
International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT-2014)

21

Increasing Time Efficiency of Insertion Sort for the

Worst Case Scenario

Surabhi Patel

Department of Information
Technology,

Christ University Faculty of
Engineering

Moirangthem Dennis Singh

Department of Computer
Science and Engineering,
Christ University Faculty of

Engineering

Chethan Sharma

Department of Computer
Science and Engineering,
Christ University Faculty of

Engineering

ABSTRACT

Insertion sort gives a time complexity of O(n) for the best

case. In the worst case where the input is in the descending

order fashion, the time complexity is O(n2). In the case of

arrays, shifting takes O(n2) while in the case of linked lists

comparison comes to O(n2). Here a new way of sorting for the

worst case problem is proposed by using arrays as data

structure and taking more space. 2n spaces is taken where n is

the number of elements and starts the insertion from (n-1)th

location of the array. In this proposed technique the time

complexity is O(nlogn) as compared to O(n2) in the worst

case.

Keywords

Insertion Sort, Time Complexity, Space Complexity.

1. INTRODUCTION
Insertion sort is a comparison sort algorithm [1]in which the

sorted array is built one entry at a time. The efficiency of this

sorting technique is comparatively very less on large set of

elements than more advanced algorithms such as heapsort,

quicksort, or merge sort. In each iteration of insertion sort, an

element is removed from the input data and it is inserted into

the right position in the already-sorted list. This is continued

until no input elements are remaining. The best case scenario

is when the input is an already sorted array. In this case

insertion sort the time complexity is O(n) which is linear.

During each repetition, in the sorted subsection of the array,

the right-most element is compared with the remaining

element of the input. The worst case scenario is when the

input is an already sorted array but in reverse order. In this

case, before inserting the next elementeach iteration of the

inner loop will search and shift the subsection of the array

which is already sorted. For this case insertion sort has a

quadratic running time which is O(n2) [2].

The average case also has a quadratic running time ofO(n2).

2. LITERATURE
In an insertion sort algorithm, there are always two constraints

in time complexity [3]. One is shifting the elements and the

other one is comparison of the elements. The time complexity

is also dependent on the data structure [4] which is used while

sorting. If array is used as the data structure then shifting takes

O(n2) in the worst case. While using linked list data structure,

searching takes more time, viz. O(n2).

Take the following examples:

Sort 50, 40, 30, 20, 10 using arrays.

0 1 2 3 4

50

Shifting = 0, Comparison = 0

0 1 2 3 4

50 40

40 50

Shifting = 1, Comparison = log1

0 1 2 3 4

40 50 30

40 30 50

30 40 50

Shifting = 2, Comparison = log2

0 1 2 3 4

30 40 50 20

30 40 20 50

30 20 40 50

20 30 40 50

Shifting = 3, Comparison = log3

0 1 2 3 4

20 30 40 50 10

20 30 40 10 50

20 30 10 40 50

20 10 40 40 50

10 20 30 40 50

Shifting = 4, Comparison = log4

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT-2014)

22

Time Complexity in Shifting: O(n2)

Time Complexity in Comparison: O(nlogn)

Total time complexity: O(n2)

Here as the array is sorted, binary search can be used for

comparison which will lead to a time complexity of O(nlogn)

but shifting takes O(n2). Therefore the total time complexity

becomes O(n2).

To solve the problem of shifting, linked list can be used as

illustrated in the following example.

Now, sort 50, 40, 30, 20, 10 using linked list. In a linked list

shifting takes O(1) as new elements can be inserted at their

right positions without shifting.

50

Comparison = 0

50  40

40  50

Comparison = 1

40  50  30

30  40  50

Comparison = 2

30  40  50  20

20  30  40  50

Comparison = 3

20  30  40  50  10

10  20  30  40  50

Comparison = 4

Time Complexity in Shifting: O(1)

Time Complexity in Comparison: O(n2)

Total Time Complexity: O(n2)

Here as binary search cannot be used for comparison which

will lead to a time complexity O(n2) even though shifting

takes a constant amount of time.

As observed in the examples illustrated above, in both the

cases the Time complexity is not getting reduced. Hence an

improvised insertion sort taking additional space to sort the

elements is proposed in this paper. As space complexity is

less important than time complexity [5][6], this paper

concentrates more on the time taken instead of space.

3. PROPOSED WORK
In the insertion sort technique proposed here, 2n spaces is

taken in an array data structure, where n is the total number of

elements. The insertion of elements will start from (n-1)th

position of the array. The same procedure of a standard

insertion sort is followed in this technique. Finding the

suitable positions of the elements to be inserted will be done

using binary search. In the following cases the details of this

technique has been discussed.

