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ABSTRACT 
OFDM receiver starts its work with detecting the received 

signals from the transmitter, thus to detect the received signal 

synchronization algorithm is worked out especially time 

synchronization algorithm. This paper deals with the design of 

Coarse time synchronization module for OFDM-based 

WLAN. The circuit is particularized for IEEE 802.11a/g 

standards. The algorithms simulated are selected taking into 

account performance, hardware cost and latency. Our 

objective is to simulate Coarse time synchronization algorithm 

using modelsim 6.3 tool through  floating point representation 

and analyse it to have minimum hardware resources for the 

efficient receiver design. Thereby, comparing with fine time 

synchronization.  

Keywords:  
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1. INTRODUCTION 
An OFDM system carries payload data on orthogonal sub-

carriers for parallel transmission, combating the distortion 

caused by the frequency-selective channel. However, the 

advantages of OFDM can only be realized when orthogonality 

is maintained. If not, its performance may be degraded due to 

inter-symbol interference (ISI) and inter-channel interference 

(ICI). In this junction, analyzing the effects of the symbol-

time offset (STO) in OFDM systems. The inverse fast Fourier 

transform (IFFT) and fast Fourier transform (FFT) are the 

fundamental functions required for the modulation and 

demodulation at the transmitter and receiver, respectively. In 

order to determine the N-point FFT in the receiver, there is a  

need that the exact samples of the transmitted signal for the 

OFDM symbol duration. In other words, a symbol-timing 

synchronization must be performed to detect the starting point 

of each OFDM symbol.First, the IEEE preamble must be 

detected. This is done by means of an auto-correlation of the 

SS’s and, as a result, a coarse time reference is obtained. 

Fig.1 IEEE 802.11a Preamble Format 

Next, the algorithm proposed for coarse time synchronization 

including the implementation details and the fixed point 

analysis. Finally, our synchronizer will be compared with 

other synchronization schemes in terms of performance and 

hardware resources. 

2. COARSE TIME SYNCHRONIZATION 
Synchronization process starts with detecting the data frame 

from the burst of data using AGC as shown in fig 1.1. 

Immediately, it is mandatory to estimate accurate time 

reference n^GI in order to avoid ISI with neighbouring 

symbols. Positive time offsets cause ISI because FFT window 

considers the next symbol. Despite of which, some samples of 

CP are affected due to multipath channels. In order to avoid it, 

analog filtering is required for both transmission and reception 

respectively. And interpolate and decimate filters[11] are also 

required. 

 

Fig.2Coarse time Synchronization Block diagram 

A design rule[4] in common is to accept that the 

synchronization is exactly correct up to the deviation of 0 to 4 

samples. In case of over 4 samples occur during 

synchronization, then it is defined as ISI in channels with 

moderate to high delay spread.   

As mentioned above, the proposed algorithm is coarse time 

synchronization which is an adaptation of the auto-correlation 

method proposed by Schmidl and Cox[5]. The detected signal 

is auto-correlated with a delay of 16 samples and averaged 

during 144 samples which can be given as, 

            Rn=𝑟𝑛
𝐻𝑟𝑛+16   

where 𝑟𝑛=[𝑟𝑛…..𝑟𝑛+143] 

This Rn is a vector with 144 samples from the received signal. 

Due to this delay and sampling, a peak result is obtained in 

n=160. At this peak, the transition from Short Symbols to 

Guard interval occurs.  

Next, the modulus of the auto-correlation output is normalized 

by the local mean power, Pn= ||rn||
2, of the received signal. As 

defined in the timing metric [5]: 
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               nR 
2

nR 2/ nP                 ----   (1) 

Estimation is improved by averaging the |Rn|
2 to 5 samples. 

Following which, a threshold Thr is set to find the position of 

peak n^GI, which is obtained by searching the maximum of the 

averaged |Rn|
2 between those samples that full fill the 

condition Rn>Thr. To eliminate the costly division operation, 

again a condition is used. It is given by,  

              
2

nR >(
2

nP .Thr2)             ----    (2)                                             

The block diagram of proposed coarse time synchronization 

algorithm is shown in fig 2. This algorithm can be directly 

mapped in a VLSI implementation which implies that it is the 

maximum detection algorithm with low cost and low latency 

comparing present and previous samples during two clock 

cycles. The comparison results in obtaining the greater value 

amongst the samples.       

The main part of the algorithm is choosing the threshold value 

to the system and theoretical analysis were made in order to 

have perfect threshold value, the probability distributions of 

Rn were used which minimizes the probability of not detecting 

the beginning of GI. In this paper, threshold value is taken as 

0.4375 at SNR equal to or higher than 6dB. This guarentees 

that the probability of not detecting the GI is less. 

