
International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

22

Bringing Accuracy to Open Virtual Platforms (OVP): A
Safari from High-Level Tools to Low-Level

Microarchitectures

G. Shalina Percy Delicia
M.Tech Student,

Department of ECE,
Karunya University.

Thomas Bruckschloegl, Peter Figuli,
Carsten Tradowsky, Gabriel Marchesan

Almeida, Juergen Becker
Karlsruhe Institute of Technology – KIT, Germany.

ABSTRACT

The aggressive technology scaling in the feature size has

propelled the designers to integrate millions of transistors in a

single die. Thus Multi-Processor System on Chip (MPSoC)

has become the irrefutable elucidation to meet the demands of

parallel computing in the domain of embedded systems. The

gap between software development and actual hardware

model has led to the emergence of virtual platforms so that the

performance status can be improved even before the Register

Transfer Logic (RTL) of the hardware is actualized. This

paper presents a framework to bring accuracy to Open Virtual

Platforms (OVP). Several architectures are modeled using this

functional simulator and they are profiled to achieve a good

accuracy/speed tradeoff. The accuracy of the simulation

results is further enhanced by tuning profiling parameters and

introducing an empirical correction factor which compensates

the imprecisions of OVP that arise e.g. from missing

simulated bus- and memory access times.

Keywords

MPSoC, Virtual Platforms, OVP, Power Estimation, ARM7,

ARM Cortex-M3, OR1K, and MIPS32.

1. INTRODUCTION
The exponential increase in the number of transistors that can

be accumulated in a single die has led to aggressive

technology scaling in the feature size and this has uncovered

new stakes for high speed, low power and energy efficient

models [1]. The advancing power voracious applications have

already started to spark the technology industry to fleetingly

develop complex and potent architectures which can make a

concentrated tradeoff between performance, efficiency, and

low power consumption [2]. The distinct performance

demands of the autonomous applications has led to a

fashionable computing platform designated as MPSoC which

can accommodate multiple processors, different types of

Processing Elements (PEs), Embedded Field Programmable

Gate Array (eFPGA), communication architectures, and

memory hierarchy on a single chip.

In the early years of the new millennium, with Central

Processing Unit (CPU) clock speeds finally reaching past the

1 GHz mark, PC enthusiasts looked forward to a new world

where CPU clocks kept increasing at an accelerating pace. But

physics doesn’t allow for exponential increase in clock rate

without exponential increase in heat, especially since the core

voltages are already close to the threshold voltage of the

transistors and can hardly be reduced anymore. Though the

fastest commercial CPUs have been hovering between 3 GHz

and 4 GHz for a number of years now, there were a number of

other challenges to consider, such as manufacturing

technology. The saturation in clock frequency has impacted

the Moore’s law as shown in Figure 1.

Figure 1: Exponential Vs Natural Growth

This has led to a new regime called multi-core technology

which combines both multi-tasking and hyperthreading [4].

In today’s mobile computers, like e.g. Tablets and Smart

phones, Power Performance Area (PPA) is the major

constraints in defining cost-efficient consumer products. One

approach to optimize General Purpose Processors for a given

task is Application Specific Instruction-set Processors (ASIP),

which enables a more efficient realization towards several

goals [5]. One of the motivations is that different applications

have different resource requirements during their execution in

terms of power and performance. Some applications may have

large amount of Instruction Level Power (ILP), which can be

cooped by a core which executes multiple instructions per

cycle. The same core, however, might be wasted on an

application with little ILP [6]. Due to huge set of variables,

which are possible on a multi-core system, a Design Space

Exploration (DSE) should be carried out during design time.

These simulations can be executed in a very fast abstract

manner or in a more accurate way that may result in very slow

simulations.

2. VIRTUAL PLATFORMS
The hardware and software components of an embedded

system were designed consecutively or in other words

sequentially until the complexity of the MPSoC blew up. The

software engineers started to develop their operating system,

device drivers, and interprocessor communication protocol

stacks only after getting a very solid hardware prototype for

their work. The yearn for a technology which can fill in the

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

23

gap between the software development and the actual

hardware model is satisfied by the emergence of virtual

platforms as the software developers start their work earlier

even before the RTL of the hardware is finalized [7].

