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ABSTRACT 

Efficient algorithms and architectures are existing for the 

design of low-complexity bit-parallel multiple constant 

multiplication (MCM).This operation dominates the 

complexity of many digital signals processing system. 

Alternative to this, digit-serial MCM design is available with 

less complexity. But it is not as much popular as the former 

one. In this paper, the gate –level area and power of digit-

serial MCM design is tried to optimize. So initially from the 

basic parallel designs, like shift –adds implementation, the 

common sub-expression elimination and graph-based method 

are used. From this the efficient one is selected, that is the 

GB technique and is applied to digit-serial design. Then the 

newly designed MCM block will be placed to the multiplier 

block of an FIR filter. Thus comparing to bit-parallel FIR 

filter design, digit-serial design has 41% of power reduction 

and 40.5% of area reduction and are independent of data 

word-length. 
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1. INTRODUCTION 
Filtering is the most important technique in the signal 

processing to choose the limited frequency spectrum in some 

specific frequency band [1-2]. In general, the digital filter is a 

kind of the generic filter, but used widely. It is necessary to 

know the design of the digital filter. In digital signal 

processing (DSP) systems finite impulse response (FIR) 

filters are of great importance. The FIR filters are of non-

recursive type. The present output sample depends on the 

present input samples and previous input samples. In the 

common case, the impulse response is finite because there is 

no feedback in the FIR. As there is no feedback, it will 

guarantee that the impulse response will be finite. Therefore, 

the term "finite impulse response" is nearly synonymous with 

"no feedback". 

The characteristics of FIR filter in linear-phase and feed-

forward implementations make them very useful for building 

stable high-performance filters. Two types of filter 

implementations are using, they are (1) direct-form [Fig. 

1(a)] (2) transposed-form [Fig. 1(b)].  Both architectures 

have similar complexity in hardware. But the transposed 

form is generally preferred because of its higher performance 

and power efficiency [1].  

The multiplier block has significant impact on the complexity 

and performance of the filter design; because a large number 

of constant multiplications are required. Multiplications are 

often implemented with shift-and-add operations for 

hardware efficiency and are generally known as the multiple 

constant multiplications (MCM) [Fig. 1(c)] operation. The 

decomposition of multiplications into shifts and adds is such 

that as much intermediate computation results (partial 

products) can be reused as possible. 

Full flexibility of a multiplier is not needed for the constant 

multiplication, since filter coefficients are fixed and 

determined beforehand by the DSP algorithms. So area, 

delay, and power-efficient multiplier architectures, such as 

Wallace [2] and modified Booth multipliers [3] are not 

needed. Hence, the multiplication of filter coefficients with 

the input data is generally implemented under a shift-adds 

architecture. In this each constant multiplication is realized 

using addition/subtraction and shift operations in an MCM 

operation [Fig. 1(c)].  

 

(a) 

 
 (b) 

 
 (c) 

Fig.1: FIR filters implementations. (a) Direct form. 

 (b) Transposed form with generic multipliers. 

 (c) Transposed form with an MCM block. 

For the shift-adds implementation of constant multiplications, 

generally a straightforward method known as digit-based 

recoding is used. Initially it defines the constants in binary. 

Then, in the binary representation of the constant, for each 

“1” according to its bit position, it shifts the variable and 
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adds the shifted variables to obtain the result. As an simple 

example, consider the constant multiplications of 29x and 

43x. Their decompositions in binary are shown below: 

29x= (11101) bin x=x < < 4 + x < < 3+ x < < 2 + x 

43x= (101011) bin x=x < < 5 + x < <3 + x < < 1 + x 

In the fig.2. Shift-add implementation of 29x and 43x is 

shown. Here sharing of partial product is not done. Digit- 

based decoding [5] technique does not allow sharing of 

common partial product, which in turn will reduce the area 

and power dissipation of the MCM design at the gate level. 

The MCM problem can be defined by finding minimum 

number of addition and subtraction operations, which will 

implement the constant multiplications. 

                                       

Fig. 2. Shift-adds implementations of 29x and 43x without 

partial product sharing. 

This operation requires 6 additions as shown above. If the 

common partial products are shared, that can reduce the 

number of operations and thus reducing the power dissipation 

and area of the MCM design at the gate level. Finding the 

minimum number of addition and subtraction operations that 

implement the constant multiplications is the optimization 

problem, called MCM problem.. In bit-parallel design of 

constant multiplications, without representing any area cost, 

shifts can be realized only using wires in hardware. 

The MCM problem can be solved using two algorithms: 

common subexpression elimination (CSE) algorithms [6]-[7] 

and graph-based (GB) [8]-[9] techniques. In the CSE 

algorithms, initially extracting all possible subexpressions 

from the binary, canonical signed digit (CSD) [6], or minimal 

signed digit (MSD) [10] representations of the constants. 

Then finds the “best” subexpression generally the most 

common to be shared among the constant multiplications. 

The GB methods usually yields better solution and are not 

limited to any particular number representation. 

