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ABSTRACT 

The main problem of segmentation in spectral images that 

containing mixed pixels is addressed. Linear spectral 

unmixing is a procedure by which mixed pixels are 

decomposed into a collection of pure spectra, or endmembers, 

with their corresponding proportions, or abundances. Markov 

random field (MRF) is used to model the spatial correlation 

between pixels and segment the image into multiple classes. 

Pixels in each class have the same spectral values. A new 

numerical method was introduced to estimate the abundance 

and its parameters by using EM-algorithm and Gaussian 

mixture model which is termed as EM-MAP algorithm. A 

new solver, namely cross entropy (CE) was proposed for 

hyperspectral image unmixing. CE achieves higher 

performance of finding more global optima because of its 

stochastic property. The experiments show that CE can give 

more accurate segmentation results. 
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1. INTRODUCTION 
Hyperspectral image analysis is a fast growing technology in 

the field of remote sensing. Analysis of these images involves 

many technical issues such as image classification, image 

segmentation, target detection and the crucial step of spectral 

unmixing. The particular attention has been devoted to the 

spectral unmixing. Hyperspectral unmixing consists of 

decomposing the measured pixels into mixtures of pure 

spectra (or endmembers) whose fractions are referred to as 

abundances [1]. The linear relationship between the fractional 

abundance of the substance and the spectra are referred to as 

linear mixing model (LMM). For an observed pixel p in L 

bands, it is expressed as 

                                  ppp nMay                              (1) 

Where M = [m1, . . . , mR] is the L × R spectral signature  

matrix, ap is the R ×1 abundance vector and  np is the L ×1 

additive noise vector. For a hyperspectral image with P pixels 

are considered, block notation is utilized, such that 

                                 NMAY                                    (2)   

The LMM requires to have known endmember signatures. 

These signatures can be obtained from a spectral library or by 

using an endmember extraction algorithm (EEA). Once the 

endmembers that appear in a given image have been 

identified, the corresponding abundances have to be estimated 

in an inversion step. Due to physical considerations, the 

abundances have to satisfy positivity and sum-to-one 

constrains. All the inversion strategies have been developed in 

a pixel-by-pixel context and, consequently, do not exploit the 

possible spatial correlation between the different pixels of the 

hyperspectral image. In this paper, we taking these spatial 

correlations into account allow one to improve the unmixing 

procedure. More precisely, the Bayesian algorithm initially 

developed [2], [3] is modified to introduce spatial constraints 

between the pixels of an image.  

Within Bayesian estimation, a very popular strategy for 

modeling spatial information in an image is based on Markov 

random fields (MRFs). MRFs have been widely used in the 

image processing for modeling spatial correlations. MRFs 

describe neighbourhood dependence between image pixels. 

MRFs and their pseudo-likelihood approximations have been 

introduced by Besag in [4]. A likelihood term which is based 

on the data captures the pixel intensity information, while 

MRF captures the spatial location information. The major 

drawback or MRFs is their computational cost, which is 

proportional to the image size. 

This paper introduces spatial correlation between adjacent 

pixels of a hyperspectral image allowing computational cost 

of MRFs to be reduced significantly. The neighbourhood 

relations are usually defined between spatially close pixels or 

sites. This contribution proposes to define a new 

neighbourhood relation between sites regrouping spectrally 

consistent pixels. After pre-processing step defining the 

similarity regions, a classification is carried out by assigning 

hidden discrete variables or class labels to regions. A potts-

Markov field [5] is chosen as prior for the labels. This 

distribution enforces the neighbouring pixels to belong to the 

same class. A pixel belonging to a given similarity region 

must belong to the class that shares not only the same 

abundance mean vector and covariance matrix but also the 

same spectral characteristics. In addition to the label prior, the 

abundance vectors are assigned appropriate prior distributions 

with unknown means and variances that depend on the pixel 

class. This prior distribution is subjected to the positivity and 

sum-to-one constraints.  

