
International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT-2014)

41

 A Novel Web Service Composition and Web Service

Discovery based on Map Reduce Algorithm

Shashank Shetty

PG Scholar, Dept. of C.S.E
NMAMIT, Nitte
CDAC, Pune

Shalini P.R
Dept. Of C.S.E
NMAMIT, Nitte

Karnataka, India

Aditya Kumar Sinha
Principal Technical Officer

CDAC
Pune, India

ABSTRACT

The paper focuses on the web service composition and web

service discovery based MapReduce algorithm, which is the

one of the component of the big data problem resolver tool

Hadoop. Many of the IT companies are currently in the

journey to Service Oriented Architecture (SOA) with web

service as the standard protocol for implementation. The

overwhelming popularity of web service has made a huge

impact on web service repository, because of which managing

it using traditional UDDI platforms has become difficult.

Integrating Hadoop ecosystem with web services can provide

higher QoS to the user request for web services. Web service

composition and Web service discovery plays a crucial role in

the management of web service. Web service discovery

involves locating or finding the exact individual web services

from the service registry and retrieving previously published

description for new web application. Web service composition

is technique to combine simple web service to satisfy the user

requirement. An efficient MapReduce algorithm can help in

providing better management of web services

General Terms

Web services and Technologies, Cloud Computing, Semantic

Web and its applications.

Keywords

Web service, Web service discovery, Hadoop, Map reduce,

Web service management, Web service Composition, Big

data

1. INTRODUCTION
Web services are the self describing and modular applications

that can be published, discovered and accessed from various

locations through web. Web services has gained an increasing

amount of popularity in many organizations. Due to the

overwhelming popularity, there has been need to maintain

these web services by efficiently selecting the optimal web

services out of several unwanted web services by filtering it.

In particular, if a single web services cannot satisfy the user

requirement then there is a necessity to combine the existing

web services in order to fulfill the user requirements. Hence

the notion web service composition came into picture.

In recent years, there has been substantial attraction towards

managing a web service by a industry and many researchers.

This popularity is due to the interoperability attribute of the

web service [6]. Since web service is interoperable, this made

it to grow web services across the organization and made it

difficult to manage. In simple terms, the web service is the

piece of the software application whose features are defined

by the XML based language [7]. Some of the examples of the

web service are online ticket purchase, online hotel

reservation and auction. As a building block of web service

many protocols and technologies were developed. Some of

the few technologies are as follows: Universal Description,

Discovery, and Integration (UDDI) [2] [3], Simple Object

Access Protocol (SOAP) [4] and Web Service Description

Language (WSDL) [5]. UDDI provides a service registry for

web service discovery and advertisement. SOAP acts as an

foundation framework for communication of the web services.

WSDL provides the service provider an platform to describe

their applications. DAML-S [9] is DAML based web service

ontology which defines a standard for web service discovery

and message passing. It provides the standard set of mark-up

language for the web service providers to describe the

properties of their web services in computer interoperable

form. Some of the other initiatives towards web service are

Business Process Execution language for web service

(BPEL4WS) [8] which is considered as the standard for web

service composition. This BPEL4WS allows to create

different complex processes and wire them together, for

example invoking web services, data manipulation, throw

errors or end the process. So, these activities are grouped

together and structure these activities by showing the

sequence of execution, such as sequential, parallel or

depending on certain condition. Both DAML-S and

BPEL4WS focuses on the representation of web service

composition, where process and also binding of it is known

priori.

Despite of all these efforts, this web service discovery and

composition as been a complex task and its difficult to

manually deal through it. Problem occurs due to the following

reasons. First, due to customers delegating huge amount of

web service task and creating a huge amount of web service

repositories. Secondly, web services can be created easily

within ample amount of time. Hence, web service

composition and discovery must be done in runtime. Also, the

selection process must be carried out based on the up-to- date

information. Hence there is a need to build an automated

system to manage web service by selecting a optimal web

service by filtering the unwanted web service and also

automated web service composition. The Hadoop, one of the

big data problem resolver tool is used to efficiently manage

the web service and MapReduce algorithm is used to

automatically choose the optimal web service.

The paper is organized as follows: in section 2 we discuss

various related works on Web service discovery and web

service composition. Section 3 reviews the methodologies

involved in the proposed method and also how it is achieved.

In Section 4, we present the methods to achieve the proposed

system. Finally, we conclude by giving a brief overview of

the proposed method and also give a glimpse on future works.

