
International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

16

Autonomous Management System for Dynamic
Resource Allocation in Cloud Computing

Poral Nagaraja,

Dept.ofCS&E,
S.J.M.I.T.Chitradurga-577 502.

 Tejaswini.S. C,
P.G.Student,
Dept.ofCS&E,

S.J.M.I.T.Chitradurga-577 502.

ABSTRACT

Cloud Computing allows resource usage based on needs of

the business customers. In this paper, we present an

autonomous management system that uses virtualization

technology to allocate data center resources effectively based

on application demands that supports green computing to save

energy used by optimizing the number of servers in use. We

implement the concept of “skewness” to measure the

irregularity in the multi-dimensional resource utilization of a

server. By reducing skewness, we can improve the overall

utilization of server resources and combine different types of

workloads fairly. Cloud SIM simulation and experiment

results demonstrate that our algorithm achieves better

performance.

General Terms

Algorithms, virtual machine, physical machine, overload.

Keywords

Cloud computing, resource management, virtualization, green

computing.

1. INTRODUCTION
The plasticity and the lack of advance capital investment

offered by cloud computing is appealing to many businesses.

There is a lot of discussion on the benefits and costs of the

cloud model and on how to transfer legacy applications onto

the cloud platform. Here, we analyze a different problem: how

can cloud service providers multiplex its virtual resources

onto the physical hardware in a better way? This is important

because, much of the supported gains in the cloud model

come from such multiplexing. Studies have found that servers

in many existing data centers are often severely underutilized

due to over provisioning of the peak demand [1], [2]. The

cloud model is expected to make such practice unnecessary by

providing automatic scale up and down in response to load

variation. Besides minimizing the hardware cost, it also saves

power consumption which contributes to a significant portion

of the operational expenses in large data centers. Virtual

Machine Monitors (VMMs) like Xen provide a mechanism

for mapping Virtual Machines (VMs) to physical resources

[3]. This mapping is largely concealed from the cloud users.

Users with the Amazon EC2 service, for example, do not

know where their VM samples run. It is up to the cloud

provider to make sure that the underlying Physical Machines

(PMs) have plenty of resources to meet their demands. VM

live migration technology makes it possible to change the

mapping between VMs and PMs while applications are

running [5], [6]. However, a policy issue remains as how to

decide the mapping adaptively so that the resource needs of

VMs are met while the number of PMs used is reduced. This

is challenging when the resource needs of VMs are

heterogeneous due to the various set of applications they run

and differs with time as the workloads grow and shrink. The

capacity of PMs can also be heterogeneous because multiple

generations of hardware coincide in a data center. We aim to

achieve two goals in our algorithm:

 Overload avoidance: The capacity of a PM should

be sufficient to fulfill the resource demands of all

VMs running on it. Otherwise, the PM is overloaded

and can lead to degraded performance of its VMs.

 Green computing: The number of PMs used should

be minimized as long as they can still fulfill the

demands of all VMs. Idle PMs can be turned off to

save power.

There is an inherent tradeoff between the two goals in the face

of varying resource demands of VMs. For overload

avoidance, we should keep the utilization of PMs low t

minimize the possibility of overload in case the resource

demands of VMs increase later. For green computing, we

should keep the utilization of PMs reasonably high to make

efficient use of their power. In this paper, we present the

design and implementation of an automated resource

management system that achieves a good balance between the

two goals. We make the following contributions:

 We develop a resource allocation system that can

avoid overload in the system effectively while

minimizing the number of servers used.

 We used the concept of “skewness” to measure the

uneven usage of a server. By minimizing skewness,

we can enhance the overall utilization of servers in

the face of multi-dimensional resource constraints.

 We design a load prediction algorithm that can

predict the future resource usages of applications

accurately without looking inside the VMs. The

algorithm can capture the rising trend of resource

usage patterns and help reduce significantly.

