
International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

10

A Service Oriented Transaction Invoicing Approach in

Cloud Computing

Poral Nagaraja,

Dept of CS&E, SJMIT,
Chitradurga-577501.

MeenaSajjan G P,
PG student,

Dept of CS&E, SJMIT,
Chitradurga-577501.

ABSTRACT
Cloud resource usage tracking and invoicing in a trusted

manner are inevitable and critical for the cloud service

provider. The credibility of the service is measured in terms of

accuracy in invoicing for the service consumed. In the

existing system the limitations are, complexity, computational

overhead and no way to validate the usage. Here, we propose

OSIRIS: The consumption based efficient invoicing of the

service oriented transaction in cloud computing. This system

addresses all the existing concerns. It uses a concept called

cloud notary authority and is responsible for accuracy in

invoicing. This acts as an interface between cloud service

provider and user and usage can be verified on either side. We

have trusted SLA monitoring mechanism too that is built on

trusted platform module called I-Mon.The performance

evaluation confirms that the overall latency of OSRIS

invoicing transactions is much shorter than the latency of the

existing leading methodology. OSIRIS guarantees identical

security features as a PKI [10].

General Terms
Invoicing, trusted monitoring, transaction integrity,cloud

resources

Keywords
OSRIS, SLA Compliance, usage tracking,µ-contract

1. INTRODUCTION
The legacy model of IT Resources/Services delivery is

hosting it over locally, whereas Cloud Computing does it over

the internet, e.g. Amazon EC2, S3 [1], and Microsoft Azure

[2]. The services delivered using Cloud Computing comprise

of applications, services and the infrastructure required to

deliver those resources/services. These services are purchased

by the Cloud Consumer on a need basis and thus can avoid

capital investment on procuring hardware or software to

deliver the services/resources. This is a flexible way of doing

things since the services can be catered on demand/future-

demand basis without any major change in IT landscape. The

extent of hardware/software virtualization is the core of Cloud

Computing model and is the key driver for reducing IT costs

with transparency. The billing for the subscribed Cloud

Services involves many complications such as monitor SLA

[3] and ensure credible, easy, cost effective, and mutually

verifiable billing system. The current system is composed of

PKI based complex, high computational overhead thus

resulting high latency in billing response of the system [14].

Currently, the cloud consumer invoice is generated based on

the resources consumed by pay-as-you-go pricing model for

the SLA made between CSP and Cloud consumer/customer.

Invoicing does not indicate whether the CSP conforms to SLA

when the services are consumed. Also a systematic forgery

vulnerable logging does not exist, that can be used for

verification of usage invoicing on both the side - Customer

and CSP [4], [5].

A secure and non-obstructive billing system called OSIRIS is

proposed which uses the concept of a Cloud Notary Authority

for the supervision of billing. OSRIS addresses the concerns

of existing system and has provisions for a) reduced

computational overhead, b)SLA monitoring is provided in a

trusted manner and c) Accurate, consistent and mutually

verifiable invoicing.

2. SYSTEM ARCHITECTURE
The billing transaction is initiated by a service check-in for

starting a cloud service session and terminated by a service

check-out for finalizing the service session. A µ-contract

message is transmitted with each billing transaction. A µ-

contract is a data structure that contains a hashed value of a

billing context and the hash chain element of each entity. The

Cloud Notary Authority (CNA) is the only entity can decrypt

both the µ-contract from the CSP and the µ-contract of the

user, the CNA serves as a third party to verify the consistency

of the billing context between the user and the CSP. Fig.1

shows the overall process of the billing transactionwith our

billing system. The main steps are as follows:

 The user generates and sends a cloud resource request

message to CSP.

 The CSP generates a digital signature called µ-contract

using an element from its hash chain.

 The user generates a digital signature called µ-contract

using an element from its hash chain.

 The user sends the combined µ-contract of its own and of

the CSP to the CNA.

 The CNA verifies the µ-contract from the user, and

generates mutually verifiable binding information of the

user and the CSP to ensure the consistency of the µ-

contract.