This paper proposes to estimate hyperparameters by 

introducing a second level of hierarchy in the Bayesian 

interface. Non-informative prior distributions are assigned to 

the hyperparameters. The unknown parameters (labels and 

abundance vectors) and hyperparameters (prior abundance 

mean and variance for each class) are then obtained from their 

joint posterior distribution. The Bayesian estimators such as 

the minimum mean square error (MMSE) and maximum 

posterior (MAP) estimators are too difficult to derive from 

this posterior distribution. Markov chain Monte Carlo 

(MCMC) techniques are studied to alleviate the numerical 

problems related to the LMM with spatial constraints. MCMC 

allow one to generate samples asymptotically distributed 
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according to the joint posterior. The samples generated by the 

MCMC method are used to compute the Bayesian estimators 

and class parameters. These methods have worked well in last 

decades. In this paper, a new expectation maximization (EM) 

algorithm and Gaussian mixture model (GMM) has 

constructed. In this algorithm, we have made a sequence of 

the priors, posteriors and they then convergent to a posterior 

probability that is called the reference posterior probability. 

So, maximum a posterior estimation can be determined by this 

reference posterior probability which will make labeled 

image. Note that the underlying classification and abundance 

estimation problems are jointly solved within this Bayesian 

framework. 

A new stochastic solver was introduced for MRF modeling, 

which is termed as cross entropy (CE). CE makes no 

assumption on the form of the objective function so it is able 

to solve more complicated MRF models. CE shows higher 

segmentation accuracy than any other models. 

The paper is organised as follows. The unmixing problem 

associated to the LMM with spatial correlations is formulated 

in section 2. Section 3 introduces a Gaussian mixture model 

and EM-MAP algorithm to approximate the Bayesian 

estimators. Section 4 describes the Cross entropy technique 

used for unmixing of hyperspectral images. Simulation results 

conducted on hyperspectral data are provided in section 5. 

Finally, conclusions related to this work are reported in 

section 6. 

2. TECHNICAL BACKGROUND AND 

PROBLEM FORMULATION 

2.1 Spatial Dependencies between 

Abundances 
In this paper, we propose to exploit some spatial correlations 

between the pixels of the hyperspectral image to be analyzed. 

It is interesting to consider that the abundances of a given 

pixel are similar to the abundances of its neighboring pixels. 

The hyperspectral image is assumed to be partitioned into K 

regions or classes. If we denote as C1 , . . . , Ck  the image 

classes,  a label vector of size S × 1 (with S  K) denoted as z 

= [z1 , . . . , zS]
T with zS  {1, . . . , K} is introduced to identify 

the class of each region s, i.e., zs = k if and only if all pixels 

of s belong to Ck. In each class, the abundance vectors to be 

estimated are assumed to share the first and second order 

statistical moments, i.e.,k  {1, . . . , K}, s  Ck, p  s 

  kpaE ][                                                                     (3) 

 k

T

ppkp aaE  ]))([(                                             (4) 

Therefore, the kth class of the hyperspectral image to be 

unmixed is fully characterized by its abundance mean vector 

and the abundance covariance matrix. 

2.2 Markov random  field 
The MRFs have been used for hyperspectral image analysis in 

[6] and for spectral unmixing in [7]. To describe spatial 

correlations between pixels, it is important to define a 

neighborhood structure. Considering two image pixels i and j, 

the neighborhood relation between these pixels must be 

symmetric: if i is a neighbor of j then j is a neighbor of i. This 

neighborhood relation is applied to the nearest neighbors of 

the considered pixel, for example the fourth, eighth twelfth 

nearest pixels.  

Once the neighborhood structure has been established, the 

MRF can be defined. Let zp denote a random variable 

associated to the pth pixel of an image of P pixels. The 

variables z1 , . . . , zp indicate the pixel classes and take their 

values in a finite set {1, . . . , K} where K is the number of 

possible classes. The whole set of random variables { z1 , . . . , 

zp} forms a random field. An MRF is then defined when the 

conditional distribution of zi given the other pixels z-i only 

depend on its neighbors z(i), i.e., 

              ))(|()|( izvzfzzf iii                     (5) 

Where (i) is the neighborhood structure considered and z-i = 

{zj ; j  i}. 