OVP from Imperas encourages the developers to promote this

concept of virtual platforms for SoC and multiprocessor SoC

platforms. This simulation environment includes fast

simulation (OVPsim) free open source models, and it is easy

to use. It is instruction accurate as it enables the platform to

run at hundreds of MIPS. They are hierarchical and modular

as they model not only the platforms of the processors but

also their bus architecture, memory model and the peripherals.

They have their own library functions with four C interfaces,

as shown in Figure 2.

Figure 2: Interfaces in OVP [8]

The Innovative CPU Manager (ICM) C interface is used for

platform modeling by tying together the system blocks such

as processors, memory subsystems, peripherals, and other

hardware blocks. The Virtual Machine Interface (VMI) is used

for the communication between the processor models and the

kernel. The Peripheral Programming Model (PPM) is for

understanding buses and networks. The Behavioral Hardware

Modeling (BHM) separates the address space for each model

and allows communication only with those mechanisms

provided by API [8]. OVP helps in the expansion of DSE as

they support innumerable complex architectures in a single

platform with different configurations.

2.1 Tracing
The OVP simulator executes instructions in time slices and

these results in simulated instructions-per-second which is

nothing but the number of instructions that are executed in

one second. One of the ways of application analysis using the

default instructions-per-second parameter is tracing. It works

by outputting the destination address of branches. During

simulation, the execution results are written onto a trace

which displays the sequence of all the executed instructions

optionally with embedded source code and allows backtracing

of the execution flow. Instruction tracing is slower than the

normal execution as the debugger runs the current thread step

by step to retrieve all the required register values. This is not

more efficient as the trace has to be further processed to get

the instruction count for each individual instruction. It is time

consuming and also has to deal with unmanageable

information when used for larger applications. The instruction

tracing for the MicroBlaze processor when running Bubble

Sort Benchmark application is shown in the Figure 3.

Figure 3: Tracing for Bubble Sort in MicroBlaze

From Figure 3, it can be seen that the trace line for each

executed instruction gives the instruction address and the

instruction id.

2.2 Profiling
Once the requirements for modeling a processor are

completed, various benchmarks like Bubble sort, Merge sort,

and Heap sort, Dhrystone, Fibonacci, Linkpack, Peakspeed

are run on top of them to confirm the testing of the modeled

processor. Profiling is done at this stage to measure the

number of times each instruction is executed in a particular

benchmark for different processors. Profiling in simple words

is a dynamic program analysis which computes or estimates

some unknown qualities like complexity of program or usage

of particular instructions from the known qualities. Instruction

level profiling helps in evaluating the behavior of the complex

CPUs, as they run faster than simulation in several orders of

magnitude [9]. The processor model can be profiled by

instrumenting the program source code. Tracing has

engendered the simulator to find out the hot spots from the

information obtained about the executed instructions and their

register values whereas profiling makes it user readable.

2.2.1 Sampling
The default scheduling algorithm executes 100,000

instructions for a nominal MIPS rate of 100 with a time slice

of 1 ms. For instruction level profiling in order to get the

information about each instruction, scheduling algorithm has

to be modified. Since 100,000 instructions are executed in a

time slice, profiling them will give information only about the

last instruction leaving the rest of the 99,999 instructions.

Though it gives fast simulation, it leads to poor performance

as much information cannot be extracted from the profiling of

the processor. For this reason, the instructions are sampled by

defining the number of instructions that has to be executed in

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

24

a time slice. The size of the time slice is chosen in such a way

that only one instruction will be executed per time slice

having a MIPS rate of 100. As a result, profiling the processor

with the modified time slice will give insight about the

instruction set of that processor.

