
International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT-2014)

8

Survey: Client Data Cache Invalidation Mechanism in

Trust based Wireless Mobile Networks

Amulya T

M.Tech Student, Dept of CS&E
AIT Chickmagalur

Adarsh M J
Asst. Professor, Dept of CS&E

AIT Chickmagalur

ABSTRACT
Mobile devices are the building blocks of mobile ad hoc

networks (MANETs). They are typically characterized by

limited resources, high mobility, transient availability, and

lack of direct access to the data source (server). In MANET

environments, data caching is essential because it increases

the ability of mobile devices to access desired data, and

improve overall system performance. In this paper client data

cache invalidation mechanism is proposed, it is a client-based

cache consistency scheme that is implemented on the top of a

previously proposed architecture for caching data items in

MANETs, namely cooperative and adaptive caching system

(COACS) [16]. It is a special node that cache the queries and

the address of the nodes that store the responses to these

queries. Previously a server-based consistency scheme i.e.,

smart server update mechanism (SSUM) was proposed which

is server based, where as in this paper client data cache

invalidation mechanism is proposed that is totally client-

based. Client data cache invalidation mechanism is a pull-

based algorithm that implements adoptive time to live (TTL),

piggy backing, and pre-fetching, and provides near strong

consistency capabilities, client data cache invalidation

mechanism is analyzed to assess the delay and bandwidth

gains (or costs) when compared to polling every time and

push-based scheme.

Index Terms -Cache consistency, data caching, MANET, TTL

1. INTRODUCTION
Wireless cellular systems are in use since 1980s. We have

seen their evolutions to first, second and third generation‟s

wireless systems [2]. Wireless systems operate with the aid of

a centralized supporting structure such as an access point.

These access points assist the wireless users to keep

connected with the wireless system, when they roam from one

place to the other.

The presence of a fixed supporting structure limits the

adoptability of wireless systems i.e., the technology cannot

work effectively in places where there is no fixed

infrastructure. So in order to advance, a new type of wireless

systems known as mobile ad hoc networks (MANETs) was

proposed. MANET network operate in the absence of fixed

infrastructure. It is an autonomous system of mobile nodes

connected by wireless links each node operates as an end

system and a router for all other nodes in the network. An ad

hoc network is a collection of wireless mobile nodes which

dynamically forms a temporary network without the aid of

any established infrastructure or centralized administration.

Mobile Ad Hoc Networks has become one of the most

prevalent areas of research in the recent years [3]. MANET is

the new emerging technology which enables users to

communicate without any physical infrastructure regardless of

their geographical location, that‟s why it is sometimes

referred to as an “infrastructure less” network. The

proliferation of cheaper, small and more powerful device

make MANET a fastest growing network. Mobile devices are

the building blocks of MANET. They are typically

characterized by limited resources, high mobility, transient

availability, and lack of direct access to the server also called

as the data source.

Data caching is one of the essential part of the MANET

environment because it increases the ability of mobile devices

to access desired data and it also improves the system overall

performances [1], [6], [7]. Usually in caching techniques i.e.,

in a caching architecture, several mobile devices cache data

that other devices frequently access or request. Data items that

mobile devices cache can be anything ranging from data base

records, web pages, ftp files, etc. Maintenance of data

consistency between the cache client and the data source is the

major issue that the client cache management concerns upon.

Hence, all cache consistency algorithms try to increase the

probability of serving from the cache data items that are

identical to those on the server [5]. To achieve strong

consistency, where cached items are identical to those on the

server, requires robust communication with the server to

renew (validate) cached items and by considering the limited

resource mobile devices, wireless environments they operate

in. Also, other than the strong consistency there exist different

consistency devices that describe the degree to which the

cached data is up to date and they are weak consistency, delta

consistency, probabilistic consistency and probabilistic delta

consistency.

In weak consistency, client queries might get served with

inconsistent (stale) data items, while in delta consistency

cached (stored) data items are stale for up to a period of times

and that period is denoted as delta. In probabilistic

consistency, a data item is consistent with the source with a

certain probability denoted as p. Finally, in probabilistic delta

consistency, a certain cached item is at most delta units of

time stale with a probability not less than p.

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT-2014)

9

The cache consistency can be grouped in to three main

categories i.e., push-based, pull-based and hybrid approaches.

Push-based mechanisms are mostly server-based, pull-based

approaches are client based. In push-based mechanism, server

informs the cache about the updates, where as in pull-based

Mechanism client asks the server to update or validate its

cached data. Finally in hybrid scheme, the server pushes the

updates or the client pulls them.

The pull model and the push model designate two well-known

approaches for exchanging data between two distant entities.

