
International Journal of Computer Applications (0975 – 8887)

International conference on Innovations in Information, Embedded and Communication Systems (ICIIECS-2014)

28

Masked Advanced Encryption Standard for Area

Optimization

M. Mano

P.G Scholar, Bannari Amman
Institute of Technology

K. Rekha Swathi Sri
P.G Scholar, Bannari Amman

Institute of Technology

G. Selva Priya
P.G Scholar, Bannari Amman

Institute of Technology

ABSTRACT
The Advanced Encryption Standard (AES) is a symmetric-key

block cipher published by the National Institute of Standards

and Technology (NIST)[1]. In order to protect data, a high

throughput masked Advanced Encryption Standard (AES)

engine is used. The masked AES engine uses the unrolling

technique which requires extremely large field programmable

gate array (FPGA) resources. The area for a masked AES with

an unrolled structure is optimized. The mapping of operations

from GF(28) to GF(24) as much as possible in order to

optimize area. The number of mapping is reduced [GF(28) to

GF(24)] and inverse mapping [GF(24) to GF(28)] operations of

the masked SubBytes step from ten to one. In order to be

compatible, the masked MixColumns, masked

AddRoundKey, and masked ShiftRows including the

redundant masking values are carried over GF(24). By

moving, mapping and inverse mapping outside the masked

AES’s round function, area can be reduced by 20%.

Keyword
Advanced Encryption Standard (AES), throughput, Galios

Field (GF), Masked AES

1. INTRODUCTION
With the development of information technology, protecting

sensitive information via encryption is more and more

important. The Advanced Encryption Standard (AES) is a

symmetric-key block cipher published by the National

Institute of Standards and Technology (NIST) in December

2001 [1]. The criteria defined by NIST for selecting AES fall

into three areas i) Security ii) Cost and iii) Implementation.

Based on the criteria NIST selected Rijndale algorithm as

Advanced Encryption Standard(AES) [1]. AES is a non-

Feistel cipher that encrypts and decrypts a data block of 128

bits. It uses 10, 12, or 14 rounds. The key size, which can be

128, 192, or 256 bits, depends on the number of rounds. The

standard AES key size is 128 bits and 10 rounds. To provide

security for the data, AES uses four types of transformations:

substitution, permutation, mixing, and key-adding. AES has

been widely used in a variety of applications, such as secure

communication systems, high performance database, RFID

tags and smart cards.

2. ADVANCE ENCRYPTION STANDARD
AES is a symmetric encryption algorithm; it takes 128-bit

data block as input and performs several rounds of

transformations to generate ciphertext as output. Each 128-bit

data block are processed in a 4 X 4 array of bytes, called the

state [3]. The round key size can be 128, 192 or 256 bits. The

number of rounds can be 10, 12 or 14 depending upon the

length of the round key respectively. There are four basic

transformations applied for encrypting the data.

2.1 Sub Bytes
The subBytes operation is a nonlinear byte substitution. Each

byte from input state is replaced by another byte according to

the substitution box(S-box). S-box is generated based upon a

multiplicative inverse in the finite field GF(28) and a bitwise

affine transformation. The affine transformation is the sum of

multiple rotations of the byte as a vector, where addition is

performed using the XOR operation.

SubByte → Multiplicative Inversion in GF(28) → Affine

Transformation

2.2 Shift Rows
Shift rows operation is used to shift the rows of the state. The

bytes of data are cyclically shifted with a certain offset. The

first row is left unchanged and the second, third and fourth

row is shifted to one, two and three bytes to the left

simultaneously. Row n is shifted left circular by n-1 bytes.

Each column of the output state of the ShiftRows step is

composed of bytes from each column of the input state [1].

2.3 Mixcolumns
Each column of the state array is considered as a polynomial

over GF(28). After multiplying modulo X4 + 1 with a fixed

polynomial a(x), given by a(x) = {03}x3 + {01}x2 + {01}x1 +

{02} the result is the corresponding column of the output

state.

2.4 Addroundkey
Each byte of the array is added (respect to GF (2) to a byte of

the corresponding array of round subkeys. Excluding the first

and the last round, the AES with 128 bit round key proceeds

for nine iterations[3]. First round of the encryption performs

XOR with the original key and the last round skips

MixColumn transform [5]. Round keys are generated by a

procedure called round key expansion or key scheduling [6].

Those sub-keys are derived from the original key by XOR of

two previous columns. For columns that are in multiples of

four, the process involves round constants addition, S-Box

and shift operations [7].

All four layers described above (including key scheduling)

have corresponding inverse operations. Deciphering is the

process of converting the cipher text back to plain text, it is

the inverse of ciphering process. However, it should be noted

that the MixColumn reverse operation requires matrix

elements that are quite complicated compared to {01}, {02}

or {03} of the forward one.