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT-2014)

42

2. RECENT WORKS
Web service has been a promising and an emerging

technology, there has been considerable amount of recent

works on the issues related to web service discovery and

composition. Web service discovery involves locating or

finding the exact individual web services from the service

registry and retrieving previously published description for

new web application. For example UDDI registry [3] where it

contains white pages for all contact information, yellow pages

for industry taxonomies and green pages for technical

information about web services. UDDI enquiry is an API

provided by the UDDI to interact with the system, that is it

locates and finds UDDI registry entry. Simple search engines

like [11] [12] [13] are used to find the required web services.

As of now these search engines provide a simple keyword

based search on web service description and the most of the

UDDI search engines are limited to syntax based search. The

client can just search the UDDI registry based on the string in

the service description. Bellur et al. [16] discusses about the

improved matchmaking algorithm for dynamic discovery of

the web service. The method involves selecting a web services

by constructing the bipartite graph and defining the optimal

web services from it. The large number of possible paths in a

larger data paths need to be searched in a given time period.

Hence this high space complexity makes above traditional

methodology weaker when searching the large web service

repositories. Dong et al [14] discusses a new method of search

engine using similarity search mechanism. The query is

transformed into a common representation and then for a

particular query related web service is found. This method

may have a problem while searching a large collection within

a certain time limit. N. Gholamzadeh et al. [10] proposes data

mining based web service discovery technique. Here fuzzy

clustering based algorithm for discovering similar web service

using a single query is developed. Y. Zhang et al. [15] defines

a web search engine approach for finding the desired services

using functional and non functional QoS characteristics.

Sreenath et al. [23] discusses that web service discovery is an

exhaustive process, because lot of services are found.

Selecting best among them is a complex task. Hence the agent

based approach is formulated for web selection.

Web service composition also plays a vital role in web service

research. Web service composition is technique to combine

simple web service to satisfy the user requirement. For

example, if user wants to have a tour from India to New York

then there is a need of booking an air ticket, booking a hotel

room, booking a taxi to airport and also taking care of

entertainment and so on. So to have all these there is a need of

performing these task one by one. This makes it time

consuming and takes lot of efforts to carry out his task. Since

user requires all in one service, the web service composition

notion as been developed. Kona et al [45] discusses about the

semantic web service composition where acyclic graph from

the input request is generated iteratively. Hence, all possible

services that are invoked are added to the graph. Therefore,

causing difficulty in eliminating the unwanted web service.

Mier et al. [43] discusses about the automatic web service

composition using A* algorithm. Firstly, web service

dependency graph is computed using the method discussed in

Kona et al's [45] work. Later, the unwanted web services are

eliminated and finally A* search algorithm is applied to find

the optimal web service. Shiaa et al [44] discusses the

automatic web service matching using the semantic matching.

Based on the user request, the set of similar matching web

services are extracted and graph is created dynamically by

matching semantic web services. Once the acyclic graph is

created, search from goal to start node is performed. The main

drawback of the above mentioned methods are while

searching the huge repositories, the response time for the user

request decreases drastically. So, In the proposed method web

service is integrated with Hadoop ecosystems to gain more

accurate results. So key difference between the Hadoop model

and all the above model is that we intend to build the web

service management system with QoS metrics like reliability,

higher throughput, higher response time and availability. With

the QoS metrics, the proposed model works on larger web

request and in response produces optimal web services by

filtering unwanted web services. Hence in the proposed

methods, the MapReduce algorithms are used for web service

composition and HBASE for the web service discovery are

used.

3. PROPOSED METHODOLOGIES AND

ITS IMPLEMENTATIONS
The core framework of the Hadoop based web service

management is similar to the reference [17]. The proposed

system is divided into four modules and are explained briefly

as follows (see Figure 1):

3.1 Infrastructural Setup of Hadoop

Ecosystem
The Hadoop is framework which is used to process and store

a huge amount of data. This framework is integrated with the

web service to manage it efficiently to gain higher QoS.

Fig 1: A novel web service composition and web service discovery using MapReduce algorithm.

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT-2014)

43

Hence the infrastructural setup of hadoop ecosystem is built

using the following steps:

Step 1: Downloading and installing Java 1.6 from http://

www.oracle.com [18], Eclipse Europa 3.3.2 from http://

www.eclipse.org [19] and Cygwin from

http://www.cygwin.com [20] by configuring and starting SSH

Daemon.