2. RELATED WORKS

2.1 Resource Allocation at the Application

Level
Automatic scaling of Web applications was previously studied

in [14] and [15] for data center environments. In MUSE [14],

each server has duplicates of all web applications running in

the system. The dispatch algorithms in a frontend L7-switch

ensure that requests are reasonably served while minimizing

the number of underutilized servers. Work [15] uses network

flow algorithms to allocate the load of an application among

its running instances. For connection oriented Internet

services like Windows Live Messenger, work [10] shows an

integrated approach for load transmitting and server

provisioning. Virtual machines are not used in above all

works and they require the applications be designed in a

multitier architecture with load balancing provided through a

front-end dispatcher. In contrast, our work targets Amazon

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

17

EC2-style environment where it places no limitation on what

and how applications are established inside the VMs. A VM is

considered as a black box. Resource management is done only

at the granularity of all VMs.

Map Reduce [16] is another type of popular Cloud service

where data locality is very important to its performance.

Quincy [17] adopts min-cost flow model in job scheduling to

increase data locality while keeping fairness among various

jobs. The “Delay Scheduling” algorithm [18] trades execution

time for data locality. Work [19] assigns dynamic priorities to

jobs and users to facilitate resource allocation.

2.2 Resource Allocation by Live VM

Migration
VM live migration is a popular technique for dynamic

resource allocation in a virtualized environment [8], [12],

[20]. Our work also belongs to this group. Sand piper merges

multidimensional load information into a single Volume

metric [8]. It arranges the list of PMs based on their volumes

and the VMs in each PM in their Volume-To-Size Ratio

(VSR). This unfortunately conceals critical information

needed when making the migration decision. It then considers

the PMs and the VMs in the prearranged order. An example of

the supplementary file is available online, where the

algorithms choose the wrong VM to migrate away during

overload and fails to reduce the hot spot and also the

algorithms and their results in the experiment are compared.

In addition, the work has no support for green computing and

differs from various other aspects such as load prediction.

The HARMONY system applies virtualization technology

across multiple resource layers [20]. It uses VM and data

migration to reduce hot spots not only just on the servers, but

also on network devices and the storage nodes as well. It

introduces the Extended Vector Product (EVP) as an indicator

of imbalance in resource usage. Their load balancing

algorithm is an alternative of the Toyoda method [21] for

multidimensional knapsack problem. Unlike the system, it

does not support green computing and load prediction is left

for enhancement. The analysis of the phenomenon Vector Dot

behaves differently compared with the work and make out the

reason why the algorithm can use residual resources better.

Dynamic placement of virtual servers to reduce Service Level

Agreement (SLA) violations is studied in [12]. They model it

as a bin packing problem and use the well-defined first-fit

approximation algorithm to calculate the VM to PM layout

statistically. That algorithm, however, is structured mostly for

offline use. It is likely to incur a large number of migrations

when applied in online environment where the resource

demands of VMs change dynamically.

2.3 Green Computing
Many efforts have been made to minimize power

consumption in data centers. Hardware-based approaches

include novel thermal design for low-power hardware, or

adopting power proportional and lower cooling power. Work

[22] uses Dynamic Voltage and Frequency Scaling (DVFS) to

adjust CPU power according to its load. We do not use DVFS

for green computing. Power Nap [23] resorts to new hardware

technologies such as Solid State Disk (SSD) and Self-Refresh

DRAM to implement quick transition(less than 1ms) between

complete operation and low power state, so that it can “take a

nap” in short idle intervals. When the server goes idle,

Somniloquy [24] notifies an embedded system situating on a

special designed NIC to delegate the main operating system

which gives an illusion that the server is always active.

Our work belongs to the category of pure-software low cost

solutions [10], [12], [14], [25], [26], [27]. Similar to

Somniloquy [24], Sleep Server [26] initiates virtual machines

on a dedicated server as delegate, instead of depending on a

special NIC. LiteGreen [25] does not use a delegate. Instead it

migrates the desktop OS away so that the desktop is in stand

by position. It requires that the desktop is virtualized with

distributed storage. Jettison [27] invents “partial VM

migration,” a variance of live VM migration, which migrates

away only the necessary working set while leaving

infrequently used data behind.

3. SYSTEM OVERVIEW
The architecture of the system is shown in Figure

1.EachPMthat runs Virtual Machine Monitoring (VMM) such

as Xen hypervisor supports a privileged datacenter and one or

more hosts. Each virtual machine in host, encapsulates one or

more applications like remote desktop, Mail, web server,

map/reduce DNS, etc. We assume all PMs Share backend

storage.

