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ABSTRACT 

This paper presents a resource efficient LDPC decoder 

architecture. The algorithm used for decoding LDPC is the 

min-sum algorithm. The decoder reduces the inter-connect 

complexity by restricting the extrinsic message length to 2 

bits and also simplifies the check node operation. The 

algorithm is simulated and the results show that the 

performance is better than that of other algorithms. This 

algorithm can be incorporated into partially parallel hardware 

architecture to get significant savings in hardware resources 

when implemented in FPGA.  
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1. INTRODUCTION 

Low-density parity-check codes are linear block codes. They 

were first proposed by Gallager in 1960 [1]. As the 

computational complexity of implementing LDPC codes is 

very high compared to other codes they were ignored until 

recently. LDPC codes were resurrected by Mackay[2] and 

others who found the advantages of linear block codes which 

possess sparse parity check matrix. LDPC codes are the most 

attractive error correcting codes because of its high 

performance and also it is suitable for high data rate 

applications like wimax and dvbs2 [3]. The performance of 

LDPC codes is very close to the capacity for lot of different 

channels. The structure of LDPC code provides high degree of 

parallelism in practical implementation [4].  

2. LDPC REPRESENTATION 

The parity check matrix of an LDPC code can be represented 

either by a matrix or by using tanner graph. The two sets of 

nodes in a tanner graph are called check nodes and variable 

nodes. Check nodes represent the rows of the matrix and the 

variable nodes represent the columns of the matrix. A parity 

check matrix and its corresponding tanner graph are shown in 

Fig.1.  

 

 

 

The ath check node is connected to the bth variable node if and 

only if Ha,b=1. Check nodes f0...f5 represent the six rows of the 

matrix, whereas v0...v11 are the columns. The number of edges 

in each check node is equal to the column weight. The row 

and column weights are four and two respectively in this 

example. A cycle in a parity check matrix is formed by a 

complete path through ‘1’ entries with alternating moves 

between rows and columns. In a tanner graph a cycle is 

formed by a path starting from a node and ending at the same 

node. The length of the cycle is given by the number of edges 

in the path. The smallest cycle on a tanner graph or parity 

check matrix is called its girth. The smallest possible girth is 

four. A bipartite graph has a minimum cycle of length four 

and has even cycle lengths. 
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Fig.1. Parity check matrix and its tanner graph 

representation 

 

3. REGULAR AND IRREGULAR LDPC     

CODES 

An LDPC code is called regular if each row and each column 

has constant number of 1’s. If each row and each column has 

variable number of 1’s then it is called an irregular LDPC 

code. 

 

4. CONSTRUCTING LDPC CODES 

There are two methods for constructing LDPC codes namely 

Gallagar  and Mackay. 

4.1 Gallagar Codes 

Gallagar codes are regular LDPC codes with an H matrix of 

the form 
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Each sub matrix dH  is rw  with row weight rw and 

column weight 1. rw  and  are integers. For i=1,2…  , 

the ith row contains all of its rw 1’s in columns (i-1) rw +1 to 

rw for H1. 

4.2 Mackay Codes 

Mackay provided algorithms to semi randomly generate 

sparse H matrices. H is created by randomly generating 

weight cw columns and uniform row weight. H is created by 

randomly generating weight cw columns and uniform row 

weight while ensuring weight rw rows and no two columns 

having overlap greater than 1. The drawback with Mackay 

code is that the encoding complexity is very high. 

 

5. PERFORMANCE AND COMPLEXITY 

The performance of LDPC codes is better only for large block 

lengths. Large block lengths results in large parity check 

matrix and generator matrix.  The sparse parity check matrix 

can be put in the form [PTI] through Gaussian elimination. 

From this the generator matrix can be calculated as G=[I P]. 

The P matrix is not sparse and hence the encoding complexity 

will be high. So the complexity rows with increase in block 

length. To reduce the complexity iterative decoding 

algorithms are used. 

6. DECODING LDPC CODES 

The most common method for decoding LDPC codes is the 

belief propagation algorithm. It is also called the message 

passing algorithm or the sum product algorithm. 