Step 2: Download Hadoop from http://archive.apache.org/

[21], copy it in Cygwin home folder, and unpack hadoop

Step 3: Configure Hadoop by editing the configuration file

hdfs-site.xml, mapred-site.xml and core-site.xml . Also install

hadoop eclipse plug-in [22] and change the eclipse java

perspective to MapReduce environment.

Step 4: Download and install Zookeeper [23] and HBASE

[24] from http://archive.apache.org/, Setup hadoop location in

eclipse and start all the cluster. Now, Hadoop ecosystem is

setup for any task.

3.2 Storing the web service in Hadoop

distributed File System (HDFS)
HDFS [25] [26] is used for distributed storage of data to

solve the problem of storing big data. HDFS follows the

master slave architecture. The HDFS consist of one

Namenode, one secondary Namenode and many Datanodes.

Namenode is the master node where all the metadata of the

file and also the file access permission for the user. Secondary

Namenode is the backup node to the Namenode and Datanode

is the slave node where all the actual data will be stored.

HDFS also provides replication of data into three nodes for

error recovery. The Datanode periodically sends reports to the

Namenode. If Namenode does not receive any report then it

treats the node as failure. HDFS is a reliable distributed file

system and also used to store large amount of data. Hence,

HDFS is used to store the huge amount of web services using

MapReduce algorithm.

Algorithm: Storing Web Services in HDFS

Input: Web services to be stored

Output: Directory with files of web services

1. Function Mapper(Key,Value)

2. Path(Path of the web services .XML files to

be stored)

3. FileSystem.get(Configure file system)

4. Output(OutputCollector, Reporter)

5. End Mapper

6. Function Reducer(OutputCollector, Reporter)

7. Path(HDFS path)

8. Output(File directory with HDFS files)

9. End Reducer

According to the above algorithm , the mapper function

configures file system of HDFS and the path of .xml files is

given as the output. The reducer takes this output as the input

and stores this .xml files in blocks in HDFS for further

processing.

3.3 Storing the Web Service property in

HBASE
HBASE [29] [30] stores the data in a table, which is a

distributed, NoSql, column oriented database built on top of

Hadoop Distributed File System (HDFS) and is different from

the conventional relational databases. The data rows in a

HBASE table are stored and sorted based on its row keys. The

HBASE as a unique row key and varying arbitrary columns.

The column in two different rows need not be similar. The

column name is divided into column family and a column

qualifier. The column families are added during the creation

of the table and it's not changeable. The qualifiers are added

or deleted dynamically as needed. The cell access of the

HBASE is by its primary key and MapReduce jobs scans

HBASE for data retrieval. The parallel execution of

MapReduce jobs cause higher response time and also

throughput. Hence we use, HBASE to store the functional and

non functional property of the web service by using ontology

tree, QoS table and also an Interface table. These properties

are stored to specify the optimal service, hence the optimal

search of web services will be efficient. HBASE clusters are

efficiently managed by the one of the Apache subproject

Zookeeper [32].

The QoS requirement by the user can be solved for simple

web services by creating the QoS tree. In web browsing, the

main aim is to select appropriate ontologies for given

browsing in run time. Eventually, web pages will be linked or

composed to other web pages whose contents may differ from

the actual web page. So, in order to provide a better user

experience, QoS ontology tree is created in a HBASE. Here,

Strong Dominance and weak dominance between the web

services property. If one web page as better QoS than the

linked Web page, then that web page is considered as the

strongly dominant or else weakly dominant. Based on this

QoS tree is created where all the strongly dominated web

services is stored in the left side of the tree and weak web

services in the right with the index. Hence, forming the

relationship between the parent node and the child nodes.

During the MapReduce based web service search is

performed, the properties of the web services is got from the

HBASE and due to this, optimal web service is presented to

the user, by filtering the unwanted web services.

3.4 MapReduce Algorithm for Web

Service Selection and Composition
MapReduce [26][27][28] also uses master-slave architecture

to process huge amount of data. MapReduce consist of one

job tracker and multiple task trackers to process the huge

amount of data. Job tracker is a master, which schedules the

task tracker jobs. In MapReduce, instead of sending the actual

data, just an computing is sent to reduce the network

bandwidth. The task tracker periodically sends the report to

the Job tracker. If the job tracker does not receive any report

within certain time period then job tracker will treat that node

as failure and will assign the job to different task tracker.