These results in the more complex deciphering hardware

compared with the ciphering hardware. In the next section we

demonstrate how the standard procedure for MixColumn

transform is rewritten in order to ease its hardware

implementation.

International Journal of Computer Applications (0975 – 8887)

International conference on Innovations in Information, Embedded and Communication Systems (ICIIECS-2014)

29

3. MASKED AES FOR UNROLLED

STRUCTURE
The intermediate value X is concealed by exclusive-ORing it

with the random mask m, in the Boolean masking

implementation. The round function of the AES contains

ShiftRows, Mix-Columns and AddRoundKey which are linear

transformations, while SubBytes is the only nonlinear

transformations of the AES. The linear transformations is

defined as Operation; then, the masked Operation can be

written as Operation(x m) = Operation(x)

Operation (m). The masked nonlinear transformation

SubBytes has the characteristic as S-box(x m) ≠ S-box(x)

S-box(m). To mask the nonlinear transformation, a new

S-box, denoted as S-box1, is recomputed as S-box1 (x

m) = S-box(x) m' , where m and m' are the input and

output masks of the SubBytes. In order to mask a 128-bit

AES, it usually needs 6-byte random values. These 6-byte

random values are defined as m, m', m1, m2, m3, and m4.

m1234 = {m1,m2,m3,m4} is defined as the mask for one 32-bit

MixColumns transformation, and it also holds that m'1234 =

MixColumns(m1234).

The Galois field GF(28) is an extension of the Galois field

GF(24) over which to perform a modular reduction needs an

irreducible polynomial of degree 2, x2 + {1}x + {e}, and

another irreducible polynomial of degree 4, x4 + x + 1. In

order to reduce the hardware resources, we calculate the

masked AES engine mainly over GF(24). The plaintext and

the masking values are mapped once from GF(28) to GF(24),

and all the intermediate operations are computed over GF(24).

Finally, the ciphertext is mapped back from GF(24) to the

original field GF(28). All the masking values need to be

mapped from GF(28) to GF(24), and we denote m84 = map(m),

m'84 = map(m'), m1234,84= map(m1234), and m1234,84 =

map(m'1234). The masked ShiftRows and masked

AddRoundKey remain the same.

Fig 1 Encryption

Fig 2 Decryption

International Journal of Computer Applications (0975 – 8887)

International conference on Innovations in Information, Embedded and Communication Systems (ICIIECS-2014)

30

4. OPTIMIZED MASKED S-BOX OVER

GF (2
4
)

In order to move the mapping and inverse mapping outside

AES’s round operation, we exchange the computational

sequence of masked affine and inverse mapping functions

within masked S-box. The masked affine function needs to be

adjusted with new scaling factors. The map operation is the

mapping transformation of 8 × 8 matrix, and map−1 is

constructed by the inverse map operation. We denote that the

input values of the map function are (z + m) and m, and

the output values of the map function are (z + m)' and m’,

where {(z + m), m} € GF (28) and {(z + m)', m’} € GF

(24)

It holds that

�� + � +��� = ��	�� + � +�� (1)

where �� + ��� =
�∗ℎ + �, �
∗� + ������	�

� =

�, ���

As discussed before, m-affine and m-affine' are needed for

scaling the output values and the output masking values. The

following steps introduce the procedure to obtain the scaling

values. The normal affine function (Ax + b) can be applied to

the left and the right sides of (1) as

��� + � +�� + � = ���	���� + � +��' + b

 (2)

When mapping Equation (2) from GF (28) to GF (24), we can

get map (A(z + m + m) + b) = map' Amap−1(z + m + m)'+ b'

 (3)

map (A(z + m) + b) + mapAm = mapAmap−1 (z + m)' + mapb

+ mapAmap−1 m' (4)

Therefore, we deduce that m-affine = mapAmap−1 + mapb and

m-affine' = mapAmap−1. The four tables in masked sbox

remain the same in our previous work [11].

These four tables are the following:

1) Td1 : ((x + m),m) → x2 × e + m;

2) Td2 : ((x + m), (y + m')) → ((x + m) + (y + m')) × (y + m');

3) Tdm : ((x + m), (y +m')) → (x + m) × (y + m'); and

4) T'inv : ((x + m),m) → Tinv(x) + m.

