
International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

1

Evaluating the Impact of Android Best Practices on
Energy Consumption

Sona Mundody

Computer Science Department,
 Srinivas Institute of Technology Mangalore, India

Sudarshan. K
Computer Science Department

Srinivas Institute of Technology Mangalore, India

ABSTRACT

Android best practices for performance are small code

changes proposed by Google to reduce execution time. This

paper evaluates and analyzes the impact of two of these best

practices on performance and energy consumption. The

practices are applied to the code of an Android application

and the code efficiency is analyzed. The practices indicate a

positive impact on performance and energy consumption

General Terms

Android Performance; Energy Efficiency; Android Best

Practices

Keywords

Android; Best Practices; Performance; Energy Consumption

1. INTRODUCTION
The mobile device market is rapidly developing. Most of

these devices run Android Operating System. Android is a

development platform for mobile applications based on Linux

operating system [1] derived from an open source project led

by Google.

The Android application development is simplified by its

SDK that provides tools and APIs needed to develop

applications, favouring an easy integration with many

resources available on the device. Due to limited resources

available on mobile devices and the limited battery lifetime,

the project of mobile apps have hard constraints specially

performance and energy consumption.

Many researchers have focused on evaluation of energy

consumption and performance for mobile devices, focusing on

hardware components or application code. The performance

of C and Java was compared in [2], while a comparison

between Dalvik Virtual Machine and JVM is presented in [3].

Recently, different algorithm paradigms are compared

regarding performance and energy consumption in [4] and

different codes for the same purpose are compared in [5]. An

evaluation of the performance of the Android best practices is

presented in [6].

Google presents best practices for android development

focusing on performance improvement. These practices are

simple tips to reduce execution time. The focus of this paper

is to evaluate and analyze the impact of two of these best

practices on performance and energy consumption.

2. ANDROID BEST PRACTICES
Google proposes several best practices [7] for performance to

be incorporated in application development. According to the

study conducted by Google, the use of these practices provide

better overall performance in application.

One of the best practices suggests that the designer must avoid

the creation of unnecessary objects. Creating unnecessary

objects in application code causes periodic garbage collection

and thereby creating negative impact on application

performance. The other best practice indicates the use of static

methods instead of virtual ones. Google claims that it brings a

speed in invocation from 15% - 20%.

Another practice concerns with the declaration and usage of

constants and recommends the use of static final for primitive

constants and strings. When using the final keyword the class

no longer requires a <clinit> method because the constants go

into the static field initializers in the .dex file. This makes the

access faster. However, the practice is valid only to primitive

types and constant Strings.

Another practice suggests that the use of getters/setters

methods, common in object oriented languages, should be

avoided to improve Android application performance.

According to Google, the time to directly access an attribute is

faster than through getter/setter methods.

Concerning the manipulation of arrays, Google best practices

also present the suggestion about the use of appropriate for

syntax. The For-each syntax, introduced by Java 1.5, can be

used to manipulate collections that implement the Iterable

interface and for arrays and in these cases Google suggests the

use of the For-each syntax by default. However Google

suggests a hand written counted loop for performance critical

ArrayList iteration. The hand written counted loops are the

traditional Java for syntax and can have two variations: For

with length and For without length. In For without length, the

array size is obtained at each iteration. This syntax is slower

than the For with length, where the array size is obtained only

one time before iterations, instead at each cycle.

The best practices also indicate the use of package access

instead private access in private inner classes. This practice is

applied when an inner class needs to access the attributes of

external class. The virtual machine considers the direct access

of inner class to attributes of an external class as illegal,

because they are different classes. Applying this practice, one

can avoid overhead in applications that use inner class at

critical points of performance.

Another best practice indicates that the use of floating point

for Android is not recommended. According to Google, the

use of floating point is two times slower than integer.

