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ABSTRACT 
Software effort estimation is one of the most critical and complex, 

but an inevitable activity that takes place during the early stages of 

SDLC. Software size estimate is one of the most popular inputs 

for software effort prediction models. Providing a good size 

estimate for the purpose of accurately estimating the development 

effort is a challenging problem. During estimation activities, the 

uncertainty has become a part in software engineering 

measurements. The implementation of size proxy for effort 

estimation, which is associated with uncertainty, is a challenging 

task. In earlier study, there is a conceptual framework for 

developing size proxy, which addresses uncertainty by providing 

estimate as a probability density function instead of certain value. 

Even-though there are many estimation tools and size metrics, but 

none of the tool is provided as a service in cloud to addresses 

uncertainty issue satisfactorily. Here proposed a tool based 

approach by considering more predictors from various artifacts 

which can addresses the uncertainty issues and also providing tool 

as a service in cloud for users via a web browser. The tool 

provides output as a probabilistic value instead of certain value by 

considering more predictors and the results were encouraging. 

The tool is hosted by a vendor or service provider in the cloud and 

made available to customers over a network (typically the 

internet) having benefits like high adoption, lower initial costs, 

painless upgrades and seamless integration. 

Keywords 
Software Effort Estimation, Probabilistic Size Proxy, Pearson 

Correlation, Multiple Linear regression, Probability Density 

Function, Cloud Computing. 

1.  INTRODUCTION 
Software effort prediction are the basis for project bidding, 

budgeting and planning that takes place during the early stages of 

development life cycle. Delivering the software on time and 

within budget is a critical concern for many software 

organizations. Underestimating software cost can have 

unfavorable effects on the quality of the delivered software and 

may affect the company‟s business reputation and 

competitiveness. Overestimation of software cost is detrimental 

too. It can result in missed opportunities to fund in other projects 

and loss of project tenders [1]. 

Summarizing several classes of software cost estimation models 

and techniques as shown in Fig.1 parametric models, 

expertise-based techniques, learning-oriented techniques, 

dynamics-based models, regression-based models, and 

composite-Bayesian techniques for integrating expertise-based 

and regression-based models. Experience to date indicates that 

neural-net and dynamics-based techniques are less mature than the 

other classes of techniques, but that all classes of techniques are 

challenged by the rapid pace of change in software technology. 

The primary conclusion is that no single technique is best for all 

situations, and that a careful comparison of the results of several 

approaches is most likely to produce realistic estimates. 

Software engineering cost (and schedule) models and estimation 

techniques are used for a number of purposes. These include: 

Budgeting, Tradeoff and risk analysis, Project planning and 

control, Software improvement investment analysis. 

 
Fig 1: Types of Software Estimation Techniques 

 

In the rest of the paper, we use the term „„size proxy‟‟ for effort 

prediction rather than the term „„size metric‟‟ to emphasize that 

size is measured in a way merely to predict effort and not 

something else, e.g., understandability. It is essential to note here 

that the term „„proxy‟‟ is used to reflect that the „„size‟‟ is being 

used as a proxy for the „effort‟ and not the other way around. 

However, size estimates at the early stages of the development are 

the most difficult to obtain. Such estimates are often uncertain and 

the least accurate because very little detail is known about the 

project and the product at the beginning. 

The uncertainty arises due to the inability to consider all factors 

(henceforth we will use the term predictors instead of factors to 

convey the idea of them taking part in effort prediction) that would 

contribute to the size and effort of software; i.e., neglecting some 

predictors due to the lack of a complete theory on software size 

and effort, the impracticality to use all the known predictors that 

contribute to software size and effort, the uncertainty in the 

measurement itself, etc. Thus, there are many sources of 

uncertainty. 

Predicting the effort solely based on the number of use cases and 

the number of classes is expected to possess some error. The error 

value would reflect the amount of contribution of the neglected 

predictors. Accordingly, the error is not certain but rather 

probabilistic with non-zero standard deviation. Similarly, the 

information on use cases or classes could itself be uncertain, for 

example, the flow of events may not be accurate or subject to 

change. More-over, it is also possible that some use cases were 

overlooked or some extra use cases were added to the models. 

Furthermore, the way use cases are described may differ from one 

modeler to another. Clearly, it is not possible to just ignore these 

uncertainties. 

