
International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

9

ABSTRACT
Software effort estimation is one of the most critical and complex,

but an inevitable activity that takes place during the early stages of

SDLC. Software size estimate is one of the most popular inputs

for software effort prediction models. Providing a good size

estimate for the purpose of accurately estimating the development

effort is a challenging problem. During estimation activities, the

uncertainty has become a part in software engineering

measurements. The implementation of size proxy for effort

estimation, which is associated with uncertainty, is a challenging

task. In earlier study, there is a conceptual framework for

developing size proxy, which addresses uncertainty by providing

estimate as a probability density function instead of certain value.

Even-though there are many estimation tools and size metrics, but

none of the tool is provided as a service in cloud to addresses

uncertainty issue satisfactorily. Here proposed a tool based

approach by considering more predictors from various artifacts

which can addresses the uncertainty issues and also providing tool

as a service in cloud for users via a web browser. The tool

provides output as a probabilistic value instead of certain value by

considering more predictors and the results were encouraging.

The tool is hosted by a vendor or service provider in the cloud and

made available to customers over a network (typically the

internet) having benefits like high adoption, lower initial costs,

painless upgrades and seamless integration.

Keywords
Software Effort Estimation, Probabilistic Size Proxy, Pearson

Correlation, Multiple Linear regression, Probability Density

Function, Cloud Computing.

1. INTRODUCTION
Software effort prediction are the basis for project bidding,

budgeting and planning that takes place during the early stages of

development life cycle. Delivering the software on time and

within budget is a critical concern for many software

organizations. Underestimating software cost can have

unfavorable effects on the quality of the delivered software and

may affect the company‟s business reputation and

competitiveness. Overestimation of software cost is detrimental

too. It can result in missed opportunities to fund in other projects

and loss of project tenders [1].

Summarizing several classes of software cost estimation models

and techniques as shown in Fig.1 parametric models,

expertise-based techniques, learning-oriented techniques,

dynamics-based models, regression-based models, and

composite-Bayesian techniques for integrating expertise-based

and regression-based models. Experience to date indicates that

neural-net and dynamics-based techniques are less mature than the

other classes of techniques, but that all classes of techniques are

challenged by the rapid pace of change in software technology.

The primary conclusion is that no single technique is best for all

situations, and that a careful comparison of the results of several

approaches is most likely to produce realistic estimates.

Software engineering cost (and schedule) models and estimation

techniques are used for a number of purposes. These include:

Budgeting, Tradeoff and risk analysis, Project planning and

control, Software improvement investment analysis.

Fig 1: Types of Software Estimation Techniques

In the rest of the paper, we use the term „„size proxy‟‟ for effort

prediction rather than the term „„size metric‟‟ to emphasize that

size is measured in a way merely to predict effort and not

something else, e.g., understandability. It is essential to note here

that the term „„proxy‟‟ is used to reflect that the „„size‟‟ is being

used as a proxy for the „effort‟ and not the other way around.

However, size estimates at the early stages of the development are

the most difficult to obtain. Such estimates are often uncertain and

the least accurate because very little detail is known about the

project and the product at the beginning.

The uncertainty arises due to the inability to consider all factors

(henceforth we will use the term predictors instead of factors to

convey the idea of them taking part in effort prediction) that would

contribute to the size and effort of software; i.e., neglecting some

predictors due to the lack of a complete theory on software size

and effort, the impracticality to use all the known predictors that

contribute to software size and effort, the uncertainty in the

measurement itself, etc. Thus, there are many sources of

uncertainty.

Predicting the effort solely based on the number of use cases and

the number of classes is expected to possess some error. The error

value would reflect the amount of contribution of the neglected

predictors. Accordingly, the error is not certain but rather

probabilistic with non-zero standard deviation. Similarly, the

information on use cases or classes could itself be uncertain, for

example, the flow of events may not be accurate or subject to

change. More-over, it is also possible that some use cases were

overlooked or some extra use cases were added to the models.

Furthermore, the way use cases are described may differ from one

modeler to another. Clearly, it is not possible to just ignore these

uncertainties.