3. METHODOLOGY
The two Google best practices that are evaluated in this work

are: the use of appropriate for syntax and avoiding

getters/setters. Our experiments evaluate the impact on

performance and energy consumption caused by the Android

best practices. For all experiments, the emulator provided into

the Android SDK is used. The emulator is configured to run

on Android 4.2.2 using API 17, and simulating the ARM

EABI v7a processor.

For performance evaluation, the android.os.Debug library is

used, which generates an execution trace. The execution time

is obtained using the Traceview tool which provides the

values for Exclude and Include CPU Time. For energy

Consumption evaluation the Android application named

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

2

Power Tutor is used, which estimates the energy consumption

for an application executed on a target device from its

beginning to its end.

To analyze the impact of each best practice, the code without

the practice is executed to obtain its evaluation results. After

that, this code is modified applying the practice, and its

evaluation is performed. Each experiment (with and without

practice) is repeated thirty times on the emulator, analyzing

the execution times provided by Traceview [8] and also

energy consumption by PowerTutor [9]. Results presented in

section IV are based on arithmetical means and standard

deviation for these thirty executions. The Student t test was

used to check the statistical significance of our results.

4. EXPERIMENTAL RESULTS
Two best practices evaluated in this work are: using

appropriate for syntax and avoiding getters/setters. Firstly

these practices are analyzed using experimental codes and

finally these are applied to Android applications and analyzed.

OpenSudoku [10] is the application that was chosen initially

to demonstrate the impact of two of these Android best

practices. These impacts are firstly evaluated separately and

after that simultaneously. Later the same experiments were

carried on other two open source Android applications Asqare

[11] and WordSearch[12].

4.1 Best Practices on Experimental Code
Firstly the practice that suggests the use of appropriate for

syntax is evaluated using the code fragments shown in Fig. 1.

Different implementations of a loop are represented here. The

code fragment used for tracing is shown in Fig.2.These

implementations are evaluated using Traceview tool and

PowerTutor and the results are presented in Table 1.

Table 1. Results of for practice

Methods

Result

Performance

Incl. CPU Time(ms)

Energy

(Joules)

For without length 53.87327 0.00607

For with length 50.16987 0.00549

For each 47.16917 0.00514

Fig. 1: Experimental code fragment for for practice

Fig. 2: Code fragment for tracing

The impact of avoiding getters/setters methods is evaluated

using the code fragment shown in Fig. 3. The code fragment

used for tracing is depicted in Fig. 4.The results of evaluation

are presented in Table 2. The experiments show that

withoutGetter method is faster than withGetter and the energy

consumed by withoutGetter method is less than withGetter

method.

Fig. 3: Code fragment –Avoiding getters/setters

Fig. 4: Code fragment for Tracing

Table 2. Results of avoiding getter/setter methods

Methods

Result

Performance

Incl. CPU Time(ms)

Energy

(Joules)

withGetter 921.4926 0.128

withoutGetter 309.9727 0.0422

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

3

4.2 Evaluating the Impact on Performance

and Energy Consumption of Real Apps
First we used the OpenSudoku[10] application to demonstrate

the impact of these two best practices on real applications.

The code fragment illustrated in Fig. 5 is used for evaluation.

This code illustrates the validate() method after the best

practices are applied.

Fig. 5: validate() method after best practices are applied

Performance and energy results for both analyzed practices

are summarized in Table 3 and Table 4(mean values), while

standard deviations are presented in Table 5 and Table 6. Our

results indicate that the code without getters is faster and more

energy efficient, compared to the one with getters. In these

experiments one can observe reduction in execution times and

energy consumption.

Table 3. Performance and energy results of for practice

BestPractice

Result

Performance

Incl. CPU Time(ms)

Energy

(Joules)

For without length 1544.285 0.1435

For each 1351.957 0.1088

Table 4. Performance and energy results of with/without

getter practice

Best Practice

Result

Performance

Incl. CPU Time(ms)

Energy

(Joules)

With Getter 7111.282 0.577

Without Getter 6908.269 0.477

Table 4. Standard deviation of for practice

Best Practice

Result

SD(Performance)

Energy

(Joules)

For without length 78.26431 0.00732

For each 79.59602 0.00599

Table 4. Standard deviation of with/without getter

Best Practice

Result

SD(Performance)

Energy

(Joules)

With Getter 277.1676 0.02575

Without Getter 317.2564 0.02539

Our results also demonstrate that the For-each presents the

best results regarding performance and energy. All these

compared values are means and its differences are statistically

indicatives according to Student t test.