2.2.2 Stepping
Stepping is the dynamic way of profiling. Stepping in

processors can be achieved through time slicing which is a

short interval of time allotted to each user or program in a

multitasking or timesharing system. By default the time slices

are in milliseconds. Time slice also known as time quantum is

a period of time for which a process is allowed to run

uninterrupted in a system. Simulation time is broken into time

slices. For Instruction-Level Profiling as shown in Figure 4,

the time slice has been set to 100 us so that only one

instruction will be executed by the processor per time slice.

The simulator selects the first processor and simulates it for

one time slice. It calculates the number of instructions that has

to be executed by the processor in a time slice and then

simulates for that number of instructions. When the first

processor simulates the required number of instructions, it is

then suspended and the next processor is simulated for that

time slice. When all the processors have simulated the time

slice, the simulated time is moved on and the next time slice

starts. Stepping makes the model instruction accurate.

start

TIME_SLICE=0.0000001
INST_PER_TIME_SLICE: 1

myTime=TIME_SLICE

Has the scheduler
expired?

Simulate the processor for
INST_PER_TIME_SLICE

Advance myTime

Function call for Profiling

Write into XML file

stop

NO

YES

Figure 4: Instruction-Level Profiling

2.2.3 Instrumentation
The information derived from profiling like number of times

each instruction is executed, number of cycles per instruction,

and the base cost of each instruction are then written to an

XML file which is nothing but a textual data format which

finds its way in many APIs. This modification in the

scheduling algorithm will give realistic simulation results

without degrading the performance of the simulator.

2.3 Custom Functions
Endianness is an attribute of the system that deals with the

multi-byte numbers and the order they should be stored, either

as most significant first (Big Endian) or least significant first

(Little Endian). To be precise it usually refers to the byte

orderings in memory and not to the individual bit orderings

contained within the bytes. Endianness makes sense only

when breaking a multi byte data and trying to store the bytes

at consecutive memory locations. It is not significant in

bitwise or bitshift operations but it matters when using a type

cast operation.

3. PROPOSED METHODOLOGY
The SoC design is a fusion of complex hardware and software

components [10]. Prototype hardware containing multi-core

processors either homogeneous or heterogeneous is usually

handed over to software developers too late in design cycle

causing project delays or in worst case missing its market

window. For this reason, software developers work with

virtual models of SoC hardware which are always have to

compromise between speed and accuracy. The block diagram

of the proposed methodology is shown in the Figure 5.

A hardware prototype, which can be either a processor board

or an FPGA board with soft- or embedded hard processor

core, is used for executing benchmarks. The electrical current

profile during the execution is recorded with a digital

oscilloscope over a shunt current monitor and exported as

CSV (comma separated value) file. Then this data is imported

to a numerical computing environment and the energy and

power profiles are derived as well as their effective values per

benchmark and per instruction. The effective power and

energy per instruction are fed back to OVP. With this

information which is obtained for every instruction type, the

power and energy for executing any application can be

estimated in simulation by applying these values to tracing

and profiling. These steps are described more into detailed in

the following sub sections.

Figure 5: Proposed Methodology

3.1 Hardware Prototypes
The power consumption for different benchmark applications

of MicroBlaze is done measured on the Xilinx Spartan-3A

Starter Kit. This board was chosen since it has easy access to

the core supply voltage by jumpers. The MicroBlaze

processor along with its instruction profiling is further made

more instruction accurate by profiling the power consumption

of each instruction, so that the total cost of each application

can be evaluated.

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

25

3.1.1 Xilinx Spartan-3A Starter Kit
The Xilinx Spartan-3A Starter Kit uses Xilinx 700K-gate

XC3S700A Spartan-3A non-volatile FPGA with a soft core

MicroBlaze. It gives instantaneous access to SUSPEND

power-saving mode, high-speed I/O options, Double Data

Rate synchronous Dynamic Random-access Memory (DDR2

SRAM) interface, and flash support. Rapid data transfer is

achieved when connected to DDR2 memory through the

memory interface controller. It has a 50 MHz clock oscillator.