The above discussion motivated our research towards achieving

early estimate of effort which can be as accurate as possible and

account for uncertainty at the same time. In this paper, we present

a tool based approach for the development of probabilistic size

proxies for effort prediction; such proxies account for uncertainty

and allow for better understanding and insight into estimates. The

Software Estimation Techniques

Model Based-
SLIM,
COCOMO,
CHECK POINT,
SEER

Expertise Based-
Delphi, Rule
Based

Composite- Bayesian
COCOMO II

Regression Based-
OSL, Robust

Dynamics Based-
Abdel –Hamid-Madnick

Learning Oriented-
Neural, Case
Based

Implementing Effort Estimation Tool as a
Cloud Enabled Service

E. Sudheer Kumar V. Jyothsna
Assistant Professor, Dept of CSE, Assistant Professor, Dept of IT,

Sree Vidyanikethan Engineering College, Sree Vidyanikethan Engineering College,
A.Rangampeta, Tirupati, A.P. A.Rangampeta, Tirupati, A.P.

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

10

idea is to consider a random error, e, that is assumed to be

distributed with E (e) = 0 and Var (e) = r2 as part of the prediction

model.

Proxies developed using the proposed framework predict the

development effort as a probability density function (pdf) rather

than a certain value. They have advantages compared to

traditional metrics in that none of the existing metrics consider the

random error and corresponding residual variance within their

measurements.

A major difference here is that during the training step of the

framework, training takes place on two different parts: mean effort

and error standard deviation as explained later in the paper. Other

approaches train for the mean effort only. It is important to note

here that the proposed approach is different from other approaches

when it comes to handling the error in estimation (a notable

example is to use metric like Confidence Interval (CI), e.g. CI at

95%).

In a value added we are proposing a tool based approach which

considers more predictors from various artifacts which can

addresses the uncertainty issues and also providing tool as a

service in cloud for users via a web browser. This is very

important keeping in mind that different organizations may opt to

develop different types of conceptual models early in the

development lifecycle. The level of conceptual modeling done is

based on many factors like the complexity of the problem, the

do-main of the problem, the expertise of the modeling team.

Fig 2: System Overview

Client has to request for Effort Estimation Tool in private cloud,

then cloud will check all credentials of user and then it allows user

to access the tool. Now user has to send his XMI file through the

GUI for tool. The proposed tool process as follow: extraction of

metrics from received artifacts with the help of SDMetrics tool,

selecting suitable predictors, training the functions of mean effort

and standard deviation error using linear regression and

generating equation with selected predictors. The EET provides

output as a probabilistic value instead of certain value by

considering more predictors for user.

The EET is hosted by a vendor or service provider in the cloud and

made available to customers over a network (typically the

internet) having benefits like high adoption, lower initial costs,

painless upgrades and seamless integration. We have conducted

some experiments to develop a size proxy for effort prediction

using our architecture. As a case study, we considered information

from UML conceptual models available during the prediction

activity. A major reason for using UML models is that UML is so

popular and widely accepted in software industry. With

object-oriented development becoming the de-facto in industry,

UML‟s popularity has reached even new heights. Thus we believe

that approaches based on UML will have high acceptability in the

industry.

The rest of the paper is organized as follows. Chapter 2 presents

the related work on software effort estimation, size metrics and

existing system. Chapter 3 presents system architecture for the

development of software size proxies for effort prediction.

Chapter 4 presents experiment design, validation, results. Finally

in Chapter 5 we conclude by mentioning the contributions,

limitations and some possible future work.

2. RELATED WORK
This chapter presents our literature survey on software effort

estimation techniques. Boehm et al. [2] provided a survey of

software cost estimation techniques. They classified the software

estimation techniques into six categories i.e. model based,

expertise based, learning oriented, dynamics based, regression

based and composite techniques. Their survey was more focused

on the first category i.e. model based techniques. Briand and

Wieczorek [3] provided a comparison study on different software

cost/effort estimation techniques by classifying the techniques

into two broad categories, "model based methods" and "non

model based methods". As with the case of Boehm et al, their

work was also mainly focused on model based techniques. Saliu

and Ahmed [4] provided a survey on software effort estimation

focusing primarily on soft computing based systems. Another

good survey on effort estimation is provided by Pfleeger et el. [5].