It will consider a larger number of different implementation 

of constants. In Fig. 3.a the implementation of 29x and 43x 

using the exact CSE algorithm  [7] gives a solution with four 

operations by finding the most common partial products  3x 

= (11)binx and 5x = (101)binx . 

Here constants are defined using binary. In fig.3.b. The exact 

GB algorithm is implemented by sharing the common partial 

product 7x in both multiplication and finds a solution with 

minimum number of operations. In the exact CSE algorithm 

the partial product 7x = (111)binx is not possible to  extract 

from the binary representation of 43x.  

     

 

(a) 

 

(b) 

Fig 3.a. Exact CSE algorithm b. GB technique 

Above mentioned algorithms are implemented by parallel 

processing of the input data. Bit-parallel processing is the 

existing method. In order to improve the efficiency by 

reducing the area and power, digit-serial method can be 

adopted.  

The rest of this paper proceeds as follows. Section II 

describes the background concept Section III proceeds with 

related work. Section IV describes the proposed work. In 

section v experimental results are shown and in section VI 

gives the conclusion. 

2. BACKGROUND 

2.1. Number Representation 
For the binary representation of a number, initially 

decomposing the number  in to a set of additions of power of 

2.In the case of representing a number using a signed digit 

system , it makes use of positive and negative digits,{1,0,-1} 

. For example the CSD representation [11] is a signed digit 

system that has a unique representation for each number and 

it will verify the following main properties: 1) two nonzero 

digits are not adjacent; and 2) the number of nonzero digits is 

minimum. Any n digit number in CSD has at most [(n+1)/2] 

nonzero digits and, on average, the number of nonzero digits 

is reduced by 33% when compared to binary [1]. For 

obtaining the MSD [10] representation, the first property of 

CSD has to be dropped [2].  Thus, using MSD and CSD, a 

constant can be represented in several ways with a minimum 

number of nonzero digits.  
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Consider the constant 23 defined in six bits. Its binary 

representation 010111 includes four nonzero digits. It is 

represented as 101001 in CSD, and both 101001 and 011001 

denote 23 in MSD using three nonzero digits (where 1 stands 

for−1) [1]. 

2.2. Digit-Serial Arithmetic 

     

(a)       (b) 
 

  
             
             (c)                      (d) 

Fig. 4: Digit-serial operations when d = 2. 

 (a) Addition operation. (b) Subtraction operation. (c) 

Left shift by one time. (d) Left shift by two times 

For digit-serial design, the input data is processed serially by 

dividing it into d bits and then applying each d-bit data in 

parallel. When the digit size d is equal to 1 and equal to input 

data wordlength, then a special case called bit-serial and bit-

parallel will occur respectively. The basic digit-serial 

arithmetic operations are, the digit-serial addition, 

subtraction, and left shift operations are depicted in Fig. 4 . 

Here digit size d equal to 2 is used., where the bits with index 

0 and 1 denote the least significant bit (LSB) and the most 

significant bit (MSB), respectively.  

Notice from Fig. 4(a) that a digit-serial addition operation, in 

general, requires d full adders (FAs) and one D flip-flop. The 

subtraction operation [Fig. 4(b)] is implemented using 2’s 

complement. Here the initialization of the D flip-flop with 1 

and additional d inverter gates with respect to the digit-serial 

addition operation is used. In a left shift operation [Fig. 4(c) 

and (d)], the number of required D flip-flops is equal to the 

shift amount and is realized in d layers (one for each bit).  

As an example of digit-serial realization of constant 

multiplications under the shift-adds architecture, Fig. 5 

presents the digit-serial implementation of 29x and 43x 

illustrated in Fig. 3(b) when d is 2. For the sake of clarity, the 

initializations of D flip-flops are omitted in this figure. As 

can be easily observed, the network includes two digit serial 

additions, one digit-serial subtraction, and five D flip-flops 

for all the left shift operations. 

In this network, at each clock cycle, two bits of the input data 

x(x1x0) are applied to the network input, and at the outputs 

of each digit-serial addition/subtraction operation two bits of 

a constant multiplication are computed. In general, dbits are 

processed at each clock cycle. The digit-serial design of the 

MCM operation occupies significantly less area when 

compared to its bit-parallel design since the area of the digit-

serial design is not dependent on the bit width of the input 

data. However, the latency is determined in terms of clock 

cycles.  

Fig.5: Digit-serial design of shift-adds implementation of 29x and 43x given in Fig. 3(b) when d is 2. 

3. RELATED WORK 
The exact CSE algorithms that formalize the MCM problem 

as a 0–1 ILP problem were introduced in [12] and [13]. The 

target constants are defined under a number representation in 

these algorithms and all possible implementations of constant 

multiplications are extracted from the representations of 

constants. The model simplification and problem reduction 

techniques for the exact CSE algorithms were presented in 

[7] and [14]. Prominent CSE heuristics were proposed in [7], 

[8], and [15]. In [7] author proposed an algorithm that finds 

all the minimum singed digit (MSD) representation of a 

constant and it also presents an algorithm to synthesize 

digital filters based on the MSD representation. Based on the 

number system used for the implementation, the hardware 

complexity varies. 

