
 International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

5

Android Application Analysis using Reverse

Engineering Techniques and Taint-aware Slicing

 Syed Arshad
M.Tech CSE

Dept. of Computer Science & Engineering
Mangalore Institute of Technology & Engineering

 Ashwin Kumar
Senior Assistant Professor

Dept. of Computer Science & Engineering
Mangalore Institute of Technology & Engineering

ABSTRACT

Android is a victim of its own success, not just in the way it

has attracted malicious attention, but in its very nature. One of

the reasons the OS has succeeded in gaining market share so

rapidly is that it is open source; it is essentially free for

manufacturers to implement. Android platform provide only

coarse-grained permissions to users with regard to how third

party applications use sensitive private data. Malicious

applications pose a threat to the security of the Android

platform. The growing amount and diversity of these

applications render conventional defenses largely ineffective

and thus Android smartphones often remain unprotected from

novel malware.

In this paper, we propose AT2: ―Android Taint Analysis

Tool‖, a lightweight tool uses static method for analyzing

Android applications (APKs) and generating a detailed report

of the analysis performed. AT2 is a tool which performs a

static analysis, gathering as many features of an application as

possible. AT2 analyzes Smali code, a disassembled version of

the DEX format used by Android's Java VM implementation.

The provided application is sliced in order to perform data-

flow analyses to backtrack parameters used by a given

method. This helps to identify suspicious code regions in an

automated way. Several other analysis techniques such as

visualization of control flow graphs or identification of ad-

related code is also possible.

General Terms

Reverse Engineering, Decompilation, Verification, Security

Keywords

Mobile Malware, Taint Analysis, Android, Static Analysis

Tool

1. INTRODUCTION
Smartphone malware is on the rise and with 99% of known

malware targeting Google’s Android platform which is also

the most popular mobile platform in the world by a

tremendous margin. Users must start making an effort to

protect themselves against various threats. The latest example

of the terrifying possibilities out there comes from Trustwave

security researcher Neal Hindocha [1], who built a proof-of-

concept that could be one of the most troubling examples of

smartphone malware we’ve seen to date. Hindocha created

code that is capable of tracking a user’s taps and swipes as

they operate a smartphone. With similar malware, a malicious

hacker might be able to steal PINs, account numbers,

passwords and other sensitive information user’s type into

their handsets. Even the touches and swipes recorded over a

period of timeis a potential threat to the user.

Android is a main actor in the operating system market for

mobile and embedded devices such as mobile phones, tablets

and televisions. It is an operating system for such devices,

whose upper layers are written in a programming language,

also called Android. As a language, Android is Java with an

extended library for mobile and interactive applications, hence

based on an event-driven architecture. Any Java compiler can

compile Android applications, but the resulting Java bytecode

must be translated into a final, much optimized, Dalvik

bytecode [2] to be run on the device.

As smartphones become more widespread, their users’

privacy and security become critical issues. For example, a

Wall Street Journal study of iOS and Android applications

revealed that 46–55% of smartphone applications transmit

users’ private information such as location and device ID over

networks without users’ awareness or consent. Worse, many

users are enticed to download and run smartphone

applications without carefully understanding the

consequences of accepting permissions prompted before

installation. This can easily lead to installation of malicious

applications.

Sensitive information on smartphones comes from various

sources, including sources originating from smartphones

themselves and sources received from the Internet. On one

hand, smartphones themselves generate sensitive information

such as photos, GPS locations, and device identifiers

(IMEIs/EIDs). On the other hand, smartphones can receive

sensitive information from a plethora of possible sources over

the Internet. For example, users may check their bank

accounts via a browser or a bank-provided application.

Similarly, smartphones are often used for checking email

contents from servers such as Gmail or Microsoft Live

account. Privacy can be easily invaded if sensitive data from

one source were sent to another irrelevant destination.

Attacks range from broad data collection for the purpose of

targeted advertisement, to targeted attacks, such as the case of

industrial espionage [3]. Attacks are most likely to be

motivated primarily by a social element: a significant number

of mobile-phone owners use their device both for private and

work-related communication. Furthermore, the vast majority

of users install apps containing code whose trustworthiness

they cannot judge and which they cannot effectively control.

These problems are well known, and indeed the Android

platform does implement state-of-the-practice measures to

impede attacks. The Android platform is built as a stack, with

various layers running on top of each other. The lower levels

consist of an embedded Linux system and its libraries, with

Android applications residing at the very top.