 The billing process is completed when the user and the

CSP receive confirmation from the CNA.

 I-Mon of the user’s cloud resource transmits

authentication data of the I-Mon to the CNA.

 For service check-out, I-Mon sends a report of the SLA

monitoring results to the CNA.

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

11

Legal Department

3. Sending

1. Service Check-in/out Request

6. Auth. Data if i-Mon (Chexk-in) or

SLA Monitoring Result (Check-out)

Figure 1.System Architecture - OSIRIS

3. RELATED WORKS
Extensive studies[6], [7], [8], [9],[11], [12]on existing system

reveal many aspects on security vulnerabilities and limitations

in the system, the latency in invoicing, the verification of each

transactions against the SLA compliance, handling disputes

etc. We dictates the pros and cons of different billing systems

in terms of their security level and billing overhead based on

the vast studies and experimental results part of our due-

diligence work on assessing of existing system with the future

needs and current limitations.

3.1 Existing System
The billing system with limited security concerns and the

micro-payment based billing system require a relatively low

level of computational complexity. This is clear visible from

the studies of the micro-payment based schemes such

as,MiniPay [20], PayWord [21], e-coupons [22]and NetPay

[23]. The average billing latency for billing system with

limited security is 4.06 ms for micro-payment based billing

system, it is 4.07ms. Nevertheless, these systems are

inadequate in terms of transaction integrity, non-repudiation

and trusted SLA monitoring. In spite of the consensus, a PKI-

based billing system offering a high level of security through

two security functions, unlike trustworthySLAmonitoring, the

security comes at the price of extremely complex[11], [12],

[13],[15].

Table 1. Summary of relevant works

System

Transacti

on

Integrity

Non-

Repud

iation

Trusted

SLA

Monitor

ing

Billing

Latency

Billing

System with

limited

security

No No No
Avg.

4.06 ms

Micro-

payment

based billing

system

Yes No No
Avg.

4.70 ms

PKI- based

billing system
Yes Yes No

Avg.

82.51 ms

OSIRIS Yes Yes Yes
Avg.

4.89 ms

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

12

PKI enhanced billing frameworks have been studied using the

market models DGAS [11], SGAS [12], and GridBank [13].

The study shows that PKI operations with the average billing

latency of 82.51ms.Consequently, when a PKI-based billing

system is used in cloud computing environment, the high

computational complexity causes high deployment cost and

high operational overload as the PKI operations are performed

by the user and the CSP.

There are several studies have been conducted for SLA

monitoring - resource monitoring [17], data flow monitoring

[18], prediction of SLA violations [19]. These methodologies

are used in the design I-Mon for OSIRIS, and are nowhere

present in the existing system [16].

3.2 Proposed System
In this paper, we propose a secure and non-obstructive billing

system called OSIRIS as a remedy for the above mentioned

limitations. The system uses a novel concept of a cloud notary

authority (CNA) for the supervision of billing. The CNA

generates mutually verifiable binding information that can be

used to resolve future disputes between a user and CSP in a

computational efficient way. Further, scalability and fault

tolerance is done in banking side by providing security for bill

payment which is a web service leading to faster time to

market, minimal computational cost, accurate, consistent and

competitive pricing. The average billing latency of OSIRIS is

4.89ms.

4. PROPOSED BILLING PROTOCOL
This section describes the end to end transactions of the

proposed system.

4.1 Notations used in OSIRIS

Table 2. Notations used in OSIRIS

c Cloud Service Provider (CSP)

u User

n Cloud Notary Authority (CNA)

m SLA Monitoring Module (S-Mon)

Kα,β Shared Key between α and β

PKα Public Key of α

SKα Private Key of α

H(M) Hash result for message M

Cα,n nth element of the hash chain of α

Ts Time-Stamp

Nα Nonce value for preventing replay attack by α

S Stipulation context of billing transaction

{M}K M encrypted by K

{M}PK M encrypted by public Key

{M}SK Digital signature for M by private key

 Chain generation sequence

Definition of the Message symbols

Definition of the entity symbols

 Usage sequence

Hash Chain: C0 - C1 - C2 - ... - Cn, H(Cn) =Cn-1

4.2 Transactions in OSIRIS
The end to end transactions in OSIRIS has 3 states as shown

in Fig 2.