6.1 Sum Product Algorithm 

Given the transmitted codeword c={c0,c1,…cn-1} and the 

received word v={v0,v1,…vn-1}, we need to calculate a Log 

Likelihood Ratio(LLR) of the received symbol. 

LLR is given by (1) 

                                                                                              (1) 

 

If the signal considered is antipodal and the channel is 

AWGN, the LLR for the received channel symbol is given by 

(2). 

        
2/2)( ii yvL 

                                                   (2)
 

Here iy is the received symbol and 
2 is th e noise power. 

These messages are passed to the check nodes becoming 

 ijqL from variable node I to check node j. The sign and 

magnitude of  ijqL are ij  and ij  respectively. 

 At check nodes these messages gets processed and the 

messages from check node to variable node is given by (3). 

 

 

                                                                                              (3) 

 

 

                                                                                      (4)
 

The message  jirL  does not depend upon the message that 

came from ith variable node 

The variable node processes the message received according 

to the equation given by 

       

                                                                                              (5) 

The above equation shows that the message from variable 

node to check node is a simple addition of messages coming 

from all check nodes exceopt the jth node. Processing of 

messaes by both check node and variable node processor is 

equivalent to one iteration of the SPA. 

After some specified number of iterations the symbols are 

decoded by comparing )( iQL with the threshold. 
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The decoded symbol is given by 
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6.2 Min Sum Algorithm 

The Min-Sum algorithm (MSA) [5] is the modified version of 

the Sum-Product algorithm (SPA) [5]. Here the check node 

operation is simplified to reduce the complexity of the 

algorithm. In MSA, the quantized intrinsic message, also 

known as log-likelihood ratio (LLR) and the extrinsic 

messages (between variable and check nodes) are equal in 

length. Hence, the hardware implementation complexity 

increases as the quantized message length increases. The 

check node update equation is given by 

 

 

                                                                                              (8) 

 

7. QUANTIZATION OF THE CHANNEL 

DATA 

Since a decoder cannot operate on real values we need to 

quantize it and the quantized values are imported to the 

decoder.  

 

 

Fig.2. Block diagram of the system 

 

The performance of the algorithm is impacted by the 

quantization of the soft input messages [6]. Higher the level of 

quantization higher will be the hardware resource 

requirement. When we reduce the quantization level it leads to 

reduction in BER performance. The quantization of the soft 

input messages affects the performance of the min-sum 

algorithm. The quantization of the channel data in LDPC 

decoding is represented by the block diagram shown in fig.2. 

8. MODIFIED MIN SUM ALGORITHM 

The MMS Algorithm [7] uses higher precision LLR messages 

and lower precision (2-bit) extrinsic messages. The check 

node and variable node operations of the MMS algorithm are 

as follows: 

8.1 Variable Node operation 

This algorithm is almost similar to the min-sum algorithm. 

The only difference is that the variable node performs higher 

precision quantized LLR operations and it maps the result to 

2-bit message. The 2-bit message is passed to the check node 

for processing. The variable node operation is given by (9). 

 

                                                                                               (9) 

 

where n=1, 2,…,N (variable nodes) and 

           i=j=1, 2,…,dv (degree of variable node ‘n’)  
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where Tm is the threshold for mapping, W is the higher integer 

constant and w is the lower integer constant. 

8.2 Check Node Operation 

In this step XOR operation (Mk) is used to find the product of 

the sign of incoming messages. AND operation (Sk) is used to 

determine the minimums. The output message (Ck) is obtained 

by concatenating the sign bit and the magnitude bit.   

 

                                                                                            (12) 
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9. PERFORMANCE COMPARISON OF 

THE ALORITHMS 

The software model of the Sum Product Algorithm (SPA), 

Min Sum Algorithm (MSA) and the Modified Min Sum 

Algorithm (MMS) has been created and the BER performance 

of each algorithm is plotted using MATLAB. Progressive 

Edge Growth (PEG) algorithm is used for generating LDPC 

codes [8]. The codes were modulated using Binary Phase 

Shift Keying (BPSK). The channel used for transmission is 

Additive White Gaussian Noise (AWGN) [9]. The simulations 

were performed for 1200 bit code length at a maximum 

iteration of 10. Fig.3 shows the BER performance comparison 

of all the three algorithms.  