We believe that our literature survey is an attempt to provide a

more comprehensive study on effort estimation rather than just

looking at individual works.

Below we discuss the major software effort estimation techniques

by broadly dividing them into four categories namely, “expert

judgment”, “analogy”, “algorithmic models” and “models based

on soft computing”. This classification is based on our own survey

of different software effort estimating techniques and to follow

our evaluation of these techniques. It should be noted that there is

no agreed classification of software effort estimation techniques

and the classifications are subjective [6] [7] [8] [9] [10] [11] [12].

In this section we discuss the prominent software size metrics

found in the literature. First of all we discuss the metric Lines of

Code (LOC) followed by Function Points (FP) and its various

object oriented and non-object oriented variations. This is

followed by discussion on Use Case Points (UCP), Class Points

(CP), Vector Size Measure (VSM), Number Of Components

(NOC), Object Point, Fast&&Serious and Predictive Object Point

(POP) [13] [14] [15].

2.1 Existing System
It is worth noting here discusses a conceptual framework that

outlines a possible approach to tackle the issue but does not dictate

specific settings of the parameters involved (e.g., the predictors to

consider); rather, the parameters are typically set to suit the data

available

Presenting a conceptual framework for the development of size

proxies, such size proxies inherently portray the probability

distribution of the error associated with their corresponding

computed effort estimates. Such a portrayal allows associating a

degree of confidence to the effort estimate for a given project.

It is important to note, though, just present here a conceptual

framework which outlines a possible approach to tackle the issue

but does not dictate specific settings of the parameters involved

(e.g., the predictors to consider); rather, the parameters are

typically set to suit the data available. Given available historical

data, practitioners can use the framework to develop a suitable

size proxy for effort prediction. Clearly, the richer the historical

data, the higher the confidence on the resultant size proxy.

To account for the uncertainty, the framework can be used to

generate size proxies, each of which is composed of two

components: an estimate and an error (the term „residual‟ rather

than error is used commonly is statistics).

The estimate represents the mean effort measurement computed

using the predictors considered; whereas the error (i.e., residual

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

11

variance) represents the standard deviation that accounts for the

uncertainty in prediction.

It is important to mention here that the higher the standard

deviation of estimate, the lower the confidence in the estimate;

i.e., the higher the uncertainty in the computed estimate.

Fig 3: A Conceptual Framework for Probabilistic Size Proxy

3. ARCHITECTURE DESIGN
The main purpose of this design is to develop an Effort Estimation

Tool which generates a probabilistic size proxy to predict effort

required to develop a project in the early stages of software

development life cycle. This tool can be used in real time

scenarios for prediction activities, when they have conceptual

diagrams for a future projects. The tool architecture can be used to

convert artifact in to metrics extraction, training the size proxy,

predict effort and produce a probability density function value.

With this architecture the uncertainty issue will be solved

satisfactorily.

The extraction process inside the architecture can be done by

using SDMetrics tool, selecting the suitable predictors can be done

with the help of Pearson correlation, providing training to develop

the size proxy by using linear regression technique and also

provide results for different confidence intervals.

Fig 4: Proposed Architecture for Probabilistic Size Proxy

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

12

Step1: Metric value extraction: This component extracts the

metric values from the current project for which the effort needs to

be estimated. This component takes Project‟s conceptual models

i.e. the UML artifacts along with any other project specific

information like the technical factors affecting the project.

Step2: Selection of metric and their values from past projects:
This component selects the size proxy constituents i.e. the

predictors for effort, based on the metrics whose values are

available for the current project whose effort needs to be estimated

and also based on the metrics for which we have information

available for sufficient number of past projects in the database.