It communicates through Ethernet and JTAG USB port and

supports Xilinx Embedded Development Kit (EDK) Design

Suite to flash the benchmark applications to the FPGA [11]. It

has a core voltage of 1.5 V and has an external 4 Mbit Flash

PROM where the applications are flashed.

3.2 Power Profile
The modern embedded systems are more sophisticated and

complex that power consumption has become one of the most

demanding critical design constraints. There are two ways to

pilot the power consumption estimation, either at the cycle or

instruction level [12].

Cycle accurate methodology implemented by tools such as

SimplePower and Wattch are time consuming and also require

complete information about the microarchitecture which is not

feasible for ready-made processors.

The Instruction Level Power (ILP) analysis model proposed in

[13] is based on the hypothesis that if a given instruction or an

instruction sequence is executed repeatedly, then the power

cost of that instruction will be equal to the power cost of the

processor. Each instruction in the instruction set of the

processor is assigned a fixed power cost called base power

cost which varies for each instruction depending on their

operands, register used, immediate values and memory

address. More the number of 1's in the immediate value, lesser

the cost. The position of 1's in the binary representation of the

address also affects the base cost, so an average base cost

value is used. Figure 6 below, shows the current measured for

merge sort application in Xilinx Platform for various

iterations.

Figure 6: Current Measurements for Merge Sort in Xilinx

Platform for Different Iterations

The assembly code for each instruction is made to run in

infinite loops in the Xilinx custom board and the average

current drawn by the processor core during the execution of

this loop is measured by HAMEG HMO2524 oscilloscope.

There is instability in the current measurement because of the

varying loads. The measuring environment is made accurate

and freed from noise disturbances by using an integrated high-

performance shunt current monitor.

The Comma Separated Values (CSV) file obtained from the

oscilloscope is then processed in MATLAB numerical

computing environment to extract the effective power of each

instruction and energy cost of different applications. This

information captured from the real prototype is then fed back

to the profiled MicroBlaze processor in OVP to calibrate it.

The summation of the calculated power multiplied by the

executed count value of each instruction will give the total

cost of the application. Similarly the power consumption of

different applications for ARM Cortex-M3 is measured from

the Actel SmartFusion Evaluation Board.

3.3 Power Feed in OVP
The MicroBlaze processor model is already profiled to

determine the number of times each instruction is executed.

Profiling it further with the information derived from the

Xilinx platform leads to the conclusion of understanding

which instruction is executed the most and the total power it

draws in each application. The power measured for different

benchmark applications of MicroBlaze form Xilinx Platfom is

then compared against the OVP's results to arrive at the

relative error percentage. In the first iteration, the evaluated

relative error percentage was in the range of 50 %, which

might have the following reasons:

(1) When executing real-time applications in OVP,

since it is instruction accurate, it will not consider

the hit and miss of the caches, the branching effect

and the inter-instruction effects which usually

happens in a real hardware prototype.

(2) The speed of the processors varies with respect to

the inputs and the register values.

(3) Due to the simulation in various systems with

different configurations.

In order to improve the situation and deal with the effects

which are not natively covered by the OVP models, a

correction factor could be determined empirically over a

number of benchmarks. This improves the relative error

remarkably.

4. EXPERIMENTAL RESULTS
When describing the characteristics of processors, architecture

must be distinguished from the hardware implementation of

that architecture. Architecture refers to the instruction set,

registers, the exception model, memory management, virtual

and physical address layout, and other features that all

hardware executes. These system level functional descriptions

from the architectures are used to model the processors in

virtual platforms. Four different processors MIPS32 [14],

OR1K [15], ARM7TDMI and ARM Cortex-M3 [16] are

modeled in OVP with Instruction tracing, Endianness features

and are profiled based on their corresponding instruction set.

4.1 Measured Power and Energy
The power consumed by MicroBlaze modeled processor for

different benchmarks is assessed with the help of Spartan-3A

Starter Kit which has a soft core MicroBlaze FPGA. The

simulated time in seconds and the simulated instructions for

the modeled processors when simulated by OVPsim for

different benchmark applications is shown in Figure 7 and

Figure 8 respectively.