 It can be seen from the plot that the performance of 

the MMS algorithm is better than the MSA but less than SPA. 

The implementation complexity of the MMS algorithm is very 

less. So it gives better performance than MSA and lower 

hardware complexity than SPA.  
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10. SIMULATION RESULTS 

 

Fig.3. BER performance comparison of Min Sum 

Algorithm (MSA), Sum Product Algorithm (SPA) and the 

Modified Min Sum Algorithm (MMS). 

 

11. LDPC DECODER ARCHITECTURES 

In most applications LDPC decoding is implemented in 

hardware to improve speed of processing. The decoding 

architectures are divided into two main categories: fully-

parallel and partially-parallel. 

 

11.1 Fully parallel decoders 

Fully parallel architectures resemble a tanner graph of a parity 

check matrix. Each node of the tanner graph is mapped on to a 

processing node (check node and variable node) along with all 

the connections required for passing messages between them. 

The check nodes and variable nodes are processed in parallel 

and thus each iteration of decoding can be done in just one 

clock cycle. The advantage of fully parallel architecture is 

high throughput and it does not need memory to store 

intermediate results. The fully parallel architecture is also 

power efficient. The problem with the fully parallel design is 

the complexity caused by large number of long global wires 

between check nodes and variable. It also requires large 

circuit area. The fully parallel decoder architecture is shown 

in Fig.4. 
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Fig.4. Fully parallel LDPC decoder architecture 

 

11.2 Partially parallel decoders 

In this architecture, a subset of variable nodes and check 

nodes are implemented in hardware, and by changing the 

routing network between implemented nodes, different 

partitions of parity check matrix are processed. Since 

intermediate messages need to be stored, memory resources 

are essential for this architecture. One iteration of decoding 

takes multiple cycles. Thus the throughput is lower compared 

to Fully parallel decoders. However, the decoding circuit is 

much smaller.  

Most of LDPC codes adopted in recent standards belong to 

Quasi-cyclic class of codes [10]. The parity check matrices of 

these codes are block structured, which makes them well 

suited for partial-parallel implementations. The parity check 

matrix for this class of codes is constructed by smaller sub 

matrices; each is either an all-zero sub matrix or a permutation 

of an identity matrix. The partially parallel decoder 

architecture is shown in fig.5. 

 

Fig.5. Partially parallel LDPC decoder architecture 

12. HARDWARE IMPLEMENTATION 

There are number of issues to be considered while designing 

hardware architecture for LDPC decoder. In partially parallel 

hardware architecture large memory is required to store 

intermediate results. Several techniques have been suggested 

to reduce decoder memory. Most techniques use MPA 

algorithm or its approximations. The min-sum algorithm 

reduces complexity by simplifying the check node update. 

Issues related to its implementation are explored in [11]. 

Decoding Latency is another critical factor for most 

applications. The overall decoding time could be reduced by 

faster convergence of the decoding algorithm and simpler 

computations. Fully parallel architecture requires large 

amount of hardware resources compared to partially parallel 

hardware architecture. The use of MMS algorithm in partially 

parallel hardware architecture provides more savings in 

hardware resources compared to previous reported works. It 

also provides acceptable level of BER performance. The 

algorithm when incorporated into partially parallel hardware 

design given in [12] provides further reduction in hardware 

resource requirement. 
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13. CONCLUSION 

This paper has presented the different algorithms for decoding 

LDPC codes. The algorithms were simulated using MATLAB 

and the BER performances of different algorithms were 

compared. The MMS algorithm provides better performance 

and also can provide significant reduction in hardware 

resources when implemented. Various types of hardware 

architecture were studied. The MMS algorithm when 

implemented in partially parallel hardware architecture 

requires very less hardware for implementation. 
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