Step3: Training of the size proxy: After selecting the predictors

for effort estimation, the predictors along with their values are

provided to the training component. The effort values for past

completed projects are also provided to the training component

from the database. The training component can use one of the

different training techniques like regression, neural networks,

genetic programming to train the function for mean (μ) and the

standard deviation (σ) of the size proxy.

Step4: Effort estimation: The trained functions for mean (μ) and

standard deviation (σ) are provided to the effort estimation

component. This component obtains the metric values for the

current project from the component one and uses them in the

functions for mean (μ) and standard deviation (σ) to provide the

effort estimate as a PDF.

3.1 Metrics Table Data
Whenever user input xmi file through gui, the file will forwarded

to SDMetrics tool. The tool analyzes the file; calculate metrics and

then the results will be generated in the specified format as shown

in below Table 3.1.

The output file from SDMetrics tool has individual classes of a

project and its metrics values. Now we have to calculate overall

values for each and every predictor and store it in to another table

as shown in below Table 3.2.

Past projects data has been generated using simulation method.

Each and every dependent and independent variables value has

been generated and with the help of this data estimated μ can be

calculated by using linear regression technique. In general,

multiple regression procedures will estimate a linear equation of

the form as shown in equation (1):

Y = a + b1*X1 + b2*X2 +……. + bp*Xp (1)

Table: 3.1 SDMetrics Output File Format

Name
Num
Attr

Num
Ops

NumPub
Ops

………
…

MsgSelf

Class 1 0 1 2 6

Class 2 1 2 3 3

Class n 2 3 5 ………… 4

3.2 Estimated Mean Data
Calculating mean equation with the help of linear regression, and

the dataset structure is tabulated in Table 3-2 and formula is:

Mean Estimated Effort (µeffort) = b0 + (bi × Ai)𝑚
𝑖=1 (2)

Where,

 „m‟ = number of predictors (independent variables)

„ bi ‟ = Beta coefficient for variable „i‟.

 „ Ai ‟ = Independent/predictor variable „i‟

Table: 3.2 Input dataset structure for training mean effort

P. No
Dependent

Variable
(Effort)

Independent
Variable (A1)

IV
(A2)

………
IV

(Am)

1 240 20 18 19

2 350 30 14 15

……………………..

N ….. ……. ….. ……… …….

3.3 Standard Deviation Data
Each perturbated set/cluster number consists of number of

projects as one set and also with their corresponding values. The

data represented here has different independent variables and

standard deviation of error estimate variable which is used for

calculating the linear regression equation of standard deviation

error along with mean error as of like in formulae (3).

Mean error formula

μ
error
i =

1

𝑁
 (Ej

i − μ
effort.j
i)

𝑁

𝑗=1

Where,

μ (i) = mean error estimate for perturbed set „i‟.

N = Number of projects in each perturbed set.

E ij = Effort for perturbed project „j‟ in perturbed set „i‟ effort

μi = Estimated effort for project „j‟ in perturbed set i.

σ (i) = Standard deviation of errors (μ) for the „N‟ projects in

perturbed set „i‟.

3.4 Standard Deviation of Error Estimate

𝜎 𝑖 =
1

𝑁
 𝜇𝑒𝑟𝑟𝑜𝑟

𝑖 − 𝐸𝑗
𝑖 − 𝜇𝑒𝑓𝑓𝑜𝑟𝑡 .𝑗

𝑖
2

 𝑁
𝑗=1

Where

r (i) = standard deviation of error in estimation for

perturbation set „i‟

 N = total number of projects in each perturbed set

μ effort = mean error in estimation for perturbation set „i‟

 Ek = effortj for perturbed project „j‟ in perturbed set „i‟

 μ effort = estimated mean effort for project „j‟ in perturbed set

i.

3.5 Cloud Installation and Application

Hosting
The product features automated deployment of cloud stack and

provided a convenient environment through portal for

infrastructure request, application hosting, view usage and billing

information and administrator users to manage their entire cloud

environment and security administrators to monitor the security

violations.