The Magazine metaphor is a simple illustration of these

models: if we want to read our favorite magazine every day,

you can either go and buy it every week, or subscribe to it

once and then receive it automatically at home. The former is

an example of pull, the latter of push. The pull model is based

on the request/response paradigm (called data polling, or

simply polling, in traditional SNMP-based network

management) the client sends a request to the server, then the

server answers, either synchronously or asynchronously. This

is functionally equivalent to the client “pulling” the data off

the server. The push model, conversely, is based on the

publish/subscribe/distribute paradigm. In this model, agents

first advertise what MIBs they support, and what SNMP

notifications they can send the administrator then subscribes

the manager (the NMS) to the data he/she is interested in,

specifies how often the manager should receive this data, and

disconnects. Later on, each agent individually takes the

initiative to “push” data to the manager, either on a regular

basis via a scheduler (e.g., for network monitoring) or

asynchronously (e.g., to send SNMP notifications).

The Time to live (TTL)-based algorithms are the best example

of pull based approaches. In TTL algorithm, TTL value is

stored alongside each data item „d‟ in the cache and „d‟ is

considered valid until „T‟ time units go by, since, the last

update. Such algorithms are popular in mobile environments.

Due to their simplicity, sufficiently good performance, and

flexibility to assign TTL values to individual data items and

also because of limited device energy and network bandwidth

and frequent device disconnections. TTL algorithms are also

completely client-based which require minimal server

functionality. From this perspective, TTL-based algorithms

are easier to deploy and are more scalable.

In this paper, a pull-based algorithm is introduced that

implements adaptive TTL, piggybacking, and pre-fetching,

which provides near strong consistency guarantees. Cached

data items are assigned adaptive TTL values that correspond

to their update rates at the data source. Expired items as well

as non expired ones but meet certain criteria are grouped in

validation requests to the data source, which in turn sends the

cache devices the actual items that have changed, or

invalidates them, based on their request rates. This approach,

which we call, distributed client cache mechanism works on

top of the COACS cooperative caching architecture.

In the rest of the paper, Section 2 discusses related work,

Section 3 discusses methodology and finally Section 4

finishes the paper with conclusion and future works.

2. RELATED WORK
Much work has been done in relation to cache consistency in

MANETs and also pull based approach. The data cache

consistency method proposed in [4], describes how caching of

frequently accessed data items will be an important technique

that will reduce contention on the narrow-bandwidth, wireless

channel. The cache individualization strategies will be

affected by the disconnection and mobility of the clients. The

server may no longer know which clients are currently

residing under its cell, and which of them are currently on. So

a different cache invalidation strategy was proposed that

helped to study the impact of client‟s disconnection times on

their performance. Also, a study was made with different

ways to improve the efficiency of the invalidation techniques.

The original IR approach is also proposed in this paper which

is mainly used in push-based mechanism along with IR,

several algorithms have also been proposed. These algorithms

include stateless schemes where, the server stores no

information about the client caches [7], [8], [9] and state-full

approach where the server maintains state information. This

paper mainly concentrates on server side modification and

over head processing. More crucially, the methods used in this

paper require the server to maintain some state information

about the MANET, which is costly in terms of bandwidth

consumption, especially in highly dynamic environments.

Mainly this paper concentrates on push based scheme but

client data cache invalidation mechanism on the other hand,

belongs to a different class of approaches.

In the subsequent work [10], the paper presents one of the

client polling systems where modern distributed systems

involving large numbers of non-stationary clients (mobile

hosts, MH) connected via unreliable low bandwidth

communication channels that are very prone to frequent

disconnections. This disconnection may occur because of

different reasons, The clients may voluntarily switch off (to

save battery power), or a client may be involuntarily

disconnected due to its own movement in a mobile network.

A mobile computing environment is characterized by slow

wireless links and relatively under privileged hosts with

limited battery power. Still, when data at the server changes,

the client hosts must be made aware of this fast in order for

them to invalidate their cache, otherwise the host would

continue to answer queries with the cached values returning

incorrect data. The nature of the physical medium coupled

with the fact that disconnections from the network are very

frequent in mobile computing environments demand a cache

invalidation strategy with minimum possible over heads. This

paper also provides a new client polling cache maintenance

scheme called AS. The objective of the proposed scheme is to

minimize the over head for the MHS to validate their cache

upon reconnection, to allow stateless servers, and to minimize

the bandwidth requirement. A cache validation request is

initiated according to a schedule determined by the cache.