Users typically acquire these applications through various

channels (e.g., the Google Play Store [4], APKdownloads [5],

etc.). The underlying embedded Linux system provides the

enforcement mechanisms common to the Linux kernel, such

as a user-based permission model, process isolation and

 International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

6

secure inter-process communication. By default, an

application is not allowed to directly interact with other

applications, operating system processes, or a user’s private

data. The latter includes, for example, access to the contacts

list. Android regulates access to such private data via a

permission-based security model where, to access security-

sensitive API functions, applications have to statically declare

the permissions they require. An application may only be

installed following the user’s consent, yet users currently have

little control over the installation process, as they must either

grant all of the permissions that an app demands, or else

forego installation. The problem is aggravated by the coarse-

grained nature of Android permissions [6]. Android’s existing

permission system does not allow fine-grained restrictions on

information flow, as a result of this limitation, users grant too

many permissions too often, thus running the risk to give

malicious apps access to private data.

2. BACKGROUND AND EXAMPLE
This section shows and example code and reviews the

concepts behind Program slicing and Static taint analysis. It

then introduces the AT2 tool for analyzing android packages,

including details of its implementation.

The example code shown in the below reads a password from

a text field (line5) whenever the application is restarted. When

the user clicks on a button of the activity, it is sent to some

constant telephone number via SMS (line22). This constitutes

a data flow from the password field (the source) to the SMS

API (the sink). Though this is a small example, similar code is

known to exist in real-world malware apps [7].

In this above example, sendMessage() is associated with a

button in the app’s UI. It is a callback method that gets

triggered by an onClickevent. In Android, listeners are

defined either directly in the code or in the layout XML file,

as is assumed here. Thus, analyzing the source code alone is

insufficient—one must also process the meta data files to

correctly associate all callback methods.

In this code a leak only occurs if onRestart() is called,

initializing the user variable, before sendMessage() executes.

AT2 uses Static android analysis framework which covers an

important aspect of an app analysis process: automated static

analysis. Here implemented variant of data-flow analysis [8,

9], namely program slicing [10], enables the proposed tool to

automatically search for constant values which are used as

parameters in defined method invocations. This way, the

analyst can for example determine if an application is able to

send short messages to a hardcoded number—which would

result in a strong misuse potential of this application. This

search is called static backtracking. Based on these results the

analyst can, e.g., let some heuristic decide which apps are

worth a more thorough inspection because they might exhibit

malicious behavior: long sleep intervals, hardcoded telephone

numbers, calls to sudo and so on.

Using AT2 analyst can also perform a manual inspection.

After an application is loaded within the tool, the analyst has

access to options such as:

 Navigate through the application contents which are

presented in a tree structure. Smali and optionally

decompiled Java code is accessible, which is

colored, and links to labels and methods are

clickable.

 Control flow graphs (CFGs) can be generated and

exported.

 AT2 offers the possibility to search for several

program components, e. g., strings and invocations.

 AT2 knows about ad package paths and can ignore

classes inside them.

An automatic static analysis should run in the background,

possibly on a large set of applications. AT2 offers a lot of

command line options to properly work without a GUI.

Being a static analyzer, AT2 is expected to work fast for our

use case. Many applications need to be analyzed in a short

amount of time to quickly get an idea which applications need

to be investigated more closely by means of a more expensive

manual or dynamic analysis. A static analysis of a typical app

from our evaluation set is completed in less than 10 seconds

on average. Sometimes the process is even faster, if the

application is small.

3. STATIC BACKTRACKING
The ability to perform static data-flow analyses of method

parameters (called static backtracking in this paper) is one of

the core components of AT2. It enables the analyst to define a

set of methods of interest with their respective signature

(parameters), in order to see whether they obtain any

constants as inputfor example, the analyst wants to determine

if some application is able to send short messages to a

hardcoded number or with any hardcoded message text—both

of which indicate a suspicious usage of this feature.

3.1 General Workflow
AT2 is based on static analysis methods and thus the first step

is to dissect Android applications. Such applications are

packaged in APK files, which are more or less ZIP

compressed files with the compiled bytecode, additional

metadata such as the Manifest file, and additional resources

such as image or audio files.

AT2 unpacks these APK files in the following way in order to

perform the data-flow analysis and further analysis

operations:

 The analyst loads an Android application (APK file)

or specifies at least one from the command line.

 International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

7

 AT2 unpacks the contents of the app and generates

smali files for all classes, using the android-apktool.