Insert the Meghdoot DVD into the drive, restart your computer and

boot from DVD by editing the BIOS setup. The screen appears

with three options:

 Start Meghdoot (BOSS CLOUD) Live

 Install Meghdoot (BOSS CLOUD)-Graphical

 Install Meghdoot (BOSS CLOUD)-Text Mode

You can proceed with the default installation by clicking “Install

Meghdoot (BOSS CLOUD) - Graphical” or “Install Meghdoot

(BOSS CLOUD)-Text Mode”.

(3)

(4)

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

13

Fig 5: Output of SDMetrics Tool

4. EXPERIMENTAL SETUP

4.1 SDMetrics Tool
The Fig 4.1 is the first and foremost step which is going to happen

with the help of user. The user will connect to tool through web

graphical user interface and give XMI file of a class diagram for a

project. The SDMetrics tool will extract the metrics form that

class diagram and stored in the form of table format as shown

above fig 4.1.

4.2 Correlation Table
Pearson Correlation Coefficient is used, inorder to find out (linear)

relationship between the two variables x and y. Based on the past

data available in database, it retrieves data from database and

finding pearson correlation between effort variable and all

remaining variables. Table 4.1 shows correlation table:

Table: 4.1 Correlation table based on Past Data

 NC NA NP

M

IFIm

pl

Num

Desc

Nu

m

Anc

DIT

Effort

(Man-

Hours)

0.98 0.99 0.99 0.98 0.28 0.97 0.98

4.3 Size Metric
The size metric is one of the main inputs used to find effort

estimation. There it needs training to form a metric, so we are

considering multiple linear regression as our training technique. It

is a combination of mean, error and standard deviation form.

Mean will calculate based on the past data, where as it will

consider effort variable independent variable and all other

remaining variables as dependent variables, so that we will get an

intercept value and coefficients value to form a equation. Standard

deviation will also calculate based on the past data, where as it will

consider standard deviation error.

First of all we need to calculate error value by considering

difference between actual effort values and estimated mean effort

values of past projects. We need to perform standard deviation

error with the help of error value for all past projects. Consider

standard deviation error value as independent variable and

remaining variables as dependent variable to get intercept value

and coefficients values. With the help of mean and standard

deviation error values, the size proxy equation is formed.

Eestimated = N [(311.39+ 05.84 * NC + 03.17 * NA + 05.04 *

NPM + 00.15 * IFImpl + 00.70 * NumDesc + -01.02 * NumAnc +

00.52 * DIT), (-13.08+ 02.59 * NC + -00.53 * NA + 00.46 * NPM

+ -00.07 * IFImpl + 00.71 * NumDesc + 00.49 * NumAnc +

-00.48 * DIT)]

4.4 PDF Value
Here we need to substitute the variables value from the user table

database and it shows the values of mean and standard deviation

error. Now we need to calculate Gaussian probability density

function value by adding +/- of 1.96*SDE value to mean, so that

we can get probabilistic value instead of certain value

The Gaussian Probability Density Function Value is:

 Eestimated = N [403.35, 10.99]

Effort Estimate for the confidence interval of 95% is:

E [381.80, 424.90]

5. CONCLUSION AND FUTURE WORK
A tool based approach for effort estimation was proposed, which

can be used early in software development process. It is flexible to

the amount of information available during estimation and does

account for uncertainty by providing estimate as a Gaussian PDF.

The Architecture was validated by creating instantiating size

proxies consisting of different number of predictors and validating

these size proxies using two different data sets. User has to request

for Effort Estimation Tool in private cloud, then cloud will check

all credentials of user and then it allows user to access the tool.

Now user has to send his XMI file through the GUI to tool. The

tool is hosted by a vendor or service provider in the cloud and

made available to customers over a network (typically the

internet) having benefits like high adoption, lower initial costs,

painless upgrades and seamless integration, so that user can access

from anywhere with the help of browser and does not require any

additional resources.

http://www.sdmetrics.com/

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

14

5.1 Limitations and Future Work

Following are some of the major limitations of our work along

with proposed future works:

 A major limitation of our work is the shortage of data.