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT-2014)

10

These are variants of such systems [11][12] that try to achieve

strong consistency by validating each data item before being

served to a query. In [11], each cache entry is validated when

queried using a modified search algorithm, where as in [12]

the system is configured with a probability that controls the

validation of the data item from the server as the neighbors

when required. Although client poll algorithms have relatively

low bandwidth consumption, their access delay is high

considering that each item needs to be validated upon each

request. Client data cache invalidation mechanism, on the

other hand, attempts to provide valid items by adapting expiry

intervals to update rates and uses pre-fetching to reduce query

delay.

Several TTL algorithms which were proposed for MANETs

were motivated by web caches research. These include the

adaptive TTL method [13]. As the web continues to explode

in size, caching becomes increasingly important, with

caching, comes the problem of cache consistency.

Conventional wisdom holds strong cache consistency, which

is too expensive for the web, and weak consistency methods

such as TTL are more appropriate. This paper compares three

consistency approaches adaptive TTL, polling-every-time and

invalidation. The result of this paper shows that the

invalidation performs similar to adaptive TTL, in terms of

network traffic, average client response times and server CPU

loads. Polling-every-time, on the other hand, leads to

significantly more network messages and higher response

times than adaptive TTL. Thus it is feasible to maintain strong

cache consistency for the web and invalidation is the right

approach for it. So a two tier lease-augmented invalidation

scheme that addresses the scalability issues in invalidation has

also been described. There are many limitations in this study.

In summary, the above approaches only provide shallow

integration of TTL processing into the cache functionality,

and none of them gives a complete TTL-based cache

consistency scheme for MANETs. Additionally, they do not

include mechanisms for reducing bandwidth consumption,

which is crucial in MANET environments.

3. METHODOLOGY
Mobile devices are the building blocks of mobile ad hoc

networks (MANETs). The system consists of a MANET of

wireless mobile nodes interested in data generated at an

external data source connected to the MANET using a wired

network (e.g., internet) via Wi-Fi Access Points (APs). Nodes

that have direct wireless connectivity to an AP act as

gateways, enabling other nodes to communicate with the data

source using multi-hop communication. For example, if cache

node (CN) access the server through a node (N) and also

through other cache node (CN), then it is said to be a gateway,

which is connected to the internet via the AP. The data

exchanged is abstracted by data items. The fig. 1 shows the

overview of client data cache invalidation mechanism basic

design.

Client data cache invalidation mechanism is a client-side

system that is able to scale too many types of provided

services. Client data cache invalidation mechanism fits more

naturally into the current state of the Internet with the

prevailing client/server paradigm, where clients are

responsible for pulling the data from the server, which in turn

maintains little state information and seldom pushes data to

them. Client data cache invalidation mechanism performs

similar or better than push-based approaches, while keeping

all the processing at the client side with little overhead.

Fig.1. Overview of client data cache invalidation

mechanism basic design.

The proposed system builds on top of COACS [15]. The

system has three types of nodes: caching nodes (CNs) that

cache previously requested items, query directories (QDs) that

index the cached items by holding the queries along with the

addresses of the corresponding CNs, and requesting nodes

(RNs) that are ordinary nodes. Any node, including a QD or a

CN, can be a requesting node, and hence, an RN is not

actually a special node, as it is only used in the context of

describing the system. One, therefore, might view the

employed caching system as a two layered distributed

database. The first layer contains the QDs which map the

queries to the caching nodes which hold the actual items that

are responses to these queries, while the second layer is

formed by the CNs.

Finally, it is worth mentioning that although our recently

introduced SSUM [14] client data cache consistency scheme

is also build on COCAS, it is a server-based approach,

whereas client data cache invalidation mechanism is

completely client-based. The goal of client data cache

consistency scheme is to improve the efficiency of the cache

updating process in a network of mobile devices which cache

data retrieved from a data server, without requiring the latter

to maintain state information about the caches. The proposed

system is pull-based, where the CNs monitors the TTL

information and accordingly triggers the cache updating and

validation process.

Client data cache invalidation mechanism is scalable by virtue

of the CNs whose number can increase as the size of the

network grows (each node can become a CN for an item it

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT-2014)

11

requests if not cached elsewhere in the network), and thus is

more suitable to dynamic MANETs than a push-based

alternative since the server does not need to be aware of CN

disconnections. Client data cache invalidation mechanism is

also more suitable when data requests are database queries

associated with tables and attributes. In a push-based

approach, the server would have to map a cached query to all

of its data sources (table attributes) and execute this query

proactively, whenever any of the sources is updated.

Moreover, client data cache invalidation mechanism adapts

the TTL values to provide higher consistency levels by having

each CN estimate the inter update interval and try to predict

the time for the next update and sets it as the items expiry

time. It also estimates the inter-request interval for each data

item to predict its next request time, and then pre-fetches

items that it expects to be requested soon.

