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ABSTRACT 
The Advanced Encryption Standard (AES) is a symmetric-key 

block cipher published by the National Institute of Standards 

and Technology (NIST)[1]. In order to protect data, a high 

throughput masked Advanced Encryption Standard (AES) 

engine is used. The masked AES engine uses the unrolling 

technique which requires extremely large field programmable 

gate array (FPGA) resources. The area for a masked AES with 

an unrolled structure is optimized. The mapping of operations 

from GF(28) to GF(24) as much as possible in order to 

optimize area. The number of mapping is reduced [GF(28) to 

GF(24)] and inverse mapping [GF(24) to GF(28)] operations of 

the masked SubBytes step from ten to one. In order to be 

compatible, the masked MixColumns, masked 

AddRoundKey, and masked ShiftRows including the 

redundant masking values are carried over GF(24). By 

moving, mapping and inverse mapping outside the masked 

AES’s round function, area can be reduced by 20%.  

Keyword 
Advanced Encryption Standard (AES), throughput, Galios 

Field (GF), Masked AES 

1. INTRODUCTION 
With the development of information technology, protecting 

sensitive information via encryption is more and more 

important. The Advanced Encryption Standard (AES) is a 

symmetric-key block cipher published by the National 

Institute of Standards and Technology (NIST) in December 

2001 [1]. The criteria defined by NIST for selecting AES fall 

into three areas i) Security ii) Cost and  iii) Implementation. 

Based on the criteria NIST selected Rijndale algorithm as 

Advanced Encryption Standard(AES) [1]. AES is a non-

Feistel cipher that encrypts and decrypts a data block of 128 

bits. It uses 10, 12, or 14 rounds. The key size, which can be 

128, 192, or 256 bits, depends on the number of rounds. The 

standard AES key size is 128 bits and 10 rounds. To provide 

security for the data, AES uses four types of transformations: 

substitution, permutation, mixing, and key-adding. AES has 

been widely used in a variety of applications, such as secure 

communication systems, high performance database, RFID 

tags and smart cards. 

2. ADVANCE ENCRYPTION STANDARD 
AES is a symmetric encryption algorithm; it takes 128-bit 

data block as input and performs several rounds of 

transformations to generate ciphertext as output. Each 128-bit 

data block are processed in a 4 X 4 array of bytes, called the 

state [3]. The round key size can be 128, 192 or 256 bits. The 

number of rounds can be 10, 12 or 14 depending upon the 

length of the round key respectively. There are four basic 

transformations applied for encrypting the data.  

2.1 Sub Bytes 
The subBytes operation is a nonlinear byte substitution. Each 

byte from input state is replaced by another byte according to 

the substitution box(S-box).  S-box is generated based upon a 

multiplicative inverse in the finite field GF(28) and a bitwise 

affine transformation. The affine transformation is the sum of 

multiple rotations of the byte as a vector, where addition is 

performed using the XOR operation. 

SubByte → Multiplicative Inversion in GF(28) → Affine 

Transformation 

2.2 Shift Rows 
Shift rows operation is used to shift the rows of the state. The 

bytes of data are cyclically shifted with a certain offset. The 

first row is left unchanged and the second, third and fourth 

row is shifted to one, two and three bytes to the left 

simultaneously. Row n is shifted left circular by n-1 bytes. 

Each column of the output state of the ShiftRows step is 

composed of bytes from each column of the input state [1]. 

2.3 Mixcolumns 
Each column of the state array is considered as a polynomial 

over GF(28). After multiplying modulo X4 + 1 with a fixed 

polynomial a(x), given by a(x) = {03}x3 + {01}x2 + {01}x1 + 

{02} the result is the corresponding column of the output 

state. 

2.4 Addroundkey 
Each byte of the array is added (respect to GF (2) to a byte of 

the corresponding array of round subkeys.  Excluding the first 

and the last round, the AES with 128 bit round key proceeds 

for nine iterations[3]. First round  of the encryption performs 

XOR with the original key  and the last round skips 

MixColumn transform [5]. Round keys are generated by a 

procedure called round key expansion or key scheduling [6]. 

Those sub-keys are derived from the original key by XOR of 

two previous columns.  For columns that are in multiples of 

four, the process involves round constants addition, S-Box 

and shift operations [7].   

All four layers described above (including key scheduling) 

have corresponding inverse operations. Deciphering is the 

process of converting the cipher text back to plain text, it is 

the inverse of ciphering process.   However, it should be noted 

that the MixColumn reverse operation requires matrix 

elements that are quite complicated compared to {01}, {02} 

or {03} of the forward one. 

These results in the more complex deciphering hardware 

compared with the ciphering hardware.  In the next section we 

demonstrate how the standard procedure for MixColumn 

transform is rewritten in order to ease its hardware 

implementation.  
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3. MASKED AES FOR UNROLLED 

STRUCTURE 
The intermediate value X is concealed by exclusive-ORing it 

with the random mask m, in the Boolean masking 

implementation. The round function of the AES contains 

ShiftRows, Mix-Columns and AddRoundKey which are linear 

transformations, while SubBytes is the only nonlinear 

transformations of the AES.  The linear transformations is 

defined as Operation; then, the masked Operation can be 

written as Operation(x  m) = Operation(x)  

Operation (m). The masked nonlinear transformation 

SubBytes has the characteristic as S-box(x m) ≠ S-box(x) 

S-box(m). To mask the nonlinear transformation, a new 

S-box, denoted as S-box1, is recomputed as S-box1 (x  

m) = S-box(x)  m' , where m and m'  are the input and 

output masks of the SubBytes. In order to mask a 128-bit 

AES, it usually needs 6-byte random values. These 6-byte 

random values are defined as m, m', m1, m2, m3, and m4. 

m1234 = {m1,m2,m3,m4} is defined as the mask for one 32-bit 

MixColumns transformation, and it also holds that m'1234 = 

MixColumns(m1234).  