The multiplexing of VMs to PMs is managed using the usher

framework in network topology. The main logic of the system

is implemented as a set of plug-ins to usher. Each host runs an

Usher Local Node Manager (LNM) on datacenter which

collects the usage statistics of resources for each VM on that

node. The CPU and network utilization can be calculated by

monitoring the scheduling events in VMM. The memory

utilization within a VM, however, is not visible to the VMM.

One approach is to infer lack of memory in VM by observing

its swap activities. Unfortunately, the host OS is required to

install a separate swap partition. Furthermore, it may be too

late to adjust the memory allocation while time swapping

occurs. Instead, we implemented a working set prober on each

VMM to estimate the working set sizes of VMs running on it.

The statistics collected at each PM is passed to the central

controller where our VM scheduler runs. The VM scheduler is

invoked periodically and it accepts from the LNM the

resource demand history of VMs, the ability and the load

history of PMs, and the current layout of VMs on PMs.

The scheduler in Figure 1 has many components. The

predictor predicts the future resource demands of VMs and

the future load of PMs based on earlier statistics. We compute

the load of a PM by aggregating the resource utilization of its

VMs. The details of the load prediction algorithm will be

described in the next section. The LNM at each host first

attempts to satisfy the new demands locally by adjusting the

resource allocation of VMs sharing the same VMM. VMM

can vary the CPU allocation among the VMs by adjusting

their weights in its CPU scheduler. The Memory Manager

(MM) Allotter in datacenter of each host is responsible for

adjusting the local memory allocation.

The hot spot solver in the VM Scheduler detects if the

resource usage of any PM is above the hot threshold (i.e., a

hot spot). If so, some VMs running on them will be migrated

away to minimize their load. The cold spot solver verifies if

the average usage of actively used PMs is below the green

computing threshold. If so, some of those PMs could

potentially be turned off to save power. It identifies the set of

PMs whose usage is below the cold threshold (i.e., cold spots)

and then tries to migrate away all their VMs. It then compiles

a migration list of VMs and forwards it to the CTRL. for

execution.

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

18

Figure1.System Architecture

4. PREDICTING FUTURE RESOURCE

NEEDS
It is required to predict the future resource needs of VMs.

Concentrating on Internet applications, one solution is to look

inside a VM for application level statistics, e.g., by parsing

logs of pending requests. Doing so, requires alteration of the

VM which may not always be positive. Instead, we make our

prediction based on the historic external behaviors of VMs.

Our first attempt was to calculate an Exponentially Weighted

Moving Average (EWMA) using a TCP-like scheme

𝐸 𝑡 = 𝛼 ∗ 𝐸 𝑡 − 1 + 1 − 𝛼 ∗ 𝑂 𝑡 , 0 < 𝛼 < 1.
Where 𝐸 𝑡 and 𝑂 𝑡 are the estimated and the monitored

load at time t, respectively. 𝛼 reflects a tradeoff between

stability and responsiveness.

Table 1.Load Prediction Algorithms

The parameters in the parenthesis are the 𝛼 values. W is the

length of the measurement window used to represent the

recently observed values. The “median” error is calculated as

a percentage of the monitored value: 𝐸 𝑡 − 𝑂 𝑡 /𝑂(𝑡). The

“higher” and “lower” error percentages shown in Table 1 are

the percentages of predicted values that are higher or lower

than the monitored values, respectively. The prediction is

fairly accurate with approximately equal percentage of higher

and lower values.

Although seemingly satisfactory, this formula does not

capture the future trends of resource usage. For example,

when we see a sequence of 𝑂 𝑡 =10; 20; 30, and 40, it is

reasonable to predict the future value to be 50. Unfortunately,

when α is between 0 and 1, the predicted value is always

between the past value and the observed value. To reflect the

“acceleration,” we considered an innovative approach by

setting α to a negative value. When−1 ≤ 𝛼 < 0, the above

formula can be transformed into the following:

𝐸 𝑡 = − 𝛼 ∗ 𝐸 𝑡 − 1 + 1 + 𝛼 ∗ 𝑂 𝑡
= 𝑂 𝑡 + 𝛼 ∗ (𝑂 𝑡 − 𝐸 𝑡 − 1)

When the resource usage is decreasing, we want to be

conservative in minimizing our estimation. Hence, we use two

parameters, ↑ 𝛼 and↓ 𝛼, to know how rapidly 𝐸 𝑡 adapts to

modification when 𝑂 𝑡 isincreasing or decreasing,

respectively. This is called as FastUp and Slow Down (FUSD)

algorithm.