State 1: Mutual Authentication When the user First time

accesses the CSP, PKI-based authentications are performed by

the user, the CSP, and the CAN and they share the following

keys for all authentications:

 CSP ↔ CNA: Kc,n

 User ↔ CNA: Ku,n

 User ↔ CSP: Ku,c

State 2 (Hash Chain Generation)

A hash chain of length 'N' will be generated and seeded (for

seed value Cu;N , Cc;N , and Cn;N) by N times by each CSP,

CNA, and user to obtain the final hash keys re (Cu;0, Cc;0,

and Cn;0). The user and CSP commit the final hash (Cu;0 and

Cc;0) by digitally signing and send it to CNA for registration.

CNA then generates its final hash (Cn;0). A µ-contract is

created for billing transactions once the hash chain is

successfully committed.

State 3 (Billing Transaction)

 State 3 .1: (Billing Transaction) Service Check in.

User sends a check-in request to CSP for the

intended cloud service (Message 3-1).

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

13

CSP sends back S-Stipulation (a service invoice and

an SLA information) and u-contract to the user

(Message 3-2).

User generates a notary request by combining the µ-

contract-CSP and the µ-contract-User message and

sends to CNA (Message 3-3)

CNA verifies the u-contracts present in Message 3-

3, if they are identical CNA send the confirmation

message to user and CSP (Message 3-4).

 State 3.2: (Billing Transaction) Service Check out.

When the user sends Check-out message, I-Mon

sends SLA monitoring results to CNA (Message 3-

5). CNA does the SLA compliance check and

impose penalties upon violation of SLA

Mutual Authentication Mutual Authentication

1. Hash Commitment Msg.(2-1)

2. Response ACK Msg.(2-2)

3. Hash Commitment Msg.(2-3)

4. Response ACK Msg.(2-4)

Hash Chain of User Hash Chain of CNA Hash Chain of CNA

1. Service Check-in/out Request Msg. (3-1)

2. μ-contract by CSP Msg. (3-2)

3. Billing Request Msg.(3-3)

4. Confirm Msg.(3-4)

Monitor Start Msg.(3-5): Check-in

Monitor Report Msg.(3-5): Check-out

State 1

State 2

Figure 2. Transactions in OSIRIS

4.3 I-Mon: SLA-Monitor
I-Mon is deployed into computing resources of CSP to

provide a forgery-resistive SLA measuring and logging

mechanism in a black-box (BB) manner. Thus, even the

administrator of the CSP cannot modify or falsify the logged

data.

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

14

I-Mon is tightly coupled with the transactions described in

section 4.2. The following are the steps involved in SLA

monitoring.

1. I-Mon is initialized and verified during the service check-in

transaction (via State 3-1).

2. During the service session, I-Mon monitors the SLA

compliance with regard to the user’s cloud resources.

3. I-Mon generates and sends the SLA monitoring result to the

CNA on the event of check-out transaction (via State 3-2).

4. CNA records the service interval and monitoring result

from I-Mon.

The TPM [24] and the TXT [25] are the two hardware-based

mechanisms used in I-Mon. The TPM is designed for the

purpose of secure storage and remotely determining the

trustworthiness of a platform. TXT is a secure execution

mechanism by Intel called a measured launch environment

(MLE) it enables a verified execution code in a secure

memory region. I-Mon uses the following fundamental

technologies:

Platform integrity measurement: Trusted execution of I-

Mon is guaranteed by TPM. TPM has a set of built-in 160-bit

platform configuration registers (PCRs). The MLE uses the

PCR’s characteristics. MLE can compare the PCR value with

a reference value to ensure that only a verified execution code

is invoked in a secure memory region. To enable the CNA to

verify the platform status, the TPM provides a Quote()

function, which uses a TPM private key called an attestation

identity (AIK) to return a digital signature of the current PCR

values. The AIK is created inside the TPM and protected by

the TPM so that Quote() provides proof that the output of

Quote() was generated on the platform.