The above discussion motivated our research towards achieving 

early estimate of effort which can be as accurate as possible and 

account for uncertainty at the same time. In this paper, we present 

a tool based approach for the development of probabilistic size 

proxies for effort prediction; such proxies account for uncertainty 

and allow for better understanding and insight into estimates. The 
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idea is to consider a random error, e, that is assumed to be 

distributed with E (e) = 0 and Var (e) = r2 as part of the prediction 

model. 

Proxies developed using the proposed framework predict the 

development effort as a probability density function (pdf) rather 

than a certain value. They have advantages compared to 

traditional metrics in that none of the existing metrics consider the 

random error and corresponding residual variance within their 

measurements. 

A major difference here is that during the training step of the 

framework, training takes place on two different parts: mean effort 

and error standard deviation as explained later in the paper. Other 

approaches train for the mean effort only. It is important to note 

here that the proposed approach is different from other approaches 

when it comes to handling the error in estimation (a notable 

example is to use metric like Confidence Interval (CI), e.g. CI at 

95%). 

In a value added we are proposing a tool based approach which 

considers more predictors from various artifacts which can 

addresses the uncertainty issues and also providing tool as a 

service in cloud for users via a web browser. This is very 

important keeping in mind that different organizations may opt to 

develop different types of conceptual models early in the 

development lifecycle. The level of conceptual modeling done is 

based on many factors like the complexity of the problem, the 

do-main of the problem, the expertise of the modeling team. 

 

 
Fig 2: System Overview 

 

Client has to request for Effort Estimation Tool in private cloud, 

then cloud will check all credentials of user and then it allows user 

to access the tool. Now user has to send his XMI file through the 

GUI for tool. The proposed tool process as follow: extraction of 

metrics from received artifacts with the help of SDMetrics tool, 

selecting suitable predictors, training the functions of mean effort 

and standard deviation error using linear regression and 

generating equation with selected predictors. The EET provides 

output as a probabilistic value instead of certain value by 

considering more predictors for user. 

The EET is hosted by a vendor or service provider in the cloud and 

made available to customers over a network (typically the 

internet) having benefits like high adoption, lower initial costs, 

painless upgrades and seamless integration. We have conducted 

some experiments to develop a size proxy for effort prediction 

using our architecture. As a case study, we considered information 

from UML conceptual models available during the prediction 

activity. A major reason for using UML models is that UML is so 

popular and widely accepted in software industry. With 

object-oriented development becoming the de-facto in industry, 

UML‟s popularity has reached even new heights. Thus we believe 

that approaches based on UML will have high acceptability in the 

industry. 

The rest of the paper is organized as follows. Chapter 2 presents 

the related work on software effort estimation, size metrics and 

existing system. Chapter 3 presents system architecture for the 

development of software size proxies for effort prediction. 

Chapter 4 presents experiment design, validation, results. Finally 

in Chapter 5 we conclude by mentioning the contributions, 

limitations and some possible future work. 

2.  RELATED WORK  
This chapter presents our literature survey on software effort 

estimation techniques. Boehm et al. [2] provided a survey of 

software cost estimation techniques. They classified the software 

estimation techniques into six categories i.e. model based, 

expertise based, learning oriented, dynamics based, regression 

based and composite techniques. Their survey was more focused 

on the first category i.e. model based techniques. Briand and 

Wieczorek [3] provided a comparison study on different software 

cost/effort estimation techniques by classifying the techniques 

into two broad categories, "model based methods" and "non 

model based methods". As with the case of Boehm et al, their 

work was also mainly focused on model based techniques. Saliu 

and Ahmed [4] provided a survey on software effort estimation 

focusing primarily on soft computing based systems. Another 

good survey on effort estimation is provided by Pfleeger et el. [5]. 

We believe that our literature survey is an attempt to provide a 

more comprehensive study on effort estimation rather than just 

looking at individual works. 

Below we discuss the major software effort estimation techniques 

by broadly dividing them into four categories namely, “expert 

judgment”, “analogy”, “algorithmic models” and “models based 

on soft computing”. This classification is based on our own survey 

of different software effort estimating techniques and to follow 

our evaluation of these techniques. It should be noted that there is 

no agreed classification of software effort estimation techniques 

and the classifications are subjective [6] [7] [8] [9] [10] [11] [12]. 