5. THE SKEWNESS ALGORITHM
The concept of skewnessis used to quantify the unevenness in

the utilization of multiple resources on a server [28]. Let n be

the number of resources and 𝑟𝑖 be the utilization of the ith

resource. The resource skewness of a server p is given as

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 𝑝 = (
𝑟𝑖

𝑟
− 1)2

𝑛

𝑖=1

where ris the average utilization of all resources for server p.

In practice, not all types of resources are performance crucial

and hence we need to consider bottleneck resources in the

calculation. By minimizing the skewness, the system can

 ewma(0.7)

W=1

fusd(-.2,0.7)

W=1
fusd(-.2,0.7)

W=8

median

error

5.6% 9.4% 3.3%

high error 56% 77% 58%
low error 44% 23% 41%

VM Scheduler

Predictor Hot spot solver Cold spot solver Migration list

Usher CTRL

Xen Hypervisor

WS prober

Dom 0

U
sh

er
 L

N
M

M
M

 A
ll

o
tt

er

Dom U

W
eb

 s
er

v
er

Dom U
R

m
t

d
es

k
to

p

PM1

PMn

Xen Hypervisor

WS prober

Dom 0

U
sh

er
 L

N
M

M
M

 A
ll

o
tt

er

Dom U

M
ai

l
S

er
v

er

Dom U

L
o

g
 S

er
v

er

…

…

.

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

19

combine various types of workloads fairly and improve the

overall utilization of server resources.

5.1 Hot and Cold Spots
The algorithm is executed periodically to evaluate the

resource allocation status based on the predicted future

resource needs of VMs. If the server has the utilization of any

of its resources above a hot threshold, it is called hot spot.

This shows that the server is overloaded and hence some VMs

running on it should be moved away. The temperature of a hot

spot p is the square sum of its resource utilization beyond the

hot threshold given as

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑝 = (𝑟 − 𝑟𝑖)2

𝑟∈𝑅

where R is the set of overloaded resources in server p and 𝑟𝑖is

the hot threshold for resource r. The temperature of a hot spot

reveals its degree of overload. If the temperature is zero, then

that server is not a hot spot. If server has the utilization of all

its resources below a cold threshold, it is called cold spot.

This indicates that the server is mostly inactive and a potential

candidate to turn off to save power. However, it happens only

when the average resource usage of all actively used servers

in the system is below a green computing threshold. A server

is actively used if it has at least one VM running. Otherwise, it

is idle. Finally, the warm threshold is a level of resource

utilization that is high enough to justify having the server

running but not as high as risk that becomes a hot spot in the

face of temporary variation of application resource demands.

Various types of resources can have different thresholds.

For example, consider the hot thresholds for CPU and

memory resources to be 80 and 90percent, respectively. Thus

a server is a hot spot if either its CPU usage is above80

percent or its memory usage is above 90 percent.

5.2 Hot Spot Mitigation
The list of hot spots in the system is in descending order of

temperature (i.e., handle the hottest one first). The goal is to

remove all hot spots if possible or else to keep their

temperatures as low as possible. For each server p, first decide

that which of its VMs should be migrated away. The list of

VMs is arranged based on the resulting temperature of the

server if that VM is migrated away.

We aim to migrate away the VM that can minimize the

server’s temperature the most. Here, we tried to select the VM

whose elimination can reduce the skewness of the server the

most. Each VM in the list is required to find a destination

server to accommodate. After accepting this VM, the server

must not become a hot spot. Among all such servers, select

one whose skewness can be reduced the most by accepting

this VM. Note that this reduction can be negative which

means the selected server increases the skewness.

