
International Journal of Computer Applications (0975 – 8887)

International conference on Innovations in Information, Embedded and Communication Systems (ICIIECS-2014)

25

Analysis of Efficient Time Synchronization Algorithms in

OFDM WLAN

Mohanraj.V,
P.G Scholar ,Bannari Amman Institute of

Technology,Sathyamangalam

K.Shoukath Ali
Assistant Professor, Bannari Amman Institute of

Technology,Sathyamangalam.

.

ABSTRACT
OFDM receiver starts its work with detecting the received

signals from the transmitter, thus to detect the received signal

synchronization algorithm is worked out especially time

synchronization algorithm. This paper deals with the design of

Coarse time synchronization module for OFDM-based

WLAN. The circuit is particularized for IEEE 802.11a/g

standards. The algorithms simulated are selected taking into

account performance, hardware cost and latency. Our

objective is to simulate Coarse time synchronization algorithm

using modelsim 6.3 tool through floating point representation

and analyse it to have minimum hardware resources for the

efficient receiver design. Thereby, comparing with fine time

synchronization.

Keywords:
Coarse time synchronization algorithm, floating point models,

WLAN Receiver,fine time synchronization.

1. INTRODUCTION
An OFDM system carries payload data on orthogonal sub-

carriers for parallel transmission, combating the distortion

caused by the frequency-selective channel. However, the

advantages of OFDM can only be realized when orthogonality

is maintained. If not, its performance may be degraded due to

inter-symbol interference (ISI) and inter-channel interference

(ICI). In this junction, analyzing the effects of the symbol-

time offset (STO) in OFDM systems. The inverse fast Fourier

transform (IFFT) and fast Fourier transform (FFT) are the

fundamental functions required for the modulation and

demodulation at the transmitter and receiver, respectively. In

order to determine the N-point FFT in the receiver, there is a

need that the exact samples of the transmitted signal for the

OFDM symbol duration. In other words, a symbol-timing

synchronization must be performed to detect the starting point

of each OFDM symbol.First, the IEEE preamble must be

detected. This is done by means of an auto-correlation of the

SS’s and, as a result, a coarse time reference is obtained.

Fig.1 IEEE 802.11a Preamble Format

Next, the algorithm proposed for coarse time synchronization

including the implementation details and the fixed point

analysis. Finally, our synchronizer will be compared with

other synchronization schemes in terms of performance and

hardware resources.

2. COARSE TIME SYNCHRONIZATION
Synchronization process starts with detecting the data frame

from the burst of data using AGC as shown in fig 1.1.

Immediately, it is mandatory to estimate accurate time

reference n^GI in order to avoid ISI with neighbouring

symbols. Positive time offsets cause ISI because FFT window

considers the next symbol. Despite of which, some samples of

CP are affected due to multipath channels. In order to avoid it,

analog filtering is required for both transmission and reception

respectively. And interpolate and decimate filters[11] are also

required.

Fig.2Coarse time Synchronization Block diagram

A design rule[4] in common is to accept that the

synchronization is exactly correct up to the deviation of 0 to 4

samples. In case of over 4 samples occur during

synchronization, then it is defined as ISI in channels with

moderate to high delay spread.

As mentioned above, the proposed algorithm is coarse time

synchronization which is an adaptation of the auto-correlation

method proposed by Schmidl and Cox[5]. The detected signal

is auto-correlated with a delay of 16 samples and averaged

during 144 samples which can be given as,

 Rn=𝑟𝑛
𝐻𝑟𝑛+16

where 𝑟𝑛=[𝑟𝑛…..𝑟𝑛+143]

This Rn is a vector with 144 samples from the received signal.

Due to this delay and sampling, a peak result is obtained in

n=160. At this peak, the transition from Short Symbols to

Guard interval occurs.

Next, the modulus of the auto-correlation output is normalized

by the local mean power, Pn= ||rn||
2, of the received signal. As

defined in the timing metric [5]:

International Journal of Computer Applications (0975 – 8887)

International conference on Innovations in Information, Embedded and Communication Systems (ICIIECS-2014)

26

 nR 
2

nR 2/ nP ---- (1)

Estimation is improved by averaging the |Rn|
2 to 5 samples.

Following which, a threshold Thr is set to find the position of

peak n^GI, which is obtained by searching the maximum of the

averaged |Rn|
2 between those samples that full fill the

condition Rn>Thr. To eliminate the costly division operation,

again a condition is used. It is given by,

2

nR >(
2

nP .Thr2) ---- (2)

The block diagram of proposed coarse time synchronization

algorithm is shown in fig 2. This algorithm can be directly

mapped in a VLSI implementation which implies that it is the

maximum detection algorithm with low cost and low latency

comparing present and previous samples during two clock

cycles. The comparison results in obtaining the greater value

amongst the samples.

The main part of the algorithm is choosing the threshold value

to the system and theoretical analysis were made in order to

have perfect threshold value, the probability distributions of

Rn were used which minimizes the probability of not detecting

the beginning of GI. In this paper, threshold value is taken as

0.4375 at SNR equal to or higher than 6dB. This guarentees

that the probability of not detecting the GI is less.

Additionally, the multiplier needed in (2) can be efficiently

implemented.

By this algorithm, the deviation error obtained with respect to

the ideal point nGI at a SNR of 6dB in a multipath channel.

Three BRAN channel models were used [6]: A, B and C with

an RMS (Root Mean Square) delay spread of 50 ns, 100 ns

and 150 ns, respectively. Through this relative models test

frames are plotted in frequency of deviation such that each one

transmitted through a different channel realization for each

channel model. The minimum and maximum deviation rarely

changes for test models. And the range is between 4 and 15

samples.