4. CONCLUSION
A Client data cache invalidation mechanism is presented for

MANETs that use a special node to cache the queries and the

address of the nodes that store the responses to these queries.

The proposed mechanism makes use of pull-based algorithm

that pulls the data from server and stores it in the client cache

node. Also, it relies on estimating the inter update intervals of

data items to set their expiry time. It makes use of

piggybacking and pre-fetching to increase the accuracy of its

estimation to reduce both traffic and query delays.

For future work, first a more sophisticated TTL algorithms

needs to be investigated to replace the running average

formula. Then extending the preliminary work to secure the

data fetched from server as well as delivered to client from

cache node by applying cryptography algorithms.

5. REFERENCES
[1] Kassem Fawaz and Hassan Artail, “DCIM: Distributed

Cache Invalidation Method for Maintaining Cache

Consistency in Wireless Mobile Networks”, IEEE

Transactions on Mobile Computing, vol. 12, no. 4, April

2013.

[2] Priyanka Goyal, Vinti Parmer and Rahul Rishi,

“MANET: Vulnerabilities, Challenges, Attacks,

Application”, IJCEM International Journal of

Computational Engineering & Management, vol. 11,

January 2011.

[3] Pravin Ghosekar, Girish Katkar and Dr. Pradip

Ghorpade,” Mobile Ad Hoc Networking: Imperatives

and Challenges”, IJCA Special Issue on “Mobile Ad-hoc

Networks” MANETs, 2010.

[4] D. Barbara and T. Imielinski, “Sleepers and

Workaholics: Caching Strategies for Mobile

Environments,” Proc. ACM SIGMOD, pp. 1- 12, May

1994.

[5] M. Denko and J. Tian, “Cooperative Caching with

Adaptive Prefetching in Mobile Ad Hoc Networks,”

Proc. IEEE Int’l Conf. Wireless an Mobile Computing,

Networking and Comm. (WiMob ’06), pp. 38-44, June

2006.

[6] L. Yin and G. Cao, “Supporting Cooperative Caching in

Ad Hoc Networks,” IEEE Trans. Mobile Computing, vol.

5, no. 1, pp. 77-89 Jan. 2006.

[7] G. Cao, “A Scalable Low-Latency Cache Invalidation

Strategy for Mobile Environments,” IEEE Trans.

Knowledge and Data Eng., vol. 15, no. 5, pp. 1251-1265,

Sept./Oct. 2003.

[8] J. Jing, A. Elmagarmid, A. Helal, and R. Alonso, “Bit-

Sequences: An Adaptive Cache Invalidation Method in

Mobile Client/Server Environments,” Mobile Networks

and Applications, vol. 2, pp. 115-127, 1997.

[9] Q. Hu and D. Lee, “Cache Algorithms Based on

Adaptive Invalidation Reports for Mobile

Environments,” Cluster Computing, vol. 1, pp. 39-50,

1998.

[10] K.S. Khurana, S. Gupta, and P. Srimani, “A Scheme to

Manage Cache Consistency in a Distributed Mobile

Wireless Environment,” IEEE Trans. Parallel and

Distributed Systems, vol. 12, no. 7, pp. 686-700, 2001

[11] S. Lim, W.C. Lee, G. Cao, and C. Das, “Cache

Invalidation Strategies for Internet-Based Mobile Ad

Hoc Networks,” Computer Comm., vol. 30, pp. 1854-

1869, 2007.

[12] W. Li, E. Chan, D. Chen, and S. Lu, “Maintaining

Probabilistic Consistency for Frequently Offline Devices

in Mobile Ad Hoc Networks,” Proc. IEEE 29th Int’l

Conf. Distributed Computing Systems, pp. 215-222,

2009.

[13] P. Cao and C. Liu, “Maintaining Strong Cache

Consistency in the World-Wide Web,” IEEE Trans.

Computers, vol. 47, no. 4, pp. 445-457, Apr. 1998.

[14] K. Mershad and H. Artail, “SSUM: Smart Server Update

Mechanism for Maintaining Cache Consistency in

Mobile Environments,” IEEE Trans. Mobile Computing,

vol. 9, no. 6, pp. 778-795, June 2010.

[15] H. Artail, H. Safa, K. Mershad, Z. Abou-Atme, and N.

Sulieman, “COACS: A Cooperative and Adaptive

Caching System for MANETS,” IEEE Trans. Mobile

Computing, vol. 7, no. 8, pp. 961- 977, Aug. 2008.