Two specific MRFs are appropriate for image analysis: the 
Ising model and the Potts-Markov model. This paper focuses 
on the Potts-Markov model since it is very appropriate to 
hyperspectral image segmentation. Given a discrete random 
field z attached to an image with P pixels, the Hammersley-
Clifford theorem yields,  
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     (6) 

Where  is a granularity coefficient, G()  is the normalizing 

constant or partition function and (x) is a Kronecker function 

(x) = 1, if x = 0, 

                                                0, otherwise 

Note that drawing a label vector z = [z1 , . . . , zp] from the 

distribution can be easily achieved without knowing G() by 

using a Gibbs sampler. A major difficulty with the distribution 

comes from partition function that has no closed-form 

expression and depends on the hyperparameter . 

3. GAUSSIAN MIXTURE MODEL 
Image is a matrix within which each element is a pixel. The 

value of the pixel is a number that shows intensity or color of 

the image. Let X be a random variable that takes these values. 

For a probability model determination, we can suppose to 

have mixture of Gaussian distribution as the following form: 
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                                       (7) 

Where K is the number of components or regions and pi   0 

are weights such that     
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Where i ,i
2 are mean and standard deviation of class i. For a 

given image X, the lattice data are the values of pixels and 

GMM is our pixel base model. 𝜇𝑖 , 𝜎𝑖
2

 

EM-MAP algorithm 

There are several published articles about EM algorithm for 

GMM [8], [9]. The process of E-MAP algorithm can be 

defined: 
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 0.  Input: observed image in a vector xj , j = 1,2,…, n and I  

{1,2,….,k} labels set   

 1.  Initialize: 
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4.  Iterate steps 2 and 3 until an arbitrary error i.e., 
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5.  Compute
)(max final

ijilj pArgp   

J = 1, 2 ,…,n 

6.  Construct labeled image corresponding of each image. 

In this algorithm, a sequence of priors and then posteriors 

were made until to get convergence. The labeled images 

choose with MAP of the final posterior. 

4. CROSS ENTROPY 
Cross entropy has few successful applications in operations 

research and machine learning [10]. CE method is a simple 

accurate solver for MRF modelling. 

Consider the general energy minimization problem of MRFs. 

Let F be the configuration space of MRF, and  f  is one 

configuration of F. the energy minimization of MRF is 

formulated by  

)(minarg* fEf Ff                                               (9) 

Where E(.) is the energy function to be minimized and  f * is 

the wanted F  configuration. CE method associates an 

estimation problem with the optimization problem (Eq.9). An 

indicator function I{event}, which is equal to 1. When the event 

is true otherwise 0. Then p(.; v) is a family of discrete 

probability density functions on F and v is its parameter. Let 

us estimate the following probability 

);())(( })({ vfpIeFEp
x

efEv                      (10) 

Where Pv is the probability measure and F is a vector of 

configurations that has pdf p(.;v).  

CE Algorithm for MRF 

1. Set level t = 1 and the initial parameter vector v0 = 

{v0,1,….,v0,n}. Each vt,i = {v1
t,i,….,vm

t,i}  is a vector with m 

elements for site i. 

2. Generate a collection of samples F1,….,FN (F = {f1,…..,fn} is 

one MRF configuration) from the density p(.;v) and compute 

the energy Ei(Fi) for every i{1,….,N}. 

3. Sort all the Ei(Fi) in a non-increasing order to {E1,…..,EN}. 

Then pick et = E[(1-)
N]. 

4. Use the samples F1,….,FN to update vt by             
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5. If et remains unchanged for several iterations, go to step 6; 

else, set t = t +1 and go to step 2. 

6. The final EN(FN) of T -th iteration is the estimated minimal 

MRF energy. The corresponding configuration is embodied 

by the parameter vector vT, where each element vj
T,i  assigns 

most probability mass to a preferable label among m labels for 

site i. 

Function p(.;v) can be any kind of pdf but the simple m-point 

Bernoulli distribution is usually enough. This means each 

label j is randomly chosen for site i according to the 

probability of vj
t,i. Two parameters need to be pre-defined, ρ 

and N. Usually, ρ is a small value between 1% and 10%. 

When the site number n is large, we tend to choose a large 

value of ρ. Regarding the sample size N, we set N = cn, where 

c is a constant and often between 1 and 10. Notice that there 

are other alternative stopping criteria, such as when the 

parameter vt converges to a binary (0 or 1) vector. 