The Galois field GF(28) is an extension of the Galois field 

GF(24) over which to perform a modular reduction needs an 

irreducible polynomial of degree 2, x2 + {1}x + {e}, and 

another irreducible polynomial of degree 4, x4 + x + 1. In 

order to reduce the hardware resources, we calculate the 

masked AES engine mainly over GF(24). The plaintext and 

the masking values are mapped once from GF(28) to GF(24), 

and all the intermediate operations are computed over GF(24). 

Finally, the ciphertext is mapped back from GF(24) to the 

original field GF(28). All the masking values need to be 

mapped from GF(28) to GF(24), and we denote m84 = map(m), 

m'84  = map(m'), m1234,84= map(m1234), and m1234,84 = 

map(m'1234). The masked ShiftRows and masked 

AddRoundKey remain the same. 

 

 

Fig 1 Encryption 

 

Fig 2 Decryption 
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4. OPTIMIZED MASKED S-BOX OVER 

GF (2
4
) 

In order to move the mapping and inverse mapping outside 

AES’s round operation, we exchange the computational 

sequence of masked affine and inverse mapping functions 

within masked S-box. The masked affine function needs to be 

adjusted with new scaling factors. The map operation is the 

mapping transformation of 8 × 8 matrix, and map−1 is 

constructed by the inverse map operation. We denote that the 

input values of the map function are       (z + m) and m, and 

the output values of the map function are (z + m)' and m’, 

where {(z + m), m} € GF (28) and           {(z + m)', m’} € GF 

(24) 

It holds that 

�� + � +��� = ��	�� + � +��  (1) 

where �� + ��� = 
�∗ℎ + �, �
∗� + ������	�

� =


�, ��� 

As discussed before, m-affine and m-affine' are needed for 

scaling the output values and the output masking values. The 

following steps introduce the procedure to obtain the scaling 

values. The normal affine function (Ax + b) can be applied to 

the left and the right sides of (1) as 

��� + � +�� + � = ���	���� + � +��' + b                                      

     (2) 

When mapping Equation (2) from GF (28) to GF (24), we can 

get map (A(z + m + m) + b) = map' Amap−1(z + m + m)'+ b'

  (3) 

map (A(z + m) + b) + mapAm = mapAmap−1 (z + m)' + mapb 

+ mapAmap−1 m' (4)  

Therefore, we deduce that m-affine = mapAmap−1 + mapb and 

m-affine' = mapAmap−1. The four tables in masked sbox 

remain the same in our previous work [11].  

These four tables are the following: 

1) Td1 : ((x + m),m) → x2 × e + m;  

2) Td2 : ((x + m), (y + m')) → ((x + m) + (y + m')) × (y + m');  

3) Tdm : ((x + m), (y +m')) → (x + m) × (y + m'); and  

4) T'inv : ((x + m),m) → Tinv(x) + m. 

 

Fig 3 Masked Sbox GF(24) 

 

5. MASKED MIXCOLUMNS OVER GF 

(2
4
) 

Scaling of Masked MixColumns is done by adjusting the 

operations over GF(24), and it needs to deduce the scaling 

factor of a modular multiplication with the fixed coefficients 

0X02  and 0X03. If S is 1 byte of MixColumns, it holds that S 

= map(Sh, Sl) ~Shx + Sl, where S € GF(28) and Sh, Sl € 

GF(24).  Therefore, scaling factors 2x + 6 and 2x + 7 of                                               

S = (4Sh + 2Sl)x + (fSh + 6Sl) and (5Sh + 2Sl)x + (fSh + 7Sl). 

Fig. 4 shows the scaling computation for the masked 

MixColumns. 

 

Fig 4 Masked Sbox 



International Journal of Computer Applications (0975 – 8887) 

International conference on Innovations in Information, Embedded and Communication Systems (ICIIECS-2014) 

31 

 

Fig 5 Computation of Masked Mixcolumn

                  

Table 1 Comparison of SBOX

6. CONCLUSION 
Throughputs can be enhanced by inserting pipeline registers 

for latency careless designs. In order to enhance the 

throughputs of each masked AES's round, six-stage pipelines 

are inserted. Three pipelines to each round of the masked 

AES, called outer three pipelines are inserted. The output of 

each transformation's are inserted with pipeline registers. 

Three pipelines to the masked S-box, called inner three 

pipelines are inserted. Note that the maximum pipelined 

stages for the design are six. In order to be compatible with 

the encryption procedure, we also insert six-stage pipelines to 

the key expansion in order not to affect the critical path of the 

main encryption. High throughput is an important factor for 

large data transformation systems. Masked AES only needs to 

map the plaintext and masking values from GF(28) to GF(24) 

once at the beginning of the operation and map the ciphertext 

back from GF(24) to GF(28) once at the end of the operation. 

By moving, mapping and inverse mapping outside the masked 

AES’s round function,  area can be reduced by 20%. The 

output for Masked Sbox GF(24) is shown in fig 3. Table 1 

shows the comparison of Sbox with the proposed Sbox. 

Synthesis is done using Xilinx tool, the proposed Sbox can be 

used for reducing the area, when implemented in AES. Hence 

the complete architecture of the AES can be implemented 

using the proposed Sbox and Mix Column block thus 

optimizing area for AES.   
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