruction. The effective power and 

energy per instruction are fed back to OVP. With this 

information which is obtained for every instruction type, the 

power and energy for executing any application can be 

estimated in simulation by applying these values to tracing 

and profiling. These steps are described more into detailed in 

the following sub sections. 

 

Figure 5: Proposed Methodology 

3.1 Hardware Prototypes 
The power consumption for different benchmark applications 

of MicroBlaze is done measured on the Xilinx Spartan-3A 

Starter Kit. This board was chosen since it has easy access to 

the core supply voltage by jumpers. The MicroBlaze 

processor along with its instruction profiling is further made 

more instruction accurate by profiling the power consumption 

of each instruction, so that the total cost of each application 

can be evaluated.  
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3.1.1 Xilinx Spartan-3A Starter Kit 
The Xilinx Spartan-3A Starter Kit uses Xilinx 700K-gate 

XC3S700A Spartan-3A non-volatile FPGA with a soft core 

MicroBlaze. It gives instantaneous access to SUSPEND 

power-saving mode, high-speed I/O options, Double Data 

Rate synchronous Dynamic Random-access Memory (DDR2 

SRAM) interface, and flash support. Rapid data transfer is 

achieved when connected to DDR2 memory through the 

memory interface controller. It has a 50 MHz clock oscillator. 

It communicates through Ethernet and JTAG USB port and 

supports Xilinx Embedded Development Kit (EDK) Design 

Suite to flash the benchmark applications to the FPGA [11]. It 

has a core voltage of 1.5 V and has an external 4 Mbit Flash 

PROM where the applications are flashed. 

3.2 Power Profile 
The modern embedded systems are more sophisticated and 

complex that power consumption has become one of the most 

demanding critical design constraints. There are two ways to 

pilot the power consumption estimation, either at the cycle or 

instruction level [12].  

Cycle accurate methodology implemented by tools such as 

SimplePower and Wattch are time consuming and also require 

complete information about the microarchitecture which is not 

feasible for ready-made processors.  

The Instruction Level Power (ILP) analysis model proposed in 

[13] is based on the hypothesis that if a given instruction or an 

instruction sequence is executed repeatedly, then the power 

cost of that instruction will be equal to the power cost of the 

processor. Each instruction in the instruction set of the 

processor is assigned a fixed power cost called base power 

cost which varies for each instruction depending on their 

operands, register used, immediate values and memory 

address. More the number of 1's in the immediate value, lesser 

the cost. The position of 1's in the binary representation of the 

address also affects the base cost, so an average base cost 

value is used. Figure 6 below, shows the current measured for 

merge sort application in Xilinx Platform for various 

iterations.  

 
Figure 6: Current Measurements for Merge Sort in Xilinx 

Platform for Different Iterations 

The assembly code for each instruction is made to run in 

infinite loops in the Xilinx custom board and the average 

current drawn by the processor core during the execution of 

this loop is measured by HAMEG HMO2524 oscilloscope. 

There is instability in the current measurement because of the 

varying loads. The measuring environment is made accurate 

and freed from noise disturbances by using an integrated high-

performance shunt current monitor.  

The Comma Separated Values (CSV) file obtained from the 

oscilloscope is then processed in MATLAB numerical 

computing environment to extract the effective power of each 

instruction and energy cost of different applications. This 

information captured from the real prototype is then fed back 

to the profiled MicroBlaze processor in OVP to calibrate it. 

The summation of the calculated power multiplied by the 

executed count value of each instruction will give the total 

cost of the application. Similarly the power consumption of 

different applications for ARM Cortex-M3 is measured from 

the Actel SmartFusion Evaluation Board. 

3.3 Power Feed in OVP 
The MicroBlaze processor model is already profiled to 

determine the number of times each instruction is executed. 

Profiling it further with the information derived from the 

Xilinx platform leads to the conclusion of understanding 

which instruction is executed the most and the total power it 

draws in each application. The power measured for different 

benchmark applications of MicroBlaze form Xilinx Platfom is 

then compared against the OVP's results to arrive at the 

relative error percentage. In the first iteration, the evaluated 

relative error percentage was in the range of 50 %, which 

might have the following reasons:  

(1) When executing real-time applications in OVP, 

since it is instruction accurate, it will not consider 

the hit and miss of the caches, the branching effect 

and the inter-instruction effects which usually 

happens in a real hardware prototype.  

(2) The speed of the processors varies with respect to 

the inputs and the register values. 

(3) Due to the simulation in various systems with 

different configurations. 

In order to improve the situation and deal with the effects 

which are not natively covered by the OVP models, a 

correction factor could be determined empirically over a 

number of benchmarks. This improves the relative error 

remarkably. 

4. EXPERIMENTAL RESULTS 
When describing the characteristics of processors, architecture 

must be distinguished from the hardware implementation of 

that architecture. Architecture refers to the instruction set, 

registers, the exception model, memory management, virtual 

and physical address layout, and other features that all 

hardware executes. These system level functional descriptions 

from the architectures are used to model the processors in 

virtual platforms. Four different processors MIPS32 [14], 

OR1K [15], ARM7TDMI and ARM Cortex-M3 [16] are 

modeled in OVP with Instruction tracing, Endianness features 

and are profiled based on their corresponding instruction set.  