 Moreover, the CFO

^

f is estimated at n^GI as [12]:

s

n

T

R
f

162

^




 ---- (3)

Where Ts is the sampling period. This coarse time

synchronization works well when the maximum CFO

allowed by IEEE 802.11a/g standard [1,2] occurs: 232 kHz

(73% of the subcarrier spacing); and that, thanks to the

large average length selected for the auto-correlation, the

achieved CFO estimation is precise enough for the highest

modulation order used in the standard (64-QAM): the

estimation error has a standard deviation of 0.35% of the

subcarrier spacing for SNR higher than 20 dB, which gives

a Bit Error Rate (BER) below 105 in the floating-point

receiver.

Therefore, fine frequency synchronization, which is usually

estimated using an autocorrelation of the LS [4], is not

necessary and, as a result, the final latency of the

synchronizer is considerably reduced.

3. FLOATING POINT

REPRESENTATION
All the operations as mentioned in the block diagram is

carried out using floating point representation. Thus, each

block such as floating point addition and multiplier is

carried out through specific algorithm as mentioned below.

3.1 Floating Point Addition
Consider two floating point representations such as X and

Y. Initially, convert the two representations to scientific

notation. Thus, we explicitly represent the hidden. In order

to add, we need the exponents of the two numbers to be the

same. We do this by rewriting Y. This will result in Y

being not normalized, but value is equivalent to the

normalized Y. Add X-Y to Y's exponent. Shift the radix

point of the mantissa (significant) Y left by X-Y to

compensate for the change in exponent. Add the two

mantissas of X and the adjusted Y together. If the sum in

the previous step does not have a single bit of value 1, left

of the radix point, then adjust the radix point and exponent

until it does. Convert back to the one byte floating point

representation. Thus, adder block in the block diagram

shown in fig 2.1 works under the above mentioned

algorithm.

3.2 Floating Point Multiplication

Fig.3 Floating point multiplier

Floating point multiplier in the coarse time synchronization

algorithm works based on [11] . Thus, it considers single

precision for the floating point representation but it can be

extended to double precision with little more complexity in

the algorithm.

3.3 Other Blocks
Apart from these major blocks, there are some

minute blocks such as D flip flop, Conjugate and comparator.

These blocks are normally coded such as delay of 1,16 and

144 samples are just proceeded with counting the delays. And

conjugate block is executed with respect to [7]. General,

comparison of signals with decision as output is used in this

time synchronization block.

4. RESULTS AND COMPARISON

4.1 Results
This coarse time synchronization algorithm can be analysed

through the decision that the detected signal is synchronized

or not. The proposed algorithm detects the signals that are

synchronized and rejects the signal that is not synchronized.

From the result shown in the fig (4.1), it can be inferred that

the sample signal given is synchronized by showing the

decision bit to 1.

International Journal of Computer Applications (0975 – 8887)

International conference on Innovations in Information, Embedded and Communication Systems (ICIIECS-2014)

27

Fig.4 Coarse time synchronization result

4.2 Comparison
The coarse time synchronization algorithm is done using auto

correlation and this is not well enough to compete with

prevailing multipath channels in the wireless communication

systems. Thus, comparing this coarse time synchronization

with fine timing synchronization algorithm, we can come to a

conclusion that it cross correlation concept is widely used

with cross correlating the received signal with known training

preamble. Thus, comparing coarse time with fine time

synchronization algorithm, fine time is more advantageous

and one more thing is the estimation of CFO which is

mandatory in fine time synchronization adds as a disadvantage

compared to coarse time synchronization

5. CONCLUSION
From the results and comparison, it can be concluded that an

efficient time synchronization can be designed using the

mentioned algorithm and it can be extended with comparing

with other algorithms to improve its efficiency and usage in

various applications. In near future, it can also be extended

with number of bits, thus improving the method consistently.

6. REFERENCES
[1] IEEE Standard 802.11a, Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY)

Specifications: High-speed Physical Layer in the 5 GHz

Band, December, 1999.

[2] IEEE 802.11g: Wireless LAN Specifications: Further

Higher Data Rate Extension in the 2.4 GHz Band, June,

2003.

[3] M.J. Canet, F. Vicedo, J. Valls, V. Almenar, Design of a

Digital Front–end Transmitter for OFDM-WLAN

Systems Using FPGA, ISCCSP 2004,

Hammamet,Tunisia, 2004.

[4] J. Heiskala, J. Terry, OFDM Wireless LANs: A

Theoretical and Practical Guide,SAMS Publishing, 2001.

[5] T. Schmidl, D. Cox, Robust frequency and timing

synchronization for OFDM,IEEE Transactions on

Communications 45 (12) (1997).

[6] J. Melbo, P. Schramm, Channel Models for

HIPERLAN/2 in Different Indoor Scenarios, 3ERI085B,

HIPERLAN/2 ETSI/BRAN Contribution, 1998.

[7] Chu Yu, Mao-Hsu Yen, Pao-Ann Hsiung, Sao-Jie Chen.

Low-Power 64-point Pipeline FFT/IFFT Processor for

OFDM Applications. IEEE transactions on consumer

electronics, Vol. 57, No. 1, 2011.

[8] Sekchin Chang, B. Kelley, Time synchronization for

OFDM-based WLAN systems, Electronics Letters 39

(13) (2003) 1024–1026.

[9] Yik-Chung Wu, Kun-Wah Yip, Tung-Sang Ng, Erchin

Serpedin, Maximum Likelihood symbol synchronization

for IEEE 802.11a WLANs in unknown frequency-

selective fading channels.

