
International Journal of Computer Applications (0975 – 8887)

International conference on Innovations in Information, Embedded and Communication Systems (ICIIECS-2014)

6

Low Power, Area Efficient Digit-Serial FIR Filter using

Multiple Constant Multiplications (MCM)

Tiya Reba Stephen B. Veerasamy

 PG Student Assistant Professor
 Department of ECE Department of ECE

 SKCET, Coimbatore SKCET, Coimbatore

ABSTRACT

Efficient algorithms and architectures are existing for the

design of low-complexity bit-parallel multiple constant

multiplication (MCM).This operation dominates the

complexity of many digital signals processing system.

Alternative to this, digit-serial MCM design is available with

less complexity. But it is not as much popular as the former

one. In this paper, the gate –level area and power of digit-

serial MCM design is tried to optimize. So initially from the

basic parallel designs, like shift –adds implementation, the

common sub-expression elimination and graph-based method

are used. From this the efficient one is selected, that is the

GB technique and is applied to digit-serial design. Then the

newly designed MCM block will be placed to the multiplier

block of an FIR filter. Thus comparing to bit-parallel FIR

filter design, digit-serial design has 41% of power reduction

and 40.5% of area reduction and are independent of data

word-length.

Keywords

Digit-serial arithmetic, finite impulse response (FIR) filters,

multiple constant multiplications (MCM).

1. INTRODUCTION
Filtering is the most important technique in the signal

processing to choose the limited frequency spectrum in some

specific frequency band [1-2]. In general, the digital filter is a

kind of the generic filter, but used widely. It is necessary to

know the design of the digital filter. In digital signal

processing (DSP) systems finite impulse response (FIR)

filters are of great importance. The FIR filters are of non-

recursive type. The present output sample depends on the

present input samples and previous input samples. In the

common case, the impulse response is finite because there is

no feedback in the FIR. As there is no feedback, it will

guarantee that the impulse response will be finite. Therefore,

the term "finite impulse response" is nearly synonymous with

"no feedback".

The characteristics of FIR filter in linear-phase and feed-

forward implementations make them very useful for building

stable high-performance filters. Two types of filter

implementations are using, they are (1) direct-form [Fig.

1(a)] (2) transposed-form [Fig. 1(b)]. Both architectures

have similar complexity in hardware. But the transposed

form is generally preferred because of its higher performance

and power efficiency [1].

The multiplier block has significant impact on the complexity

and performance of the filter design; because a large number

of constant multiplications are required. Multiplications are

often implemented with shift-and-add operations for

hardware efficiency and are generally known as the multiple

constant multiplications (MCM) [Fig. 1(c)] operation. The

decomposition of multiplications into shifts and adds is such

that as much intermediate computation results (partial

products) can be reused as possible.

Full flexibility of a multiplier is not needed for the constant

multiplication, since filter coefficients are fixed and

determined beforehand by the DSP algorithms. So area,

delay, and power-efficient multiplier architectures, such as

Wallace [2] and modified Booth multipliers [3] are not

needed. Hence, the multiplication of filter coefficients with

the input data is generally implemented under a shift-adds

architecture. In this each constant multiplication is realized

using addition/subtraction and shift operations in an MCM

operation [Fig. 1(c)].

(a)

 (b)

 (c)

Fig.1: FIR filters implementations. (a) Direct form.

 (b) Transposed form with generic multipliers.

 (c) Transposed form with an MCM block.

For the shift-adds implementation of constant multiplications,

generally a straightforward method known as digit-based

recoding is used. Initially it defines the constants in binary.

Then, in the binary representation of the constant, for each

“1” according to its bit position, it shifts the variable and

International Journal of Computer Applications (0975 – 8887)

International conference on Innovations in Information, Embedded and Communication Systems (ICIIECS-2014)

7

adds the shifted variables to obtain the result. As an simple

example, consider the constant multiplications of 29x and

43x. Their decompositions in binary are shown below:

29x= (11101) bin x=x < < 4 + x < < 3+ x < < 2 + x

43x= (101011) bin x=x < < 5 + x < <3 + x < < 1 + x

In the fig.2. Shift-add implementation of 29x and 43x is

shown. Here sharing of partial product is not done. Digit-

based decoding [5] technique does not allow sharing of

common partial product, which in turn will reduce the area

and power dissipation of the MCM design at the gate level.

The MCM problem can be defined by finding minimum

number of addition and subtraction operations, which will

implement the constant multiplications.

Fig. 2. Shift-adds implementations of 29x and 43x without

partial product sharing.

This operation requires 6 additions as shown above. If the

common partial products are shared, that can reduce the

number of operations and thus reducing the power dissipation

and area of the MCM design at the gate level. Finding the

minimum number of addition and subtraction operations that

implement the constant multiplications is the optimization

problem, called MCM problem.. In bit-parallel design of

constant multiplications, without representing any area cost,

shifts can be realized only using wires in hardware.