4.1 Measured Power and Energy 
The power consumed by MicroBlaze modeled processor for 

different benchmarks is assessed with the help of Spartan-3A 

Starter Kit which has a soft core MicroBlaze FPGA. The 

simulated time in seconds and the simulated instructions for 

the modeled processors when simulated by OVPsim for 

different benchmark applications is shown in Figure 7 and 

Figure 8 respectively. 
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The simulated time in seconds and the simulated instructions 

for the modeled processors when simulated by OVPsim for 

different benchmark applications is shown in Figure 7 and 

Figure 8 respectively. 

Figure 7: Comparison of Simulated Time of Different 

Applications for the Modeled Processors 

 
Figure 8: Comparison of Simulated Instructions of 

Different Applications for the Modeled Processors 

It can be seen that MiroBlaze Processor executes the highest 

number of instructions when compared to ARM Cortex-M3, 

ARM7, and OR1K in all the sorting algorithms and Linpack. 

OR1K tops in Fibonacci, Dhrystone, and Peakspeed 

applications. MIPS32 has the lowest simulation time for all 

the sorting algorithms whereas ARM Cortex-M3 for 

Fibonacci, Dhrystone, Linpack and Peakspeed. This explains 

the reason why an application consumes different amount of 

power when run in different cores. It depends on the ILP of 

each application and the instruction set of the processors as 

some processors support Single Instruction Multiple Data 

(SIMD), and some MIMD. The Effective power measurement 

for different benchmark applications for MicroBlaze from the 

Xilinx Spartan-3A Starter is tabulated in the Table 1. 

Table 1: Energy Estimation for Different Benchmark 

Applications of MicroBlaze from Xilinx Platform 

MicroBlaze Time 

(ms) 

Power 

(mWatt) 

Energy 

(mJoule 

Peakspeed 1.4 71.4 0.099 

Bubble Sort 530.8 87.8 46.7 

Heap Sort 16 86.5 14 

Merge Sort 16 82.1 0.131 

Dhrystone 1041.6 87.7 91.4 

4.2 Estimated power and Energy 
The power estimated for each instruction in the instruction set 

of MicroBlaze processor with the help of Spartan-3A starter 

kit is then fed back to the modeled MicroBlaze processor in 

OVP. Since the processor is already instruction profiled, 

adding the base cost of each instruction to it will results in the 

total power cost of all the instructions which are executed in 

that particular benchmark application. A comparison between 

the estimated power from OVP and the measured power are 

shown in the Table 3. The Relative Error% of the MicroBlaze 

processor for the power consumption of different benchmark 

applications is calculated. Since the Relative Error% is almost 

the same for all the benchmark applications, an empirical 

correction factor (K) is introduced. 

K = 1/[sum(simulatedPower(n)/realPower(n)]/N    (1) 

Where ‘n’ denotes different benchmark applications and N is 

the number of benchmarks. With this formula the correction 

factor K=2.28 was obtain. The inclusion of this correction 

factor reduces the Relative Error% by 7.422%. 

It is to be noted that the correction factor should be calculated 

for every processor model separately.  

4.3 Accuracy 
The following Table 4 shows the relative error percentage of 

Fibonacci application when different time slices of 100 us, 

100 ms and 1 ms (Default) are used and how accuracy is 

achieved in OVP. 

Table 2: Bringing Accuracy to OVP 

Time slice 100 us 100 ms 1 ms 

(Default) 

Instructions 407,426 408 5 

Cycles 602,303 617 99 

Power 

(mWattt) 

37.671 37.833 35.136 

Relative error 

% 

57.72 57.53 60.56 

Accuracy   0.18 -2.845 

When the default time of 1 ms is used it increases the error by 

2.845 percent thereby greatly affecting the accuracy as it 

executes only 5 instructions whereas when a time slice of 100 

ms is used, it gives 0.18% improvement in the accuracy but 

still the number of instructions executed is relatively poor. 

Therefore bigger the time slice, the accuracy gets marred 

whereas the performance (simulation speed) gets improved. 

By setting the time slice to 100 us, a tradeoff is made between 

accuracy and performance. 
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Table 3: Comparison between OVP’s MicroBlaze Estimated Power and Xilinx’s Measured Power 

Application Bubble Merge Heap Dhrystone Peakspeed Fibonacci 

Instructions 6,859,786 39,556 658,007 3,750,450 12,143 3,405 

Cycle 9,616,514 50,221 746,970 5,470,698 13,206 5,045 

Power (mWatt)-

OVP 

37.19 34.75 33.34 36.89 32.64 37.81 

Power (mWatt)-

H/W 

87.9 82.1 85.6 87.6 71.4 73 

Relative Error % 57.69 57.66 61.051 57.88 54.27 48.19 

Corrected Power 

(mWatt) - OVP 

84.79 79.23 76.02 84.11 74.42 86.21 

Relative Error% 

after correction 

3.534 3.496 11.197 3.984 -4.229 -18.092 

 

5. CONCLUSION 
In this paper, a conscientious DSE for MPSoC having the 

necessity for rapid and accurate tools to compute performance 

and power consumption is exploited as the targeted platform 

for modeling processors are validated by real applications. A 

modified scheduling algorithm is proposed to elicit 

information about each instruction which relinquishes prudent 

simulation results without performance degradation. The 

power devoured by distinct benchmark applications and each 

instruction in the instruction set explored by the real hardware 

prototypes when fed back to OVP makes it an early power 

consumption estimator with low simulation overhead. From 

the investigation between the measured and estimated power, 

the relative error is high due to effects like memory and bus 

access times which are not considered by OVP. But since for 

all the benchmarks, the relative error is almost the same, it can 

be improved remarkably by a correction factor and this will 

bring a high accuracy per simulation time as it reduces the 

Relative Error % to 7.422% average. 
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