Fig 3 Masked Sbox GF(24)

5. MASKED MIXCOLUMNS OVER GF

(2
4
)

Scaling of Masked MixColumns is done by adjusting the

operations over GF(24), and it needs to deduce the scaling

factor of a modular multiplication with the fixed coefficients

0X02 and 0X03. If S is 1 byte of MixColumns, it holds that S

= map(Sh, Sl) ~Shx + Sl, where S € GF(28) and Sh, Sl €

GF(24). Therefore, scaling factors 2x + 6 and 2x + 7 of

S = (4Sh + 2Sl)x + (fSh + 6Sl) and (5Sh + 2Sl)x + (fSh + 7Sl).

Fig. 4 shows the scaling computation for the masked

MixColumns.

Fig 4 Masked Sbox

International Journal of Computer Applications (0975 – 8887)

International conference on Innovations in Information, Embedded and Communication Systems (ICIIECS-2014)

31

Fig 5 Computation of Masked Mixcolumn

Table 1 Comparison of SBOX

6. CONCLUSION
Throughputs can be enhanced by inserting pipeline registers

for latency careless designs. In order to enhance the

throughputs of each masked AES's round, six-stage pipelines

are inserted. Three pipelines to each round of the masked

AES, called outer three pipelines are inserted. The output of

each transformation's are inserted with pipeline registers.

Three pipelines to the masked S-box, called inner three

pipelines are inserted. Note that the maximum pipelined

stages for the design are six. In order to be compatible with

the encryption procedure, we also insert six-stage pipelines to

the key expansion in order not to affect the critical path of the

main encryption. High throughput is an important factor for

large data transformation systems. Masked AES only needs to

map the plaintext and masking values from GF(28) to GF(24)

once at the beginning of the operation and map the ciphertext

back from GF(24) to GF(28) once at the end of the operation.

By moving, mapping and inverse mapping outside the masked

AES’s round function, area can be reduced by 20%. The

output for Masked Sbox GF(24) is shown in fig 3. Table 1

shows the comparison of Sbox with the proposed Sbox.

Synthesis is done using Xilinx tool, the proposed Sbox can be

used for reducing the area, when implemented in AES. Hence

the complete architecture of the AES can be implemented

using the proposed Sbox and Mix Column block thus

optimizing area for AES.

7. REFERENCES
[1] NIST, “Advanced Encryption Standard (AES),”

http://csrc.nist.gov/publications/fips/fips-197.pdf, Nov-

2001.

[2] S. Mangard, N. Pramstaller, and E. Oswald,

“Successfully attacking masked AES hardware

implementations,” in Proc. CHES LNCS, 2005, vol.

3659, pp. 157–171.

[3] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen,

“A side-channel analysis resistant description of the

AESS-box,” in Proc. FSE LNCS, Setubal, Potugal, 2005,

vol. 3557, pp. 413–423.

[4] L. Goubin and J. Patarin, “DES and differential power

analysis (the ‘duplication’ method),” in Proc. CHES

LNCS, 1999, vol. 1717, pp. 158–172.

[5] S. Messerges, “Securing the AES finalists against power

analysis attacks,” in Proc. FSE LNCS, 2000, vol. 1978,

pp. 150–164.

[6] K. Gaj and P. Chodowiec, “Fast implementation and fair

comparison of the final candidates for advanced

encryption standard using field programmable gate

arrays,” in Proc. CT-RSA LNCS, 2001, vol. 2020, pp.

84–99.

[7] J. Nechvatal et. al., Report on the development of

Advanced Encryption Standard, NIST publication,

October 2, 2000.

[8] http://csrc.nist.gov/CryptoToolkit/aes/

[9] Hodjat and I. Verbauwhede, “A 21.54 Gbits/s fully

pipelined processor on FPGA,” in Proc. IEEE 12th Annu.

Symp. Field-Programm. Custom Comput. Mach., 2004,

pp. 308–309.

Designs Area (No. of slice

Reg)

Delay (ns)

Sbox 77 8.291

Proposed Sbox 23 3.019

International Journal of Computer Applications (0975 – 8887)

International conference on Innovations in Information, Embedded and Communication Systems (ICIIECS-2014)

32

[10] NIST, “Data Encryption Standard (DES),”

http://csrc.nist.gov/ publications/fips/fips46-3/fips46-

3.pdf, Oct. 1999.

[11] Verbauwhede, P. Schaumont, and H. Kuo, “Design and

Performance Testing of a 2.29 gb/s Rijndael Processor,”

IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 569-572,

Mar. 2003.

[12] Daemen and V. Rijmen, The Design of Rijndael.

Springer-Verlag, 2002.

[13] Z. Yuan, Y. Wang, J. Li, R. Li, and W. Zhao, “FPGA

based optimization for masked AES implementation,” in

Proc.IEEE 54th Int. MWSCAS, Seoul, Korea, 2011, pp.

1–4