The MCM problem can be solved using two algorithms:

common subexpression elimination (CSE) algorithms [6]-[7]

and graph-based (GB) [8]-[9] techniques. In the CSE

algorithms, initially extracting all possible subexpressions

from the binary, canonical signed digit (CSD) [6], or minimal

signed digit (MSD) [10] representations of the constants.

Then finds the “best” subexpression generally the most

common to be shared among the constant multiplications.

The GB methods usually yields better solution and are not

limited to any particular number representation.

It will consider a larger number of different implementation

of constants. In Fig. 3.a the implementation of 29x and 43x

using the exact CSE algorithm [7] gives a solution with four

operations by finding the most common partial products 3x

= (11)binx and 5x = (101)binx .

Here constants are defined using binary. In fig.3.b. The exact

GB algorithm is implemented by sharing the common partial

product 7x in both multiplication and finds a solution with

minimum number of operations. In the exact CSE algorithm

the partial product 7x = (111)binx is not possible to extract

from the binary representation of 43x.

(a)

(b)

Fig 3.a. Exact CSE algorithm b. GB technique

Above mentioned algorithms are implemented by parallel

processing of the input data. Bit-parallel processing is the

existing method. In order to improve the efficiency by

reducing the area and power, digit-serial method can be

adopted.

The rest of this paper proceeds as follows. Section II

describes the background concept Section III proceeds with

related work. Section IV describes the proposed work. In

section v experimental results are shown and in section VI

gives the conclusion.

2. BACKGROUND

2.1. Number Representation
For the binary representation of a number, initially

decomposing the number in to a set of additions of power of

2.In the case of representing a number using a signed digit

system , it makes use of positive and negative digits,{1,0,-1}

. For example the CSD representation [11] is a signed digit

system that has a unique representation for each number and

it will verify the following main properties: 1) two nonzero

digits are not adjacent; and 2) the number of nonzero digits is

minimum. Any n digit number in CSD has at most [(n+1)/2]

nonzero digits and, on average, the number of nonzero digits

is reduced by 33% when compared to binary [1]. For

obtaining the MSD [10] representation, the first property of

CSD has to be dropped [2]. Thus, using MSD and CSD, a

constant can be represented in several ways with a minimum

number of nonzero digits.

International Journal of Computer Applications (0975 – 8887)

International conference on Innovations in Information, Embedded and Communication Systems (ICIIECS-2014)

8

Consider the constant 23 defined in six bits. Its binary

representation 010111 includes four nonzero digits. It is

represented as 101001 in CSD, and both 101001 and 011001

denote 23 in MSD using three nonzero digits (where 1 stands

for−1) [1].

2.2. Digit-Serial Arithmetic

(a) (b)

 (c) (d)

Fig. 4: Digit-serial operations when d = 2.

 (a) Addition operation. (b) Subtraction operation. (c)

Left shift by one time. (d) Left shift by two times

For digit-serial design, the input data is processed serially by

dividing it into d bits and then applying each d-bit data in

parallel. When the digit size d is equal to 1 and equal to input

data wordlength, then a special case called bit-serial and bit-

parallel will occur respectively. The basic digit-serial

arithmetic operations are, the digit-serial addition,

subtraction, and left shift operations are depicted in Fig. 4 .

Here digit size d equal to 2 is used., where the bits with index

0 and 1 denote the least significant bit (LSB) and the most

significant bit (MSB), respectively.

Notice from Fig. 4(a) that a digit-serial addition operation, in

general, requires d full adders (FAs) and one D flip-flop. The

subtraction operation [Fig. 4(b)] is implemented using 2’s

complement. Here the initialization of the D flip-flop with 1

and additional d inverter gates with respect to the digit-serial

addition operation is used. In a left shift operation [Fig. 4(c)

and (d)], the number of required D flip-flops is equal to the

shift amount and is realized in d layers (one for each bit).

As an example of digit-serial realization of constant

multiplications under the shift-adds architecture, Fig. 5

presents the digit-serial implementation of 29x and 43x

illustrated in Fig. 3(b) when d is 2. For the sake of clarity, the

initializations of D flip-flops are omitted in this figure. As

can be easily observed, the network includes two digit serial

additions, one digit-serial subtraction, and five D flip-flops

for all the left shift operations.

In this network, at each clock cycle, two bits of the input data

x(x1x0) are applied to the network input, and at the outputs

of each digit-serial addition/subtraction operation two bits of

a constant multiplication are computed. In general, dbits are

processed at each clock cycle. The digit-serial design of the

MCM operation occupies significantly less area when

compared to its bit-parallel design since the area of the digit-

serial design is not dependent on the bit width of the input

data. However, the latency is determined in terms of clock

cycles.