If the destination server is found, then record the migration of

the VM to particular server and improve the predicted load of

related servers. Otherwise, move to the next VM in the list

and try to find a destination server for it. As long as the VMs

find their destination server, the run of the algorithm is

successful and then move on to the next hot spot. Note that

each run of the algorithm moves away at most one VM from

the overloaded server. This does not necessarily remove the

hot spot, but at least reduces its temperature. If it remains a

hot spot in the next decision run, the algorithm repeats this

process. It is possible to design the algorithm so that it can

move away multiple VMs during each run. But this can add

more load on the associated servers during a period when they

are already overloaded. So it is decided to use this

conservative approach and leave the system for some time to

react before initiating additional migrations.

5.3 Role of Green Computing Algorithm
When the resource usage of active servers is too low, some of

them can be turned off to save power. This is handled in

Green computing algorithm[25]. The challenge here is to

reduce the number of active servers during low load without

compromising performance either now or in the future to

avoid fluctuation in the system.

Green computing algorithm is invoked when the average

usage of all resources on active servers is below the green

computing threshold. The list of cold spots in the system is

arranged based on the increasing order of their memory size.

Since it is needed to move away all its VMs before shutting

down an underutilized server, memory size of a cold spot is

defined as the average memory size of all VMs running on it.

Recall that model assumes all VMs plug-in to share back-end

storage. Hence, the cost of a VM live migration is determined

mostly by its memory footprint. It is tried to remove the cold

spot with the lowest cost first.

For a cold spot p, check if it can be able to move all its VMs

somewhere else. Each VM on p, tried to locate a destination

server to accommodate. The resource usage of the server after

accepting the VM must be below the warm threshold. So the

power is saved by consolidating underutilized servers,

overdoing it may create hot spots in the future. The warm

threshold is designed to avoid that. If multiple servers satisfy

the above criterion, then one of that is not a current cold spot.

This is because increasing load on a cold spot minimizes the

likelihood that it can be eliminated. However, if necessary

choose a cold spot as the destination server. If all things are

being equal, then choose the destination server whose

skewness can be minimized the most by accepting this VM. In

case of destination servers for all VMs on a cold spot, we

record the sequence of migrations and improve the predicted

load of related servers. Otherwise, do not move any of its

VMs. The list of cold spots is also updated because some of

them may no longer be cold due to the proposed VM

migrations in the above process.

The above consolidation adds an extra load to the related

servers. This is not a critical problem as in the hot spot

mitigation case because green computing is initiated only

when the load in the system is low. Nevertheless, needed to

bound for extra load due to server consolidation. By

restricting the number of cold spots that can be removed in

each run of the algorithm, we find no more active servers in

the system. This is called the consolidation limit.

The elimination of cold spots in the system is possible only

when the average load of all active servers is below the green

computing threshold. Otherwise, leave those cold spots there

only as potential destination machines for future offloading.

5.4 Consolidated Movements
The movements generated in each step above are not executed

until all steps are finished. The lists of movements are then

consolidated so that each VM is migrated at most once to its

final destination. For example, hot spot mitigation may dictate

a VM to migrate from PM A to PM B, while green computing

dictates it to migrate from PM B to PM C. In the actual

execution, the VM is migrated from A to C directly.

6. SIMULATION
We evaluate the performance of the skewness algorithm using

Cloud Sim simulation. Our simulation uses the same code

base for the algorithm as the real implementation in the

experiments. This ensures the loyalty of our simulation

results. Results are per-minute server resource usage, such as

memory usage, CPU rate, and network traffic statistics, that

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

20

are collected using tools like “perfmon” (Windows), the

“/proc” file system (Linux), “pmstat/vmstat/netstat”

commands (Solaris), etc..

We also collected results from different servers and desktop

computers. We post processed the results based on days

collected and use arbitrary sampling and linear combination of

the data sets to generate the workloads needed. All

simulations in this section use the actual trace workloads

unless otherwise specified.

Table 2. Parameters of Our Simulation

 Meaning Value

ℎ Hot threshold 0.7

𝑐 Cold threshold 0.1

𝑤 Warm threshold 0.65

𝑔 Green computing threshold 0.3

𝑙 Consolidation limit 0.05

The default parameters we use in the simulation are shown in

Table 2. In a dynamic system, these parameters represent

good knobs to tune the performance of the system adaptively.

We choose the default parameter values based on real

experience working with many Internet applications.