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

26

The simulated time in seconds and the simulated instructions

for the modeled processors when simulated by OVPsim for

different benchmark applications is shown in Figure 7 and

Figure 8 respectively.

Figure 7: Comparison of Simulated Time of Different

Applications for the Modeled Processors

Figure 8: Comparison of Simulated Instructions of

Different Applications for the Modeled Processors

It can be seen that MiroBlaze Processor executes the highest

number of instructions when compared to ARM Cortex-M3,

ARM7, and OR1K in all the sorting algorithms and Linpack.

OR1K tops in Fibonacci, Dhrystone, and Peakspeed

applications. MIPS32 has the lowest simulation time for all

the sorting algorithms whereas ARM Cortex-M3 for

Fibonacci, Dhrystone, Linpack and Peakspeed. This explains

the reason why an application consumes different amount of

power when run in different cores. It depends on the ILP of

each application and the instruction set of the processors as

some processors support Single Instruction Multiple Data

(SIMD), and some MIMD. The Effective power measurement

for different benchmark applications for MicroBlaze from the

Xilinx Spartan-3A Starter is tabulated in the Table 1.

Table 1: Energy Estimation for Different Benchmark

Applications of MicroBlaze from Xilinx Platform

MicroBlaze Time

(ms)

Power

(mWatt)

Energy

(mJoule

Peakspeed 1.4 71.4 0.099

Bubble Sort 530.8 87.8 46.7

Heap Sort 16 86.5 14

Merge Sort 16 82.1 0.131

Dhrystone 1041.6 87.7 91.4

4.2 Estimated power and Energy
The power estimated for each instruction in the instruction set

of MicroBlaze processor with the help of Spartan-3A starter

kit is then fed back to the modeled MicroBlaze processor in

OVP. Since the processor is already instruction profiled,

adding the base cost of each instruction to it will results in the

total power cost of all the instructions which are executed in

that particular benchmark application. A comparison between

the estimated power from OVP and the measured power are

shown in the Table 3. The Relative Error% of the MicroBlaze

processor for the power consumption of different benchmark

applications is calculated. Since the Relative Error% is almost

the same for all the benchmark applications, an empirical

correction factor (K) is introduced.

K = 1/[sum(simulatedPower(n)/realPower(n)]/N (1)

Where ‘n’ denotes different benchmark applications and N is

the number of benchmarks. With this formula the correction

factor K=2.28 was obtain. The inclusion of this correction

factor reduces the Relative Error% by 7.422%.

It is to be noted that the correction factor should be calculated

for every processor model separately.

4.3 Accuracy
The following Table 4 shows the relative error percentage of

Fibonacci application when different time slices of 100 us,

100 ms and 1 ms (Default) are used and how accuracy is

achieved in OVP.

Table 2: Bringing Accuracy to OVP

Time slice 100 us 100 ms 1 ms

(Default)

Instructions 407,426 408 5

Cycles 602,303 617 99

Power

(mWattt)

37.671 37.833 35.136

Relative error

%

57.72 57.53 60.56

Accuracy 0.18 -2.845

When the default time of 1 ms is used it increases the error by

2.845 percent thereby greatly affecting the accuracy as it

executes only 5 instructions whereas when a time slice of 100

ms is used, it gives 0.18% improvement in the accuracy but

still the number of instructions executed is relatively poor.

Therefore bigger the time slice, the accuracy gets marred

whereas the performance (simulation speed) gets improved.

By setting the time slice to 100 us, a tradeoff is made between

accuracy and performance.