Fig.5: Digit-serial design of shift-adds implementation of 29x and 43x given in Fig. 3(b) when d is 2.

3. RELATED WORK
The exact CSE algorithms that formalize the MCM problem

as a 0–1 ILP problem were introduced in [12] and [13]. The

target constants are defined under a number representation in

these algorithms and all possible implementations of constant

multiplications are extracted from the representations of

constants. The model simplification and problem reduction

techniques for the exact CSE algorithms were presented in

[7] and [14]. Prominent CSE heuristics were proposed in [7],

[8], and [15]. In [7] author proposed an algorithm that finds

all the minimum singed digit (MSD) representation of a

constant and it also presents an algorithm to synthesize

digital filters based on the MSD representation. Based on the

number system used for the implementation, the hardware

complexity varies.

The exact GB algorithms define a solution with the minimum

number of operations. This will be in breadth-first and depth-

first manners. Optimal and heuristic are the two parts in

which efficient GB algorithms can be explained. These are

introduced in [8], [9], and [16]. The graph representation

concept was introduced by Bull and Horrocks. In their

optimal parts, each target constant that can be implemented

with a single operation is synthesized.

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6170917#ref_7
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6170917#ref_8

International Journal of Computer Applications (0975 – 8887)

International conference on Innovations in Information, Embedded and Communication Systems (ICIIECS-2014)

9

In the target set, if there exist unimplemented elements, then

they switched to their heuristic parts. Here the required

intermediate constants are found.. In their optimal parts, each

target constant that can be implemented with a single

operation is synthesized. The RAG-n algorithm is having two

parts and the algorithm [8] initially chooses a single

unimplemented target constant with the smallest single

coefficient cost. This is then evaluated by the algorithm of

[17], and after that it is synthesized with a single operation

including one (two) intermediate constant(s) that has (have)

the smallest value in its heuristic part. The H cub algorithm

[11] selects a single intermediate constant which yields the

best cumulative benefit over all unimplemented target

constants for the implementation of each target constant. The

approximate algorithm [12] computes all possible

intermediate constants. This can be synthesized with the

current set of implemented constants by using a single

operation and chooses the one that leads to the largest

number of synthesized target constants.

4. PROPOSED WORK
In this project digit-serial FIR filter is implemented. When

the bit-parallel implementation cannot meet the delay

requirements, digit-serial computation is used. Thus, the

trade-off between area and delay can be explored by

changing the digit-size. Also bit-parallel design requires

excessive hardware. Here, the data words are divided in to

digit sets, consisting of d bits which are processed one by

one. Comparing to bit-parallel design, digit-serial

architectures offers lower complexity. This is possible

because of the less area of digit-serial operators and is

independent of data wordlength. Bit-parallel designs are free

of hardware but in digit-serial, the shifts require the use D

flip- flops. Hence, while choosing the algorithms, the high-

level algorithms should take into account for the sharing of

shift operations as well as the sharing of addition/subtraction

operations in digit-serial MCM design. Furthermore, finding

the minimum number of operations realizing an MCM

operation does not always yield an MCM design with optimal

area at the gate level. Hence, the high-level algorithms should

consider the implementation cost of each digit-serial

operation at the gate level [18].

In this paper, initially the shift-add implementation is

proposed, then the exact CSE algorithm. Since there are still

instances which the exact CSE algorithm cannot handle, an

approximate GB algorithm [14] is proposed that iteratively

finds the “best” partial product which leads to the optimal

area in digit-serial MCM design at the gate level. From these

the better one, that is the GB based technique is selected and

is implemented in the digit serial design. This digit-serial

design is then implemented in the MCM block of the FIR

filter. The power and area of this design is then compared

with the existing bit-parallel design.

5. EXPERIMENTAL RESULTS
The simulation result of digit-serial and bit-parallel FIR

filters is obtained using XILINX ISE 8.1i with SPARTAN

2E XC2S150E as target device. Simulation is also carried out

in ModelSim SE 6.3f using VHDL language. The simulation

result shows that the digit-serial design of FIR filter is having

less area compared to the bit-parallel design. The power

analysis shows that the new design has a power consumption

of 119mw which is less than the other approaches. The total

equivalent gate count is 320 wherein the other approach is

having gate count of 644. Thus it is clear that the digit-serial

design is having 41% less power compared to the existing

method.