MapReduce takes the input in the form of <key, value> pair.

Later, this input is sorted and reduced by the reducer function.

This core concept is applied to manage the web service and

using map and reduce operation the optimal web service can

be filtered out of several web services, Hence used for web

service composition. Where MapReduce will structure all the

web services by indexing it and later removing all the

duplication and establishing an index. These structured web

services are stored in HDFS for further processing.

http://www.cygwin.com/

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT-2014)

44

Algorithm: Optimal Web Service Search (OWSS)

Input: User requirement

Output: Optimal best matched web service

1. Function Mapper (Key,Value)

2. Output(WebServiceName,

AllTheMatchedWebService)

3. End Mapper

4. Function Reducer(WebServiceName,

AllTheMatchedWebService)

5. For(i: AllTheMatchedWebService)

6. For(j: AllTheMatchedWebService)

7. OptimalBestMatchedWebService();

8. Output(BestMatchedWebService)

9. End Reducer

The above MapReduce Algorithm provides optimal web

service search for the simple web service request. The mapper

function takes user requirement as the input and maps all the

matched web services to the web service name asked by the

user. This mapper output is fed to the reducer function, which

runs the OptimalBestMatchedWebService() function by

parallely matching two web services.

4. EXPERIMENTAL RESULT
The above mentioned algorithms have been evaluated based

on the Hadoop platform in windows environment. The

implementation is performed in the standalone computer of

6GB RAM, 2GHZ CPU. All the MapReduce algorithm have

been implemented using Java 1.6. We evaluated our algorithm

with the ECML PKDD Discovery Challenge 2008 [33] and

compared the discovery of web service in Hadoop with the

web service discovery without using hadoop. The web

services upto 6000 is evaluated using the above algorithm.

Since, hadoop has been used, which is a big data resolver tool,

the response time of the proposed system is higher compared

to the traditional web service. (See Figure 2).

Fig 2: Response time for a User.

The response time for system without hadoop will increase

gradually with the increase in the number of web services.

But, with Hadoop there won't be much increase in the

response time when the number of web services increase.

Table 1. Comparative result of web service with and

without Hadoop

Number of

Web Services

Without

Hadoop (Sec)

With

Hadoop

(Sec)

Difference

in time

between two

methods

(sec)

1000 5.5 2.2 3.3

2000 8.4 4.2 4.2

3000 12.4 6.2 6.2

4000 18.8 10.2 8.6

5000 30.1 13.2 16.9

6000 40.8 15.4 25.4

Tabular comparative analysis of the web service with and

without Hadoop is shown in Table 1 and graphical

representation showing the peak point between the two

systems is shown in the figure 3. Even though, the number of

web services increases the time taken by the Hadoop based

approach is less to a greater extent.

Fig 3: Graphical representation of difference in response

time between the traditional system and Hadoop based

approach

5. CONCLUSION
The response time decrease gradually with the increase in

amount of data in a web service repository. Hence, due to the

overwhelming popularity of web services cause the

repositories to grow. Many traditional web service search

engines failed to discover the optimal web services, when the

repository was huge. Henceforth, to improve the performance

of the web service discovery and the web service composition,

a Hadoop based framework is considered to manage web

service. The MapReduce based OWSS algorithm provides

higher response time when compared to the traditional

systems for simple web services. Even though, the number of

web services increases the time taken by the Hadoop based

approach is less to a greater extent. In Future, the complex

web service are considered and separate map reduce algorithm

will be implemented to provide the optimal web services.

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT-2014)

45

6. REFERENCES
[1] Shashank Shetty, Shalini P.R, Aditya Kumar Sinha, "A

Survey: The study and implementation of web services

and managing it using Hadoop ecosystem, extending to

web service selection", In Proc. National Conference on

Multimedia and Information Security (NCMIS), 2014,

pp. 73-78.

[2] Srinivasan, N., Paolucci, M., Sycara, K.P, “An Efficient

Algorithm for OWL-S Based Semantic Search in

UDDI”, In: First International Workshop on. Semantic

Web Services and Web Process Composition., 2004, pp.

96-110.

[3] UDDI, UDDI V1 Technical White Paper, Sep. 2000,

http://www.uddi.org.

[4] D. Box, et al., Simple Object Access Protocol (SOAP)

1.1, W3C, May 2000, http://www.w3.org/TR/SOAP/.