6.1 Effect of Thresholds
We have evaluated the effect of the different thresholds used

in our algorithm. We simulate a system with 10 PMs and 100

VMs. We use arbitrary VM to PM mapping in the initial

layout. The scheduler is invoked once per minute. The bottom

part of Figure 2 shows the resource usage in the system. The x

axis is the time in minutes. The y-axis is overloaded with two

meanings: the percentage of the resource or the percentage of

active PMs in the system. Recall that a PM is active if it has at

least one VM running. As can be seen from the Figure 2, the

CPU load demonstrates patterns which are substantially fixed

even after few minutes. The memory consumption is nicely

balanced over the time. The network usage stays very low.

Figure 2. Impact of threshold

Figure 2 shows how the percentage of resource utilization

differs with the load for different thresholds in our algorithm.

For example, “h0.9 g0.4 c0.25” means that the hot, the green

computing, and the cold thresholds are 90, 40, and 25 percent

respectively. Parameters not had shown in the figure take the

default values in Table 2. Our algorithm can be made more or

less aggressive in its migration decision by modulating the

thresholds. Figure 2 shows lower hot thresholds because more

aggressive migrations to reduce hotspots in the system

increase the number of APMs, and higher cold and green

computing thresholds cause more dynamic consolidation.

With the default thresholds in Table 2, the percentage of

resources in the algorithm follows the load pattern closely.

To analyze the performance of the algorithm in more extreme

situations, we also create a synthetic workload which imitates

the shape of a sine function (only the positive part) and ranges

from 15 to 95 percent with a 20 percent random fluctuation. It

has a much larger peak-to-mean ratio than the actual result.

7. CONCLUSION
We have presented the design, implementation, and

evaluation of a resource management system for cloud

computing services. Our system multiplexes virtual to

physical resources adaptively based on the varying

requirements. We use the skewness metric to merge VMs with

various resource characteristics appropriately so that the

capacities of servers are well utilized. Both overload

avoidance and green computing for systems with multi-

resource constraints are achieved by the algorithm.

8. ACKNOWLEDGMENTS
The authors would like to thank S.J.M.Vidyapeetha, The

Principal and staff of S.J.M.I.T.Chitradurga for their support.

9. REFERENCES
[1] M. Armbrust et al., “Above the Clouds: A Berkeley View

of Cloud Computing,” technical report, Univ. of

California, Berkeley, Feb.2009.

[2] L. Siegele, “Let It Rise: A Special Report on Corporate

IT,” The Economist, vol. 389, pp. 3-16, Oct. 2008.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.

Ho, R.Neugebauer, I. Pratt, and A. Warfield, “Xen and

the Art of Virtualization,” Proc. ACM Symp. Operating

Systems Principles (SOSP ’03), Oct. 2003.

[4] “Amazon elastic compute cloud (Amazon EC2),”

http://aws.amazon.com/ec2/, 2012.

[5] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C.

Limpach, I.Pratt, and A. Warfield, “Live Migration of

Virtual Machines,”Proc. Symp. Networked Systems

Design and Implementation (NSDI ’05), May 2005.

[6] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast Transparent

Migration for Virtual Machines,” Proc. USENIX Ann.

Technical Conf., 2005.

[7] M. McNett, D. Gupta, A. Vahdat, and G.M. Voelker,

“Usher: An Extensible Framework for Managing

Clusters of Virtual Machines,” Proc. Large Installation

System Administration Conf.(LISA ’07), Nov. 2007.

[8] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif,

“Black-Box and Gray-Box Strategies for Virtual

Machine Migration,” Proc. Symp. Networked Systems

Design and Implementation (NSDI ’07),Apr. 2007.

[9] C.A. Waldspurger, “Memory Resource Management in

VMware ESX Server,” Proc. Symp. Operating Systems

Design and Implementation (OSDI ’02), Aug. 2002.

[10] G. Chen, H. Wenbo, J. Liu, S. Nath, L. Rigas, L. Xiao,

and F. Zhao, “Energy-Aware Server Provisioning and

Load Dispatching for Connection-Intensive Internet

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

21

Services,” Proc. USENIX Symp. Networked Systems

Design and Implementation (NSDI ’08), Apr. 2008.

[11] P. Padala, K.-Y.Hou, K.G. Shin, X. Zhu, M. Uysal, Z.