Table.1. Area and power comparison of existing and

proposed system

 Existing

System

Proposed

System

 Area(gate count) 644 320

 Power (mW) 160 119

6. CONCLUSION
In this paper, CSE algorithm and GB technique for designing

digit-serial MCM operation are introduced. Since there are

still instances with which the exact CSE algorithm cannot

cope, an approximate GB algorithm is proposed that finds the

best partial products in each iteration which yield the optimal

gate-level area and power reduction in digit-serial MCM

design compared to parallel design. This paper also

introduced the design architectures for the digit-serial MCM

operation and FIR filters. It was shown that the realization of

digit-serial FIR filters under the shift-adds architecture yields

40.5% area reduction and 41% of power reduction, when

compared to the filter designs whose multiplier blocks are

implemented using bit-parallel constant multipliers. It is

observed that a designer can find the circuit that fits best in

an application by changing the digit size. In order to reduce

noise interruption, adaptive filters are used. Adaptive filter

can also be implemented in both bit-parallel and digit-serial

design. As in FIR filter, digit-serial design is the efficient

one. As an application adaptive filters can be used to reduce

noise from ECG signals.

7. REFERENCES
[1] L. Wanhammar, DSP Integrated Circuits. New York:

Academic, 1999.

[2] C. Wallace, “A suggestion for a fast multiplier,” IEEE

Trans. Electron. Comput., vol. 13, no. 1, pp. 14–17,

Feb. 1964.

[3] W. Gallagher and E. Swartzlander, “High radix booth

multipliers using reduced area adder trees,” in Proc.

Asilomar Conf. Signals, Syst. Comput., vol. 1. Pacific

Grove, CA, Oct.–Nov. 1994, pp. 545–549.

[4] J. McClellan, T. Parks, and L. Rabiner, “A computer

program for designing optimum FIR linear phase

digital filters,” IEEE Trans. Audio Electroacoust., vol.

21, no. 6, pp. 506–526, Dec. 1973.

[5] M. Ercegovac and T. Lang, Digital Arithmetic. San

Mateo, CA: Morgan Kaufmann, 2003.

[6] R. Hartley, “Subexpression sharing in filters using

canonic signed digit multipliers,” IEEE Trans.

Circuits Syst. II, Exp. Briefs, vol. 43, no. 10, pp. 677–

688, Oct. 1996.

[7] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Exact

and approximate algorithms for the optimization of

area and delay in multiple constant multiplications,”

IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 27, no. 6, pp. 1013–1026, Jun. 2008.

[8] Dempster and M. Macleod, “Use of minimum-adder

multiplier blocks in FIR digital filters,” IEEE Trans.

Circuits Syst. II, Exp. Briefs, vol. 42, no. 9, pp. 569–

577, Sep. 1995.

International Journal of Computer Applications (0975 – 8887)

International conference on Innovations in Information, Embedded and Communication Systems (ICIIECS-2014)

10

[9] Y. Voronenko and M. Püschel, “Multiplierless

multiple constant multiplication,” ACM Trans.

Algor., vol. 3, no. 2, pp. 1–39, May 2007.

[10] I.-C. Park and H.-J. Kang, “Digital filter synthesis

based on minimal signed digit representation,” in

Proc. DAC, 2001, pp. 468–473.

[11] Avizienis, “Signed-digit number representations for

fast parallel arithmetic,” IRE Trans. Electron.

Comput., vol. 10, no. 3, pp. 389–400, Sep. 1961.

[12] P. Flores, J. Monteiro, and E. Costa, “An exact

algorithm for the maximal sharing of partial terms in

multiple constant multiplications,” in Proc.Int. Conf.

Comput.-Aided Design, Nov. 2005, pp. 13–16.

[13] O. Gustafsson and L. Wanhammar, “ILP modelling of

the common subexpression sharing problem,” in Proc.

ICECS, 2002, pp. 1171–1174.

[14] Y.-H. Ho, C.-U. Lei, H.-K. Kwan, and N. Wong,

“Global optimization of common subexpressions for

multiplierless synthesis of multiple constant

multiplications,” in Proc. ASPDAC, 2008, pp. 119–

124.

[15] M. Potkonjak, M. Srivastava, and A. Chandrakasan,

“Multiple constant multiplications: Efficient and

versatile framework and algorithms for exploring

common subexpression elimination,” IEEE Trans.

Comput-Aided Design Integr. Circuits Syst., vol. 15,

no. 2, pp. 151–165, Feb.1996.

[16] L. Aksoy, E. Gunes, and P. Flores, “Search

algorithms for the multiple constant multiplications

problem: Exact and approximate,” J. Micro-process.

Microsyst., vol. 34, no. 5, pp. 151–162, Aug. 2010.

[17] `Dempster and M. Macleod, “Constant integer

multiplication using minimum adders,” IEE Proc.-

Circuits, Devices, Syst., vol. 141, no. 5, pp. 407–413,

Oct. 1994.

[18] L. Aksoy, C. Lazzari, E. Costa, P. Flores, J. Monteiro,

“Design of Digit-Serial FIR Filters: Algorithms,

Architectures, and a CAD Tool,” IEEE Trans. VLSI

Syst, vol. 21, no. 3, Mar 2013.