5. SIMULATION RESULTS 
The In this section, the simulation results obtained are 

presented. The experiments evaluate the performance of the 

proposed algorithm for segmentation and unmixing of image 

with K = 2 different classes. A principal component analysis 

has been conducted as a preprocessing step to determine the 

number of endmembers present in the scene.  The image 

contains R = 2 mixed components (buildings and trees). The 

algorithm proposed in section III has been applied on this 

image with N = 30 iterations. The proposed Markov random 

field with EM-MAP algorithm has segment the observed 

image into two classes. For each iteration, the GMM 

parameters  and  are calculated. Then energy is estimated 

by using these parameters. The observed and segmented 

images were presented in fig. 1 and fig. 2. 
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Fig 1. The observed image 

 

Fig 2. The segmented image 

The calculated  and  values for each iteration have been 

reported in the Table I. 

Table I. GMM Parameters 

ITERATIONS MEAN () 
VARIANCE 

() 

Iteration 1 130.5689 1.1932e+03 

Iteration 2 131.5899 1.2051e+03 

Iteration 3 132.3873 1.2097e+03 

Iteration 4 133.0986 1.2124e+03 

Iteration 5 133.8416 1.2164e+03 

Iteration 6 134.5653 1.2206e+03 

Iteration 7 135.1368 1.2234e+03 

Iteration 8 135.7413 1.2293e+03 

Iteration 9 136.2725 1.2325e+03 

Iteration 10 136.8344 1.2387e+03 

Iteration 11 137.4437 1.2454e+03 

Iteration 12 138.0039 1.2522e+03 

Iteration 13 138.4873 1.2596e+03 

Iteration 14 138.9156 1.2658e+03 

ITERATIONS MEAN () 
VARIANCE 

() 

Iteration 15 139.3062 1.2728e+03 

Iteration 16 139.6764 1.2787e+03 

Iteration 17 140.0511 1.2845e+03 

Iteration 18 140.4344 1.2905e+03 

Iteration 19 140.7515 1.2955e+03 

Iteration 20 141.0159 1.3004e+03 

Iteration 21 141.3462 1.3081e+03 

Iteration 22 141.5786 1.3122e+03 

Iteration 23 141.8058 1.3168e+03 

Iteration 24 141.9748 1.3199e+03 

Iteration 25 142.1582 1.3244e+03 

Iteration 26 142.3023 1.3269e+03 

Iteration 27 142.4248 1.3304e+03 

Iteration 28 142.6041 1.3342e+03 

Iteration 29 142.8654 1.3367e+03 

Iteration 30 142.8654 1.3404e+03 

 

After thirty iterations, the mean and variance value remains 

constant. From the segmented image, the mixed pixels are 

addressed. The Cross entropy technique is employed to 

unmixing the mixed pixels.  

 

Fig 3. The image after Cross entropy 

In this method, choose one energy value as threshold value. It 

is an iterative procedure and for each iteration, decreases the 

energy of an image and compared it with the threshold. It 

provides more accurate segmentation results. The image after 

unmixing is shown in fig. 3. 

6.  DISCUSSION AND CONCLUSION 
A segmentation and unmixing algorithm based on a new 

Markov random field has been introduced. A hidden discrete 

label was introduced for each pixel of the image to identify 

several classes defined by homogeneous abundances. We 

derived the joint posterior distribution of the unknown 

parameters and hyperparameters associated to the proposed 

Gaussian Mixture Model. We have used known EM- 

algorithm and we added numerically MAP estimation. Also 
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the initial values by histogram of image have suggested which 

is caused to convergence of EM-MAP method. After 

convergence of our algorithm, we had stability in entropy.  

In this paper, a new MRF solver namely cross entropy (CE), 

has been introduced for image unmixing. CE algorithm is a 

general solver that can be applied to any type of MRF models. 

It is an iterative procedure and in each iteration, a sequence of 

samples is generated according to a certain probability 

distribution. The method chooses one threshold of objective 

function value (i.e., energy) and just focuses on those samples 

whose performance (e.g., lower energy) is better than this 

threshold. CE is obviously more efficient because it 

concentrates on a few high performance samples among a 

large collection of random samples and quickly converges to 

states which have good performance. 
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