In this section we discuss the prominent software size metrics 

found in the literature. First of all we discuss the metric Lines of 

Code (LOC) followed by Function Points (FP) and its various 

object oriented and non-object oriented variations. This is 

followed by discussion on Use Case Points (UCP), Class Points 

(CP), Vector Size Measure (VSM), Number Of Components 

(NOC), Object Point, Fast&&Serious and Predictive Object Point 

(POP) [13] [14] [15]. 

2.1 Existing System 
It is worth noting here discusses a conceptual framework that 

outlines a possible approach to tackle the issue but does not dictate 

specific settings of the parameters involved (e.g., the predictors to 

consider); rather, the parameters are   typically set   to suit the data 

available 

Presenting a conceptual framework for the development of size 

proxies, such size proxies inherently portray the probability 

distribution of the error associated with their corresponding 

computed effort estimates.  Such a portrayal allows associating a 

degree of confidence to the effort estimate for a given project. 

It is  important to  note, though, just present here a conceptual 

framework which outlines a possible  approach to  tackle the issue 

but does not dictate specific settings of the parameters involved 

(e.g., the predictors to consider); rather, the parameters are  

typically set  to  suit the data available. Given available historical 

data, practitioners can use the framework to develop a suitable 

size proxy for effort prediction. Clearly, the richer the historical 

data, the higher the confidence on the resultant size proxy. 

To  account for  the uncertainty, the framework  can  be  used to 

generate size  proxies, each of which  is  composed of two 

components: an  estimate and an error  (the term „residual‟ rather 

than error  is  used commonly is  statistics). 

The estimate represents the mean effort measurement computed 

using the predictors considered; whereas the error (i.e., residual 
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variance) represents the standard deviation that accounts for the 

uncertainty in prediction. 

It is important to mention here that the higher the standard 

deviation of estimate, the lower the confidence in the estimate; 

i.e., the higher the uncertainty in the computed estimate. 

 
 

Fig 3: A Conceptual Framework for Probabilistic Size Proxy 

3.  ARCHITECTURE DESIGN  
The main purpose of this design is to develop an Effort Estimation 

Tool which generates a probabilistic size proxy to predict effort 

required to develop a project in the early stages of software 

development life cycle. This tool can be used in real time 

scenarios for prediction activities, when they have conceptual 

diagrams for a future projects. The tool architecture can be used to 

convert artifact in to metrics extraction, training the size proxy, 

predict effort and produce a probability density function value. 

With this architecture the uncertainty issue will be solved 

satisfactorily. 

The extraction process inside the architecture can be done by 

using SDMetrics tool, selecting the suitable predictors can be done 

with the help of Pearson correlation, providing training to develop 

the size proxy by using linear regression technique and also 

provide results for different confidence intervals. 

 

 
 

Fig 4: Proposed Architecture for Probabilistic Size Proxy
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Step1: Metric value extraction: This component extracts the 

metric values from the current project for which the effort needs to 

be estimated. This component takes Project‟s conceptual models 

i.e. the UML artifacts along with any other project specific 

information like the technical factors affecting the project. 

Step2: Selection of metric and their values from past projects: 
This component selects the size proxy constituents i.e. the 

predictors for effort, based on the metrics whose values are 

available for the current project whose effort needs to be estimated 

and also based on the metrics for which we have information 

available for sufficient number of past projects in the database. 

Step3: Training of the size proxy: After selecting the predictors 

for effort estimation, the predictors along with their values are 

provided to the training component. The effort values for past 

completed projects are also provided to the training component 

from the database. The training component can use one of the 

different training techniques like regression, neural networks, 

genetic programming to train the function for mean (μ) and the 

standard deviation (σ) of the size proxy. 

Step4: Effort estimation: The trained functions for mean (μ) and 

standard deviation (σ) are provided to the effort estimation 

component. This component obtains the metric values for the 

current project from the component one and uses them in the 

functions for mean (μ) and standard deviation (σ) to provide the 

effort estimate as a PDF. 

3.1 Metrics Table Data 
Whenever user input xmi file through gui, the file will forwarded 

to SDMetrics tool. The tool analyzes the file; calculate metrics and 

then the results will be generated in the specified format as shown 

in below Table 3.1. 