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

27

Table 3: Comparison between OVP’s MicroBlaze Estimated Power and Xilinx’s Measured Power

Application Bubble Merge Heap Dhrystone Peakspeed Fibonacci

Instructions 6,859,786 39,556 658,007 3,750,450 12,143 3,405

Cycle 9,616,514 50,221 746,970 5,470,698 13,206 5,045

Power (mWatt)-

OVP

37.19 34.75 33.34 36.89 32.64 37.81

Power (mWatt)-

H/W

87.9 82.1 85.6 87.6 71.4 73

Relative Error % 57.69 57.66 61.051 57.88 54.27 48.19

Corrected Power

(mWatt) - OVP

84.79 79.23 76.02 84.11 74.42 86.21

Relative Error%

after correction

3.534 3.496 11.197 3.984 -4.229 -18.092

5. CONCLUSION
In this paper, a conscientious DSE for MPSoC having the

necessity for rapid and accurate tools to compute performance

and power consumption is exploited as the targeted platform

for modeling processors are validated by real applications. A

modified scheduling algorithm is proposed to elicit

information about each instruction which relinquishes prudent

simulation results without performance degradation. The

power devoured by distinct benchmark applications and each

instruction in the instruction set explored by the real hardware

prototypes when fed back to OVP makes it an early power

consumption estimator with low simulation overhead. From

the investigation between the measured and estimated power,

the relative error is high due to effects like memory and bus

access times which are not considered by OVP. But since for

all the benchmarks, the relative error is almost the same, it can

be improved remarkably by a correction factor and this will

bring a high accuracy per simulation time as it reduces the

Relative Error % to 7.422% average.

6. REFERENCES
[1] O.S. Unsal., J.W. Tschanz., K. Bowman and et al. (2006)

“Impact of parameter variations on circuits and

microarchitecture” Micro, IEEE, 26(6), 30–39.

[2] Gabriel Marchesan Almeida. (March 14, 2012)

“Adaptive multiprocessor systems-on-chip architectures:

Principles, methods and tools”, Lap Lambert Academic

Publishing.

[3] Fabrice Lemonnier, Philippe Millet, Gabriel Marchesan

Almeida and et al. (2012) “Towards future adaptive

multiprocessor systems-on-chip: an innovative approach

for flexible architectures” International Conference on

Embedded Computer Systems: Architectures, Modeling,

and Simulation (SAMOS XII).

[4] ARM7TDMI technical reference manual. January 2008.

[5] Jürgen Teich., Jörg Henkel., Andreas Herkersdorf and

et.al. (2011) “Invasive computing: An Overview”,

Springer New York, 241–268.

[6] R. Kumar., K.I. Farkas., N.P. Jouppi and et al.

(December, 2003) “Single-isa heterogeneous multi-core

architectures: the potential for processor power

reduction” 81–92.

[7] B. Bailey and G. Martin. (2009) “Esl models and their

application: Electronic system level design and

verification in practice embedded systems”, Springer.

[8] Available from:

[Online].Available:http://www.ovpworld.org.

[9] Chriss Stephens., Bryce Cogswell., John Heinlein and

et.al. (May, 1991) “Instruction level profiling and

evaluation of the IBM/6000” SIGARCH Comput. Archit.

News, 19(3), 180-189.

[10] Rabie Ben Atitallah., Smail Niar., Alain Greiner and et

al. (2006) “Estimating energy consumption for an

MPSoC architectural exploration”, Proceedings of the

19th international on Architecture of Computing Systems,

Springer-Verlag, 298–310.

[11] Modelsim â advanced verificationand debugging. Xilinx

Tutorial, September, 2004.

[12] N. Julien., J. Laurent., E. Senn and et.al. (2003) “Power

consumption modeling and characterization of the TI

C6201”, Micro, IEEE, 23(5), 40–49.

[13] V. Tiwari., S. Malik., and A. Wolfe. (December, 1994)

“Power analysis of embedded software: a first step

towards software power minimization”, IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, 2(4), 437–445.

[14] Available from:

[Online].Available:http://http://www.mips.com.

[15] Available from:

[Online].Available:http://www.opencores.com.

[16] "ARM7DI Data Sheet". Document number arm

ddi0027d. Issued: December 1994.