[5] E. Christensen, et al., WSDL 1.1. Mar. 2001,

http://www.w3.org/TR/wsdl

[6] Web Services, 2002. http://www.w3c.org/2002/ws.

[7] Alonso, G. Casati, F. Kuno, H. Machiraju,V, "Web

Services: Concepts, Architecture, and Applications",

Springer, New York (ISBN: 3540440089), 2003.

 [8] S. Weerawarana, F.Curbera, "Business Process with

BPEL4WS: Understanding BPEL4WS, Part 1", IBM

corporation, 2002, pp.1-8.

[9] DAML-S, http://www.daml.org/services/daml-s/0.7/,

2002.

[10] N. Gholamzadeh, F. Taghiyareh, "Ontology-based Fuzzy

Web Services Clustering", 5th International Symposium

on Telecommunications, 2010, pp. 721-725.

[11] Binding point, http://www.bindingpoint.com/.

[12] Grandcentral, http://www.grandcentral.com/directory/.

[13] Web service list, http://www.webservicelist.com/.

[14] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J.

Zhang, “Similarity search for web services,” in

Proceedings of the Thirtieth international conference on

Very large data bases-Volume 30. VLDB Endowment,

2004, pp. 372-383.

[15] Y. Zhang, Z. Zheng, M R. Lyu, “WSExpress: A QoS-

aware search engine for Web services”, in Proceedings of

2010 IEEE 8th International Conference on Web

Services, ICWS 2010, July 5, 2010 - July 10, 2010, pp.

91-98

[16] U. Bellur, R. Kulkarni, " Improved Matchmaking

Algorithm for Semantic Web Services Based on Bipartite

Graph Matching", IEEE International Conference on

Web Services, 2007, pp. 86-93.

[17] Zhu, X. L., Wang, B, "Web service management based

on Hadoop", Proceedings of 8th International Conference

on Service Systems and Service Management,

ICSSSM'11, June 25, 2011 - June 27, 2011, pp.1-6.

[18] JAVA 1.6, http://

www.oracle.com/technetwork/java/javase/downloads/jav

a-archive-downloads-javase6-419409.html.

[19] Eclipse Europa 3.3.2, http://

www.eclipse.org/downloads/packages/eclipse-ide-java-

developers/europawinter.

[20] Cygwin, http://www.cygwin.com.

[21] Hadoop 0.20.1,

http://archive.apache.org/dist/hadoop/core/hadoop-

0.20.1/.

[22] Hadoop Eclipse Plugin,

http://code.google.com/p/hadoop-eclipse-

plugin/downloads/detail?name=hadoop-0.20.1-eclipse-

plugin.jar&can=2&q=.

[23] Zookeeper,

http://archive.apache.org/dist/hadoop/zookeeper/zookeep

er-3.3.1/.

[24] HBASE, http://archive.apache.org/dist/hbase/hbase-

0.20.6/.

[25] H. Wang, Haihong E, Xiulan Kong, "The Intelligent

Hadoop-based Book Management System", 6th

international conference on Pervasive Computing and

applications (ICPCA), 2011, pp. 202-207.

[26] Tom white., "Hadoop: The Definitive guide".

[27] Jeffrey Dean, Sanjay Ghemawat, “MapReduce:

Simplified Data Processing on Large Clusters”,

Magazine communication of the ACM- 50th anniversary

issue:1958, January 2008, pp. 107-113.

[28] H. Wang, Haihong E, Xiulan Kong, "The Intelligent

Hadoop-based Book Management System", 6th

international conference on Pervasive Computing and

applications (ICPCA), 2011, pp. 202-207.

[29] HBASE, http://Hadoop.Apache.org/HBASE/

[30] Mehul Nalin Vora, "Hadoop-HBASE for Large-Scale

Data", 2011 International Conference on Computer

Science and Network Technology (ICCSNIT), 2011,

pp.601-605.

[31] C. Franke, S. Morin, A. Chebotko , J.Abraham, P.

Brazier "Distributed Semantic Web Data Management in

HBase and MySQL Cluster", IEEE International

Conference on Cloud Computing (CLOUD), 2011, pp.

105-112

[32] Apache ZooKeeper, http://zookeeper.Apache.org/

[33] Web Service data set, http://www.kde.cs.uni-

kassel.de/ws/rsdc08/dataset.html

http://www.webservicelist.com/
http://www.cygwin.com/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6008653
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6008653
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6008653