Wang, S.Singhal, and A. Merchant, “Automated Control

of MultipleVirtualized Resources,” Proc. ACM European

conf. ComputerSystems (EuroSys ’09), 2009.

[12] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic

Placement ofVirtual Machines for Managing SLA

Violations,” Proc. IFIP/IEEEInt’lSymp. Integrated

Network Management (IM ’07), 2007.

[13] “TPC-W: Transaction Processing Performance Council,”

http://www.tpc.org/tpcw/, 2012.

[14] J.S. Chase, D.C. Anderson, P.N. Thakar, A.M. Vahdat,

and R.P.Doyle, “Managing Energy and Server Resources

in HostingCenters,” Proc. ACM Symp. Operating System

Principles (SOSP ’01),Oct. 2001.

[15] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A

ScalableApplication Placement Controller for Enterprise

Data Centers,”Proc. Int’l World Wide Web Conf.

(WWW ’07), May 2007.

[16] M. Zaharia, A. Konwinski, A.D. Joseph, R.H. Katz, and

I. Stoica,“Improving MapReduce Performance in

Heterogeneous Environments,”Proc. Symp. Operating

Systems Design and Implementation(OSDI ’08), 2008.

[17] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K.

Talwar, and A.Goldberg, “Quincy: Fair Scheduling for

Distributed ComputingClusters,” Proc. ACM Symp.

Operating System Principles (SOSP ’09), Oct. 2009.

[18] M. Zaharia, D. Borthakur, J. SenSarma, K. Elmeleegy, S.

Shenker,and I. Stoica, “Delay Scheduling: A Simple

Technique forAchieving Locality and Fairness in Cluster

Scheduling,” Proc.European Conf. Computer Systems

(EuroSys ’10), 2010.

[19] T. Sandholm and K. Lai, “Mapreduce Optimization

UsingRegulated Dynamic Prioritization,” Proc. Int’l Joint

Conf. Measurementand Modeling of Computer Systems

(SIGMETRICS ’09), 2009.

[20] A. Singh, M. Korupolu, and D. Mohapatra, “Server-

StorageVirtualization: Integration and Load Balancing in

Data Centers,”Proc. ACM/IEEE Conf. Supercomputing,

2008.

[21] Y. Toyoda, “A Simplified Algorithm for Obtaining

ApproximateSolutions to Zero-One Programming

Problems,” ManagementScience, vol. 21, pp. 1417-1427,

Aug. 1975.

[22] R. Nathuji and K. Schwan, “Virtualpower: Coordinated

PowerManagement in Virtualized Enterprise Systems,”

Proc. ACMSIGOPS Symp. Operating Systems Principles

(SOSP ’07), 2007.

[23] D. Meisner, B.T. Gold, and T.F. Wenisch, “Powernap:

EliminatingServer Idle Power,” Proc. Int’l Conf.

Architectural Support forProgramming Languages and

Operating Systems (ASPLOS ’09), 2009.

[24] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl,

and R. Gupta,“Somniloquy: Augmenting Network

Interfaces to Reduce PcEnergy Usage,” Proc. USENIX

Symp. Networked Systems Design and Implementation

(NSDI ’09), 2009.

[25] T. Das, P. Padala, V.N. Padmanabhan, R. Ramjee, and

K.G. Shin,“Litegreen: Saving Energy in Networked

Desktops Using Virtualization,”Proc. USENIX Ann.

Technical Conf., 2010.

[26] Y. Agarwal, S. Savage, and R. Gupta, “Sleepserver: A

Software-Only Approach for Reducing the Energy

Consumption of PCSwithin Enterprise Environments,”

Proc. USENIX Ann. Technical Conf., 2010.

[27] N. Bila, E.d. Lara, K. Joshi, H.A. Lagar-Cavilla, M.

Hiltunen, andM. Satyanarayanan, “Jettison: Efficient Idle

Desktop Consolidationwith Partial VM Migration,” Proc.

ACM European Conf.Computer Systems (EuroSys ’12),

2012.

[28]Zhen Xiao, Senior Member, IEEE, Weijia Song, and Qi

Chen “Dynamic Resource Allocation Using

VirtualMachines for Cloud Computing Environment”

IEEE Transactions On Parallel And Distributed Systems,

June 2013.