Working directly on the bytecode enables us to

obtained a detailed view of the code and overcomes

limitations of tools that rely on decompiling the

bytecode to Java code [11].

 Then parses the smali files and creates an

appropriate object representation of its contents. At

this point, the static analysis can begin since all

relevant information is unpacked and available in a

usable form for further processing.

AT2 will then perform the program slicing [10], which is

explained in the next section. The complete process of AT2 is

shown in Fig 1 below.

Fig.1 Process of AT2

3.2 Program Slicing
In order to perform backtracking of method parameters and to

perform the slicing, a slicing criterion must be defined. In our

case, the criterion consists of the following information:

method name and full class name of its corresponding class,

method signature, and the index of the parameter that shall be

backtracked. The slicing criterion fully specifies the relevant

opcodes that invoke the desired methods in the analyzed

application. Such a criterion enables to search for use-def

chains. The first search will be through all invoke opcodes for

matching ones. Afterwards, the given parameter index is

translated to a particularly used register in the decompiled

code (use information). The previous opcodes in the

corresponding basic blocks are checked and determined

whether the opcodes perform some operation with the

currently tracked register. In other words, backward slicing is

performed. Generally speaking, all opcodes that modify or use

the tracked register will be checked and will backtrack all the

interactions until constant (def information) is found.

AT2 has an internal queue where all registers are stored which

have not yet been backtracked. The queue is initially filled

with the registers found during the first search for matching

invokes opcodes and AT2 backtracks each register until the

queue is empty.

It is eventually filled as the logic finds opcodes inferring with

the tracked register that make use of additional registers. The

queue stores the registers name and its exact opcode location

in the program in order to backtrack it at some time later. If a

tracked register vx is overwritten by register vy by the means

of a move opcode, register vy will of course be backtracked

from this instruction on instead of vx; this is called aliasing

[12]. The same is true for all opcodes that put a result into the

tracked register: all involved registers are added to the queue

and are later backtracked. If the tracked register itself is not

part of the value registers, it will not be backtracked anymore.

Until a found constant terminates the backward slicing,

several opcodes require special handling in order to find

constants of interest. Due to space constraints, it is hard to

describe in detail how the proposed tool, AT2 deals with

arrays, fields, basic block boundaries, method invocations,

return values and the like. However, AT2 handles all opcodes

and employs a combination of backward and forward slicing

to find all constants which might get assigned as a parameter

to the slicing criterion.

3.3 Constants
The analysis process is terminated when one of the following

conditions holds:

 A constant value is assigned to the tracked register.

 An object reference is written into the tracked

register.

These two cases end the search for constants for a tracked

register: the first marks our goal to find assigned constants in

the bytecode which finishes our search for def information.

All opcodes of the const-x type provide such information in

addition to some others, e. g., mathematical operations or

initialized fields and arrays. They assign constants to registers,

e. g., strings or integers. In both cases the register will

beoverwritten and has an unknown semantically meaning

before the assignment, which is irrelevant for our analysis.

While the first one adds a resulting constant to our search, the

second one terminates our search. If the register is overwritten

with some reference, still all involved constants for this object

can be seen.

Apart from opcodes that put a constant of a specific type into

the tracked register, the following aspects may be encountered

during the search, if they are somehow linked to the tracked

register r:

 Fields and arrays with their types, names, initial and

assigned values if a value is copied from them to r.

 Unknown (API) methods if they are called and

return a value which is assigned to r. Known

methods are part on the usedef chain and all return

values are tracked.

 Variable names and types for found constants.

 Opcodes that overwrite r with something else, e. g.,

if an exception is moved to it.

If such cases are found, they are added to the result set in a

proper format and are tagged accordingly. These results store

additional meta-information such as the line number, the

filename, and other relevant information that is helpful during

the analysis.

3.4 Static Analysis
Static analyses inspect the program code to derive information

about the program’s behavior at runtime. As nearly every

program has variable ingredients (inputs from a user, files, the

internet etc.) an analysis has to abstract from concrete

program runs. Instead it aims to cover all possibilities by

making conservative assumptions. The properties derived

from these assumptions can be weaker than the program’s

properties actually are, but they are guaranteed to be

applicable for every program run. In this way the analysis

detects a program behavior which might not actually happen

during runtime, but it does not miss a behavior which can

happen during runtime (i.e. leakage of sensitive data). If an

analysis features this over approximation, it is sound.

 International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

8

Static analysis has many fields of application. Besides

checking for programming errors and security flaws, which

aim at the correctness of a program, there are many analyses

included in modern compilers which try to optimize

programs.