Shortage of data is a typical problem faced by research

community in software engineering. Dataset one had data

on 20 projects with simulation / trial and error. Thus

validating the proxy using more data and preferable from

industry projects is a definite future work.

 The architecture may also be extended by adding steps to

handle imprecision especially when using attributes having

categorical values or inputs from expert. Fuzzy logic is a

good choice to model imprecision in such cases.

 Another possible future work is to use the intermediate size

proxy by providing the non-singleton size measure to effort

estimation models such as the one proposed by zeeshan.

We used regression analysis to train our size proxy. Other training

algorithms and techniques like ANN can also be used and the

results can be compared.

6. REFERENCES
[1] Moataz A. Ahmed, Irfan Ahmad, Jarallah S. AlGhamdi

“Probabilistic size proxy for software effort prediction: A

framework” Information and Software Technology, Volume

55, Issue 2, February 2013, Pages 241-251

[2] Boehm, Barry, Abts, Chris and Chulani, Sunita, J.C. Baltzer

"Software development cost estimation approaches – A

survey", Annals of Software Engineering 10 (2000), AG,

Science Publishers. Page(s): 177-205.

[3] Briand, Lionel C. and Wieczorek, Isabella "Resource

Estimation in Software Engineering", Technical Report,

International Software Engineering Research Network.

[4] Saliu, M.O. and Ahmed, M.A., A Chapter in E. Damiani, L.

C. Jain, and M. Madravio (EDs), “Soft Computing Based

Effort Prediction Systems – A Survey”, Soft Computing in

Software Engineering, Springer-Verlag Publisher, July 2004,

ISBN 3-540-22030-5.

[5] Pfleeger, Shari Lawrence Wu‟ Felicia and Lewis Rosalind,

Software Cost Estimation and Sizing Methods, Issues and

Guidelines, RAND project Air Force 2005.

[6] Briand, Lionel C. and Wieczorek, Isabella "Resource

Estimation in Software Engineering", Technical Report,

International Software Engineering Research Network.

[7] Anda, Bente “Comparing Effort Estimates Based on Use

Case Points with Expert Estimates”, EASE 2002-Empirical

Assessment in Software Engineering, Keele, UK, April

8-10,2002.

[8] Mendes, Emilia, Mosley, Nile Counsell, Steve, “Do

Adaptation Rules Improve Web Cost Estimation?”

Proceedings of the fourteenth ACM conference on Hypertext

and hypermedia, August 2003.

[9] Cuadrado-Gallego, Juan J. Sicilia, Miguel-A´ngel Garre,

Miguel and Rodrı´guez, Daniel; “An empirical study of

process-related attributes in segmented software

cost-estimation relationships”, Journal of Systems and

Software, Volume 79, Issue 3, March 2006, Pages 353-361.

[10] Russell, Stuart and Norwig, Peter, Artificial Intelligence, a

modern approach, second edition, prentice hall, 2003.

[11] Tadayon, N. “Neural Network Approach for Software Cost

Estimation”, Proceedings of the International Conference on

Information Technology: Coding and Computing (ITCC‟05),

Volume 2, 4-6 April 2005, Page(s):815 – 818.

[12] Danny, Xishi Huang Ho, Luiz, Jing Ren, Capretz, F. “A soft

computing framework for software effort estimation”, Soft

Computing (2006) 10: 170–177, Springer.

[13] Tan, Hee Beng Kuan, Zhao, Yuan and Zhang, Hongyu

“Estimating LOC for Information Systems from their

Conceptual Data Models”, proceeding of the 28th

international conference on Software engineering, Pages:

321 – 330.

[14] Albrecht, A.J. and J.R. Gaffney “Software function, source

lines of code, and development effort prediction a software

science validation”, IEEE Transactions on Software

Engineering, Volume SE-9, Issue 6, Nov. 1983 Page(s):639 –

648.

[15] Costagliola, G. Ferrucci, F. Tortora, G. Vitiello, “Class

point: an approach for the size estimation of object-oriented

systems”, IEEE Transactions on Software Engineering,

Volume 31, Issue 1, Jan. 2005 Page(s):52 – 74.