The exact GB algorithms define a solution with the minimum 

number of operations. This will be in breadth-first and depth-

first manners. Optimal and heuristic are the two parts in 

which efficient GB algorithms can be explained. These are 

introduced in [8], [9], and [16]. The graph representation 

concept was introduced by Bull and Horrocks. In their 

optimal parts, each target constant that can be implemented 

with a single operation is synthesized.  

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6170917#ref_7
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6170917#ref_8
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In the target set, if there exist unimplemented elements, then 

they switched to their heuristic parts. Here the required 

intermediate constants are found.. In their optimal parts, each 

target constant that can be implemented with a single 

operation is synthesized. The RAG-n algorithm is having two 

parts and the algorithm [8] initially chooses a single 

unimplemented target constant with the smallest single 

coefficient cost. This is then evaluated by the algorithm of 

[17], and after that it is synthesized with a single operation 

including one (two) intermediate constant(s) that has (have) 

the smallest value in its heuristic part. The H cub algorithm 

[11] selects a single intermediate constant which yields the 

best cumulative benefit over all unimplemented target 

constants for the implementation of each target constant. The 

approximate algorithm [12] computes all possible 

intermediate constants.  This can be synthesized with the 

current set of implemented constants by using a single 

operation and chooses the one that leads to the largest 

number of synthesized target constants. 

4. PROPOSED WORK 
In this project digit-serial FIR filter is implemented. When 

the bit-parallel implementation cannot meet the delay 

requirements, digit-serial computation is used. Thus, the 

trade-off between area and delay can be explored by 

changing the digit-size. Also bit-parallel design requires 

excessive hardware.  Here, the data words are divided in to 

digit sets, consisting of d bits which are processed one by 

one. Comparing to bit-parallel design, digit-serial 

architectures offers lower complexity. This is possible 

because of the less area of digit-serial operators and is 

independent of data wordlength. Bit-parallel designs are free 

of hardware but in digit-serial, the shifts require the use D 

flip- flops. Hence, while choosing the algorithms, the high-

level algorithms should take into account for the sharing of 

shift operations as well as the sharing of addition/subtraction 

operations in digit-serial MCM design. Furthermore, finding 

the minimum number of operations realizing an MCM 

operation does not always yield an MCM design with optimal 

area at the gate level. Hence, the high-level algorithms should 

consider the implementation cost of each digit-serial 

operation at the gate level [18]. 

In this paper, initially the shift-add implementation is 

proposed, then the exact CSE algorithm. Since there are still 

instances which the exact CSE algorithm cannot handle, an 

approximate GB algorithm [14] is proposed  that iteratively 

finds the “best” partial product which leads to the optimal 

area in digit-serial MCM design at the gate level. From these 

the better one, that is the GB based technique is selected and 

is implemented in the digit serial design. This digit-serial 

design is then implemented in the MCM block of the FIR 

filter. The power and area of this design is then compared 

with the existing bit-parallel design. 

5. EXPERIMENTAL RESULTS 
The simulation result of digit-serial and bit-parallel FIR 

filters is obtained using XILINX ISE 8.1i with SPARTAN 

2E XC2S150E as target device. Simulation is also carried out 

in ModelSim SE 6.3f using VHDL language. The simulation 

result shows that the digit-serial design of FIR filter is having 

less area compared to the bit-parallel design. The power 

analysis shows that the new design has a power consumption 

of 119mw which is less than the other approaches. The total 

equivalent gate count is 320 wherein the other approach is 

having gate count of 644. Thus it is clear that the digit-serial 

design is having 41% less power compared to the existing 

method.  

Table.1. Area and power comparison of existing and 

proposed system 

 Existing 

System 

Proposed 

System 

  Area(gate count) 644 320 

  Power (mW) 160 119 

6. CONCLUSION 
In this paper, CSE algorithm and GB technique for designing 

digit-serial MCM operation are introduced. Since there are 

still instances with which the exact CSE algorithm cannot 

cope, an approximate GB algorithm is proposed that finds the 

best partial products in each iteration which yield the optimal 

gate-level area and power reduction in digit-serial MCM 

design compared to parallel design. This paper also 

introduced the design architectures for the digit-serial MCM 

operation and FIR filters. It was shown that the realization of 

digit-serial FIR filters under the shift-adds architecture yields 

40.5% area reduction and 41% of power reduction, when 

compared to the filter designs whose multiplier blocks are 

implemented using bit-parallel constant multipliers. It is 

observed that a designer can find the circuit that fits best in 

an application by changing the digit size. In order to reduce 

noise interruption, adaptive filters are used. Adaptive filter 

can also be implemented in both bit-parallel and digit-serial 

design.  As in FIR filter, digit-serial design is the efficient 

one. As an application adaptive filters can be used to reduce 

noise from ECG signals. 
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