3.1 Case 1
For comparing with the best case scenario of a standard

Insertion Sort, the following input elements are sorted using

proposed technique.

e.g. 10, 20, 30, 40, 50

0 1 2 3 4 5 6 7 8 9

 10

Shifting =0, Comparison = 0

0 1 2 3 4 5 6 7 8 9

 10 20

Shifting =0, Comparison = 1

0 1 2 3 4 5 6 7 8 9

 10 20 30

Shifting =0, Comparison = 1

0 1 2 3 4 5 6 7 8 9

 10 20 30 40

Shifting =0, Comparison = 1

0 1 2 3 4 5 6 7 8 9

 10 20 30 40 50

Shifting =0, Comparison = 1

Total Shifting =0, Total Comparison = n-1

Therefore time complexity is O(1)+O(n) = O(n)

3.2 Case 2
For comparing with the worst case scenario of a standard

Insertion Sort, the following input elements are sorted using

proposed technique.

e.g. 50, 40, 30, 20, 10

0 1 2 3 4 5 6 7 8 9

 50

Shifting =0, Comparison = 0

0 1 2 3 4 5 6 7 8 9

 50 40

 40 50

Shifting =1, Comparison = log1

0 1 2 3 4 5 6 7 8 9

 40 50 30

 30 40 50

Shifting =1, Comparison = log2

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT-2014)

23

0 1 2 3 4 5 6 7 8 9

 30 40 50 20

 20 30 40 50

Shifting =1, Comparison = log3

0 1 2 3 4 5 6 7 8 9

 20 30 40 50 10

10 20 30 40 50

Shifting =1, Comparison = log4

Total Shifting =n-1,

Total Comparison =log(1*2*3*4)

 =log((n-1)!)

 =log((n-1) (n-1))

 =(n-1)log(n-1)

 =nlog(n-1) - log(n-1)

Therefore time complexity is O(n)+O(nlogn) = O(nlogn)

3.3 Case 3
For the average case scenario in a standard Insertion Sort, the

input elements are in random order. Although the same

procedure is followed in the proposed technique, comparison

is done via binary search algorithm. Hence it takes O(nlogn)

for comparison. For shifting the elements, the time taken

tends to O(n2) but is not equal to O(n2). As there are more

spaces, possibilities are there that shifting of some elements

may be reduced because elements may be inserted both at the

end as well as in the beginning

4. RESULTS
The time complexity of the proposed sorting technique and

the standard Insertion sort is compared in Table 1.

Table 1. Comparison of time complexities

Input Elements Standard

Insertion Sort

Proposed Sorting

Technique

Best Case

(Ascending Order)

O(n) O(n)

Worst Case

(Descending Order)

O(n2) O(nlogn)

Average Case

(Random Order)

O(n2) Tends to O(n2)

The graphical representation of the comparison between the

proposed technique and the standard insertion sort for the

worst case scenario is shown in Fig 1. The graph shows the

time complexity of both the algorithms for an input ranging

from 1 to 10 in number.

Fig 1: Comparison of proposed and standard technique

5. CONCLUSION
Here, the time complexity of worst case scenario in Insertion

sort algorithm is decreased by increasing the space

complexity. Future scope of work includes decreasing time

complexity of the average case which isO(n2) currently. There

are promising results shown in the average case scenario

where the time complexity may be reduce from O(n2),if the

probability of the input elements is a combination of

increasing and decreasing order.

6. ACKNOWLEDGEMENT
We would like to thank Prof Anirban Roy, Department of

Basic Sciences, Christ University Faculty of Engineering,

Bangalore for helpful discussions and support.

7. REFERENCES
[1] Insertion

Sort,http://www.princeton.edu/~achaney/tmve/wiki100k/

docs/Insertion_sort.html

[2] Wang Min, "Analysis on 2-Element Insertion Sort

Algorithm", 2010 International Conference On Computer

Design And Applications, IEEE Conference

Publications, Pages 143-146 , 2010

[3] Thomas H.Cormen, Charles.E.Leiserson, Ronald

L.Rivest, and Clifford Stein, Introduction to

Algorithms:Printice-Hall, Inc., 2009

[4] Mark Allen Weiss, Data Structures and Algorithm

Analysis in C++: Pearson Addison-Wesley, 2006

[5] Michael A. Bender, “Insertion Sort is O(nlogn),” Third

International Conference on Fun With Algorithms(FUN),

Pages 16-23, 2004

[6] H. W. Thimbleby, “Using Sentinels in Insert Sort,”

SoftwarePractice and Experience, Volume 19(3), Pages

303–307,1989.