After the separate evaluation, we applied the two practices

simultaneously and the obtained results are illustrated in

figures below. Fig.6 presents the CPU include time obtained

for the validate() method with and without best practices.

Fig.7 represents the energy consumed by original and

modified code.

Fig. 6. Execution time of original code and modified code.

Fig. 7. Energy consumed by original and modified code.

We also evaluated other two Android applications: Asqare

and WordSearch, to study the impact of these practices. These

applications used getter methods which were avoided in our

experiments. The performance and energy results obtained

for original and modified methods in (1) Asqare and (2)

WordSearch applications are shown in Table 7 (mean values)

and standard deviations are presented in Table 8.

Table 7. Performance and energy results

Method

Result

Performance

 Incl. CPU Time(ms)

Energy

(Joules)

(1) (2) (1) (2)

Original 6140.17 898.2594 0.87 0.15

Modified 5059.66 839.9975 0.68 0.13

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

4

Table 8. Results-Standard Deviation

Method

Result

Performance

 Incl. CPU Time(ms)

Energy

(Joules)

(1) (2) (1) (2)

Original 734.33 161.1974 0.104 0.0266

Modified 583.64 132.0596 0.078 0.0200

The results we obtained indicate that the code without getters

is faster and more energy efficient , compared to the one with

getters. All the compared values are means and its differences

are statistically significant according to the Student t test.

5. CONCLUSION
In this paper, the two of the best practices for performance

proposed by Google are evaluated for performance and

energy. The experiments are conducted using an open source

Android application. The focus of this study is evaluating the

impact of these two practices on performance as well as on

energy consumption. The presented results have indicated that

the use of most appropriate for syntax and avoiding getters

produce efficient code, considering both performance and

energy efficiency.

6. REFERENCES
[1] Open Handset alliance. [Online]. Available:

http://www.openhandsetalliance.com

[2] C.M.Lin, J.H.Lin, C.R.Dow and C.M.Wen, ” Benchmark

Dalvik and Native Code for Android System”, in

Innovations in Bioinspired Computing and Applucations

(IBICA),Shenzhan,2011.

[3] T.T.Kundu and K.Paul, ”Android on Mobile Devices: An

Energy Perspective”, in Computer and Information

Technology (CIT),Bradford,2010.

[4] A.Viera, D. Debastiani, L. Agostini, F. Marques and J.

C.B. Mattos, “Performance and Energy Consumption

Analysis of Embedded Applications Based on Android

Platform”,in SBESC, Natal, 2012.

[5] C. Wilke, ”Comparing Mobile Applications Energy

Consumption,” in Symposium On Applied Computing

(SAC), Coimbra, 2013.

[6] A.R.Tonini, M. Beckmann, J.C.B. Mattos and L.B.

Brisolara, ”Evaluating Android best practices for

performance,” in Symposium of Microelectronics,

EMICRO/SIM 2013, Porto alegre, 2013.

[7] Google Best Practices, 2014. [Online]. Available:

http://developer.android.com/training/articles/perf-

tips.html

[8] Android Tracing, 2014. [Online]. Available:

http://developer.android.com/tools/debugging/debugging

-tracing.html.

[9] PowerTutor, 2014. [Online]. Available:

http://www.powertutor.org

[10] Open Sudoku, 2014. [Online]. Available:

http://code.google.com/p/opensudoku-android/

[11] Asqare,2014.[Online].Available:

http://code.google.com/p/asqare

[12] WordSearch,2014.[Online].Available:

http://code.google.com/p/wordsearch-android