Secure storage with the TPM: The TPM encrypts the input

data with a TPM key and specified PCR values. I-Mon can

instruct TPM to decrypt and encrypt PCR values.

Execution integrity with the TPM: The TPM has built-in

support for a monotonic counter and has a mechanism that

creates a signature of the current tick value of the TPM. The

tick data include a signature of the current tick value and its

update cycle. These functions are utilized in our verification

mechanism. The verification mechanism enables the CNA to

determine whether the I-Mon has been executed without a

block or a data loss; it also determines when SLA violations

occur with the tick value.

4.4 Billing Verification
I-Mon provides a forgery-resistive SLA measuring and

logging mechanism in a black-box (BB) manner. Thus, even

the administrator of the CSP cannot modify or falsify the

logged data. CNA stores all binding information and BB

corresponding to a billing transaction at its local repository.

This is an XML-data structure and called NBL.

The verification module has three hash modules: The User-

Verifier, the CNA-Verifier, and the CSP-Verifier. The CNA-

Verifier verifies the integrity of the stipulation (S) from the

user or the CSP by comparing the stipulation with the binding

information of the CNA. In addition, the CNA-Verifier can

check the correctness of the BB by comparing the H(S)of the

NBL with the H(S) of the BB. The User-Verifier and the CSP-

Verifier check the correctness of a billing transaction asserted

by the user and the CSP, respectively.

For example, if a CSP asserts that a user repudiates a certain

billing transactions, the CSP can submit a claim for justice to

the CNA, drawing attention to the stipulation (S) included in

the corresponding μ-contract-CSP. The CNA then uses the

CNA-verifier to verify the claim. If the claim is correct, the

CNA then demands to see the stipulation (S) used to generate

the μ-contract-User. The CNA uses the User-Verifier and the

CSP-Verifier to derive the hash value. Any discrepancy

between the output of the hash function and the stored data of

the NBL proves that either the user or the CSP has modified

the stipulation of the relevant billing.

5. CONCLUSION
The aim was to provide a scalable, secure, efficient, low

computational overhead, mutually verifiable invoicing system

for service oriented transactions measured against SLA

between the CSP and end user. This is a go solution as it

addresses the concerns and vulnerabilities in the existing

system and hence cloud consumers and service providers are

likely to accept this methodology.

6. ACKNOWLEDGEMENT
The authors would like to thank principal and staffs

S.J.M.I.T.Chitradurga for their support. This work was

supported by S.J.M.Vidyapeetha ®.

7. REFERENCES
[1] Amazon Web Services, ―Amazon Elastic Compute Cloud

EC2,Simple Storage Service,‖

http://aws.amazon.com/ec2, http://aws.amazon.com/s32,

Apr. 2011.

[2] Microsoft, ―Microsoft, Windows Azure Platform,‖

http://www.microsoft.com/windowsazure, 2010.

[3] M. Armbrust and A.E. Fox, ―Above the Clouds: A

Berkeley Viewof Cloud Computing,‖ Technical Report

UCB/EECS-2009-28,Electrical Engineering and

Computer Sciences Dept., Univ. ofCalifornia, Berkeley,

Feb. 2009.

[4] N. Santos, K.P. Gummadi, and R. Rodrigues, ―Towards

TrustedCloud Computing,‖ Proc. Conf. Hot Topics in

Cloud Computing(HotCloud), 2009.

[5] R.T. Snodgrass, S.S. Yao, and C. Collberg, ―Tamper

Detection inAudit Logs,‖ Proc. 30th Int’l Conf. Very

Large Data Bases (VLDB’04), pp. 504-515, 2004.

[6] L. Cornwall, M. Craig, R. Byrom, and R. Cordenonsib,

―APEL:An Implementation of Grid Accounting Using R-

GMA,‖ Proc. UKE-Science All Hands Conf., Sept. 2005.