Additionally, the multiplier needed in (2) can be efficiently 

implemented. 

By this algorithm, the deviation error obtained with respect to 

the ideal point nGI at a SNR of 6dB in a multipath channel. 

Three BRAN channel models were used [6]: A, B and C with 

an RMS (Root Mean Square) delay spread of 50 ns, 100 ns 

and 150 ns, respectively. Through this relative models test 

frames are plotted in frequency of deviation such that each one 

transmitted through a different channel realization for each 

channel model. The minimum and maximum deviation rarely 

changes for test models. And the range is between 4 and 15 

samples. 

 Moreover, the CFO 

^

f  is estimated at n^GI as [12]: 

               

s

n

T

R
f

162

^




          ----     (3) 

Where Ts is the sampling period. This coarse time 

synchronization works well when the maximum CFO 

allowed by IEEE 802.11a/g standard [1,2] occurs: 232 kHz 

(73% of the subcarrier spacing); and that, thanks to the 

large average length selected for the auto-correlation, the 

achieved CFO estimation is precise enough for the highest 

modulation order used in the standard (64-QAM): the 

estimation error has a standard deviation of 0.35% of the 

subcarrier spacing for SNR higher than 20 dB, which gives 

a Bit Error Rate (BER) below 105 in the floating-point 

receiver. 

Therefore, fine frequency synchronization, which is usually 

estimated using an autocorrelation of the LS [4], is not 

necessary and, as a result, the final latency of the 

synchronizer is considerably reduced. 

 

 

3. FLOATING POINT 

REPRESENTATION 
All the operations as mentioned in the block diagram is 

carried out using floating point representation. Thus, each 

block such as floating point addition and multiplier is 

carried out through specific algorithm as mentioned below. 

3.1 Floating Point Addition 
Consider two floating point representations such as X and 

Y. Initially, convert the two representations to scientific 

notation. Thus, we explicitly represent the hidden. In order 

to add, we need the exponents of the two numbers to be the 

same. We do this by rewriting Y. This will result in Y 

being not normalized, but value is equivalent to the 

normalized Y. Add X-Y to Y's exponent. Shift the radix 

point of the mantissa (significant) Y left by X-Y to 

compensate for the change in exponent. Add the two 

mantissas of X and the adjusted Y together. If the sum in 

the previous step does not have a single bit of value 1, left 

of the radix point, then adjust the radix point and exponent 

until it does. Convert back to the one byte floating point 

representation. Thus, adder block in the block diagram 

shown in fig 2.1 works under the above mentioned 

algorithm. 

3.2 Floating Point Multiplication 

Fig.3 Floating point multiplier 

Floating point multiplier in the coarse time synchronization 

algorithm works based on [11] . Thus, it considers single 

precision for the floating point representation but it can be 

extended to double precision with little more complexity in 

the algorithm.  

3.3 Other Blocks 
Apart from these major blocks, there are                some 

minute blocks such as D flip flop, Conjugate and comparator. 

These blocks are normally coded such as delay of 1,16 and 

144 samples are just proceeded with counting the delays. And 

conjugate block is executed with respect to [7]. General, 

comparison of signals with decision as output is used in this 

time synchronization block. 

4. RESULTS AND COMPARISON 

4.1 Results 
This coarse time synchronization algorithm can be analysed 

through the decision that the detected signal is synchronized 

or not. The proposed algorithm detects the signals that are 

synchronized and rejects the signal that is not synchronized. 

From the result shown in the fig (4.1), it can be inferred that 

the sample signal given is synchronized by showing the 

decision bit to 1. 
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Fig.4 Coarse time synchronization result

 

4.2 Comparison 
The coarse time synchronization algorithm is done using auto 

correlation and this is not well enough to compete with 

prevailing multipath channels in the wireless communication 

systems. Thus, comparing this coarse time synchronization 

with fine timing synchronization algorithm, we can come to a 

conclusion that it cross correlation concept is widely used 

with cross correlating the received signal with known training 

preamble. Thus, comparing coarse time with fine time 

synchronization algorithm, fine time is more advantageous 

and one more thing is the estimation of CFO which is 

mandatory in fine time synchronization adds as a disadvantage 

compared to coarse time synchronization 

5. CONCLUSION 
From the results and comparison, it can be concluded that an 

efficient time synchronization can be designed using the 

mentioned algorithm and it can be extended with comparing 

with other algorithms to improve its efficiency and usage in 

various applications. In near future, it can also be extended 

with number of bits, thus improving the method consistently. 
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