The output file from SDMetrics tool has individual classes of a 

project and its metrics values. Now we have to calculate overall 

values for each and every predictor and store it in to another table 

as shown in below Table 3.2. 

Past projects data has been generated using simulation method. 

Each and every dependent and independent variables value has 

been generated and with the help of this data estimated μ can be 

calculated by using linear regression technique. In general, 

multiple regression procedures will estimate a linear equation of 

the form as shown in equation (1): 

 

Y = a + b1*X1 + b2*X2 +……. + bp*Xp   (1) 
 

Table: 3.1 SDMetrics Output File Format 

 

Name 
Num
Attr 

Num
Ops 

NumPub
Ops 

………
… 

MsgSelf 

Class 1 0 1 2  6 

Class 2 1 2 3  3 

      

Class n 2 3 5 ………… 4 
 

3.2 Estimated Mean Data  
Calculating mean equation with the help of linear regression, and 

the dataset structure is tabulated in Table 3-2 and formula is: 

Mean Estimated Effort (µeffort) = b0 +  (bi ×  Ai)𝑚
𝑖=1   (2) 

 
Where, 

 „m‟ = number of predictors (independent variables) 

„ bi ‟ = Beta coefficient for variable „i‟. 

            „ Ai ‟ = Independent/predictor variable „i‟ 

 

Table: 3.2 Input dataset structure for training mean effort 

P. No 
Dependent 

Variable 
(Effort) 

Independent 
Variable (A1) 

IV 
(A2) 

……… 
IV 

(Am) 

1 240 20 18  19 

2 350 30 14  15 

…………………….. 

N ….. ……. ….. ……… ……. 

3.3 Standard Deviation Data 
Each perturbated set/cluster number consists of number of 

projects as one set and also with their corresponding values. The 

data represented here has different independent variables and 

standard deviation of error estimate variable which is used for 

calculating the linear regression equation of standard deviation 

error along with mean error as of like in formulae (3).  

Mean error formula  

 

μ
error
i =

1

𝑁
 (Ej

i − μ
effort.j
i )

𝑁

𝑗=1

 

Where, 

μ (i) = mean error estimate for perturbed set „i‟. 

N = Number of projects in each perturbed set. 

E ij = Effort for perturbed project „j‟ in perturbed set „i‟ effort 

μi =  Estimated effort for project „j‟ in perturbed set i. 

σ (i) = Standard deviation of errors (μ) for the „N‟ projects in 

perturbed set „i‟. 

3.4 Standard Deviation of Error Estimate 

𝜎 𝑖 =   
1

𝑁
   𝜇𝑒𝑟𝑟𝑜𝑟

𝑖 −  𝐸𝑗
𝑖 − 𝜇𝑒𝑓𝑓𝑜𝑟𝑡 .𝑗

𝑖   
2

 𝑁
𝑗=1  

 

Where  

r (i) = standard deviation of error in estimation for 

perturbation set „i‟ 

  N = total number of projects in each perturbed set 

μ effort = mean error in estimation for perturbation set „i‟ 

  Ek = effortj for perturbed project „j‟ in perturbed set „i‟ 

  μ effort = estimated mean effort for project „j‟ in perturbed set 

i. 

3.5 Cloud Installation and Application 

Hosting 
The product features automated deployment of cloud stack and 

provided a convenient environment through portal for 

infrastructure request, application hosting, view usage and billing 

information and administrator users to manage their entire cloud 

environment and security administrators to monitor the security 

violations.  

Insert the Meghdoot DVD into the drive, restart your computer and 

boot from DVD by editing the BIOS setup. The screen appears 

with three options: 

 Start Meghdoot (BOSS CLOUD) Live 

 Install Meghdoot (BOSS CLOUD)-Graphical 

 Install Meghdoot (BOSS CLOUD)-Text Mode 

You can proceed with the default installation by clicking “Install 

Meghdoot (BOSS CLOUD) - Graphical” or “Install Meghdoot 

(BOSS CLOUD)-Text Mode”. 