[7] F. Tannenbaum, L. Foster, and Tuecke, ―Condor-G: A

ComputationManagement Agent for Multi-Institutional

Grids,‖ ClusterComputing, vol. 5, pp. 237-246, 2002.

[8] O.-K. Kwon, J. Hahm, S. Kim, and J. Lee, ―GRASP: A

GridResource Allocation System Based on OGSA,‖

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

15

Proc. IEEE 13th Int’lSymp. High Performance

Distributed Computing, pp. 278-279, 2004.

[9] ―Tivoli: Usage and Accounting Manager,‖ IBM press

release, 2009.

[10] PKIX Working Group,

http://www.ietf.org/html.charters/pkixcharter.html, 2008.

[11] A. Guarise, R. Piro, and A. Werbrouck, ―Datagrid

AccountingSystem—Architecture—v1.0,‖ technical

report, EU DataGrid, 2003.

[12] P. Gardfill, E. Elmroth, L. Johson, O. Mulmo, and T.

Sandholm,―Scalable Grid-Wide Capacity Allocation with

the SweGridAccounting System (SGAS),‖ Concurrency

Computation: PracticeExperience, vol. 20, pp. 2089-

2122, Dec. 2008.

[13] A. Barmouta and R. Buyya, ―Gridbank: A Grid

AccountingServices Architecture (GASA) for

Distributed Systems Sharingand Integration,‖ Proc. 17th

Int’l Symp. Parallel and DistributedProcessing (IPDPS

’03), pp. 22-26, 2003.

[14] G. von Voigt and W. Muller, ―Comparison of Grid

AccountingConcepts for D-Grid,‖ Proc. Cracow Grid

Workshop, pp. 459-466,Oct. 2006.

[15] NexR, ―iCube Cloud Computing and Elastic-Storage

Services,‖http://www.nexr.co.kr/, Mar. 2011.

[16] H. Rajan and M. Hosamani, ―Tisa: Toward Trustworthy

Servicesin a Service-Oriented Architecture,‖ IEEE Trans.

Services Computing,vol. 1, no. 4, pp. 201-213, Oct.-Dec.

2008.

[17] S. Meng, L. Liu, and T. Wang, ―State Monitoring in

CloudDatacenters,‖ IEEE Trans. Knowledge and Data

Eng., vol. 23, no. 9,pp. 1328-1344, Sept. 2011.

[18] C. Olston and B. Reed, ―Inspector Gadget: A Framework

forCustom Monitoring and Debugging of Distributed

Dataflows,‖Proc. ACM SIGMOD Int’l Conf.

Management of Data (SIGMOD ’11),pp. 1221-1224,

2011.

[19] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar,

―Monitoring, Prediction and Prevention of SLA

Violations in Composite Services,‖ Proc. IEEE Int’l

Conf. Web Services (ICWS),pp. 369-376, 2010.

[20] A. Herzberg and H. Yochai, ―MiniPay: Charging per

Click on theWeb,‖ Proc. Selected Papers from the Sixth

Int’l Conf. World WideWeb, pp. 939-951, 1997.

[21] R. Rivest, A. Shamir, ―PayWord and MicroMint: two

simple micropayment schemes‖, 1996 International

Workshop on Security Protocols, Lecture Notes in

Computer Science, vol. 1189, Springer, pp. 69–87

[22] V. Patil, R.K. Shyamasundar, ―An efficient, secure and

delegable micro-payment system‖, 2004 IEEE

International

[23] X. Dai and J. Grundy, ―NetPay: An Off-Line,

DecentralizedMicro-Payment System for Thin-Client

Applications,‖ ElectronicCommerce Research

Applications, vol. 6, pp. 91-101, Jan. 2007.

[24] S. Pearson and B. Balacheff, Trusted Computing

Platforms: TCPATechnology in Context. Prentice Hall

Professional, 2003.

[25] ―Intel Trusted Execution Technology, Hardware-Based

Technologyfor Enhancing Server Platform Security,‖

white paper, Intel,2010.