4. IMPLEMENTATION
AT2 tool is implemented in Java as well as Python on Linux

Platform.HTML, CSS and JavaScript has been used to

develop the tool’s reporting process. The program slicing is

performed on method name and full class name. The slicing

criterion fully specifies the relevant opcodes that invoke the

desired methods in the analyzed application. The required Ad

Networks, backtracking patterns, heuristic patterns and

permissions are defined in the appropriate xml files and xml-

schema files used to validate the xml files. Soot: Java

optimization framework is used to perform static taint analysis

on the sliced programs and generate CFGs of the required

methods and also to generate the analysis report in

HTML/Text format.

5. CONCLUSION
In this paper AT2 tool is introduced, which analyses the

android applications statically. AT2 performs data-flow

analysis based on program slicing to analyze the structure of

an application and also tainting is performed to detect the

information leakages. Using this tool the users or analysts can

analyze the android packages (APK’s) for security issues. The

complete user friendly analysis reports are presented to the

user.

6. REFERENCES
[1] Researcher to demo hack for logging Android, iOS

touchscreen movements - January 30, 2014

[2] http://www.scmagazine.com/researcher-to-demo-hack-

for-logging-android-ios-touchscreen-

movements/article/331894/

[3] Bytecode for the Dalvik VM,

https://source.android.com/devices/tech/dalvik/dalvik-

bytecode.html

[4] Your Apps Are Watching You -

http://online.wsj.com/news/articles/SB100014240527487

04694004576020083703574602

[5] Google Play - https://play.google.com/store?hl=en

[6] APKdownloads - http://www.apkdownloads.com

[7] The Effectiveness of Application Permissions - Usenix -

www.usenix.org/event/webapps11/tech/final_files/Felt.p

df

[8] Yajin Zhou and Xuxian Jiang. Dissecting Android

Malware: Characterization and Evolution. In Proceedings

of the 2012 IEEE Symposium on Security and Privacy,

SP ’12, pages 95–109, Washington, DC, USA, 2012.

IEEE Computer Society.

[9] F. E. Allen and J. Cocke. A program data flow analysis

procedure. Commun. ACM, 19(3), Mar. 1976.

[10] L. D. Fosdick and L. J. Osterweil. Data flow analysis in

software reliability. ACM Comput. Surv., 8(3), Sept.

1976.

[11] H. Agrawal and J. R. Horgan. Dynamic Program Slicing.

SIGPLAN Not., 25(6), June 1990.

[12] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A

Study of Android Application Security. In USENIX

Security Symposium, 2011

[13] G. Ramalingam. The undecidability of aliasing. ACM

Trans. Program. Lang. Syst., 16(5), Sept. 1994.

[14] Soot: a Java Optimization Framework -

http://www.sable.mcgill.ca/soot/

[15] Highly Precise Taint Analysis for Android Applications

2013 - Christian Fritz, Steven Arzt, Siegfried Rasthofer,

Eric Bodden, Alexandre Bartel, Jacques Klein, Yves le

Traon, Damien Octeau and Patrick McDaniel - Secure

Software Engineering Group, EC SPRIDE,SnT,

University of Luxembourg - Penn State University

[16] All You Ever Wanted to Know About - Dynamic Taint

Analysis and Forward Symbolic Execution(but might

have been afraid to ask) 2009 - Edward J. Schwartz,

Thanassis Avgerinos, David Brumley - Carnegie Mellon

University Pittsburgh, PA

[17] Moutaz Alazab, Veelasha Monsamy, Lynn Batten, Patrik

Lantz, andRonghua Tian. Analysis of malicious and

benign android applications.In Distributed Computing

Systems Workshops (ICDCSW), 2012 32nd International

Conference on, pages 608–616. IEEE, 2012.

[18] Glenn Ammons, Rastislav Bod´ık, and James R Larus.

Mining specifications. In ACM Sigplan Notices, volume

37, pages 4–16. ACM, 2002.

[19] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko,

Thomas Fischer, andAhmad-Reza Sadeghi. Xmandroid:

A new android evolution to mitigateprivilege escalation

attacks. Technische Universit¨at Darmstadt,

TechnicalReport TR-2011-04, 2011.

[20] Patrick PF Chan, Lucas CK Hui, and SM Yiu.

Droidchecker: analyzingandroid applications for

capability leak. In Proceedings of the fifth

ACMconference on Security and Privacy in Wireless and

Mobile Networks,pages 125–136. ACM, 2012.