(3) 

(4) 
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Fig 5: Output of SDMetrics Tool 

 

4. EXPERIMENTAL SETUP 

4.1 SDMetrics Tool 
The Fig 4.1 is the first and foremost step which is going to happen 

with the help of user. The user will connect to tool through web 

graphical user interface and give XMI file of a class diagram for a 

project. The SDMetrics tool will extract the metrics form that 

class diagram and stored in the form of table format as shown 

above fig 4.1. 

4.2 Correlation Table 
Pearson Correlation Coefficient is used, inorder to find out (linear) 

relationship between the two variables x and y. Based on the past 

data available in database, it retrieves data from database and 

finding pearson correlation between effort variable and all 

remaining variables. Table 4.1 shows correlation table: 

Table: 4.1 Correlation table based on Past Data 

 NC NA NP

M 

IFIm

pl 

Num 

Desc 

Nu

m 

Anc 

DIT 

Effort 

(Man-

Hours) 

0.98 0.99 0.99 0.98 0.28 0.97 0.98 

4.3 Size Metric 
The size metric is one of the main inputs used to find effort 

estimation. There it needs training to form a metric, so we are 

considering multiple linear regression as our training technique. It 

is a combination of mean, error and standard deviation form. 

Mean will calculate based on the past data, where as it will 

consider effort variable independent variable and all other 

remaining variables as dependent variables, so that we will get an 

intercept value and coefficients value to form a equation. Standard 

deviation will also calculate based on the past data, where as it will 

consider standard deviation error. 

First of all we need to calculate error value by considering 

difference between actual effort values and estimated mean effort 

values of past projects. We need to perform standard deviation 

error with the help of error value for all past projects. Consider 

standard deviation error value as independent variable and 

remaining variables as dependent variable to get intercept value 

and coefficients values. With the help of mean and standard 

deviation error values, the size proxy equation is formed. 

 

 

Eestimated = N [(311.39+ 05.84 * NC + 03.17 * NA + 05.04 * 

NPM + 00.15 * IFImpl + 00.70 * NumDesc + -01.02 * NumAnc + 

00.52 * DIT), (-13.08+ 02.59 * NC + -00.53 * NA + 00.46 * NPM 

+ -00.07 * IFImpl + 00.71 * NumDesc + 00.49 * NumAnc + 

-00.48 * DIT)] 

4.4 PDF Value 
Here we need to substitute the variables value from the user table 

database and it shows the values of mean and standard deviation 

error. Now we need to calculate Gaussian probability density 

function value by adding +/- of 1.96*SDE value to mean, so that 

we can get probabilistic value instead of certain value 

 

The Gaussian Probability Density Function Value is: 

  Eestimated = N [403.35, 10.99]  

Effort Estimate for the confidence interval of 95% is: 

E [381.80, 424.90] 

5. CONCLUSION AND FUTURE WORK 
A tool based approach for effort estimation was proposed, which 

can be used early in software development process. It is flexible to 

the amount of information available during estimation and does 

account for uncertainty by providing estimate as a Gaussian PDF. 

The Architecture was validated by creating instantiating size 

proxies consisting of different number of predictors and validating 

these size proxies using two different data sets. User has to request 

for Effort Estimation Tool in private cloud, then cloud will check 

all credentials of user and then it allows user to access the tool. 

Now user has to send his XMI file through the GUI to tool. The 

tool is hosted by a vendor or service provider in the cloud and 

made available to customers over a network (typically the 

internet) having benefits like high adoption, lower initial costs, 

painless upgrades and seamless integration, so that user can access 

from anywhere with the help of browser and does not require any 

additional resources. 

http://www.sdmetrics.com/
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5.1 Limitations and Future Work 

Following are some of the major limitations of our work along 

with proposed future works: 

 A major limitation of our work is the shortage of data. 

Shortage of data is a typical problem faced by research 

community in software engineering. Dataset one had data 

on 20 projects with simulation / trial and error. Thus 

validating the proxy using more data and preferable from 

industry projects is a definite future work. 

 The architecture may also be extended by adding steps to 

handle imprecision especially when using attributes having 

categorical values or inputs from expert. Fuzzy logic is a 

good choice to model imprecision in such cases. 

 Another possible future work is to use the intermediate size 

proxy by providing the non-singleton size measure to effort 

estimation models such as the one proposed by zeeshan. 

We used regression analysis to train our size proxy. Other training 

algorithms and techniques like ANN can also be used and the 

results can be compared. 
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