
International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT-2014)

1

Analysis of Effect of Varying Crossover Points on

Simple Genetic Algorithm (SGA)

Pradeep Kanchan

Dept. of Computer Science and Engineering
NMAM Institute of Technology

Nitte, India

Rashmi Adyapady R
Dept. of Computer Science and Engineering

NMAM Institute of Technology
Nitte, India

ABSTRACT

The genetic algorithm (GA) is an optimization and search

technique based on the principles of genetics and natural

selection. A genetic algorithm is a search method that can be

used for both solving problems and modeling evolutionary

systems. The concept of the proposed paper is taken from

simple genetic algorithm implementation using integer arrays

for storage of binary strings as a basic ingredient. The Simple

genetic algorithm (SGA) evaluates a group of binary strings

and it performs crossover and mutation operation, which is the

most important operation of genetic algorithm. SGA is

successful if the final average fitness value is more than the

initial average fitness value after crossover and mutation. This

proposed paper deals with varying crossover points and

observing its effect on SGA. Basically, the crossover point is

varied from 1 to n (where n<=2) and observe its effect on both

initial and final average fitness value. The probabilities of

crossover and mutation are also varied. Then the proposed

paper, Analysis of effect of varying crossover points on

simple genetic algorithm is compared with the simple genetic

algorithm implementation using integer arrays for storage of

binary strings. Experimental results show that the proposed

scheme significantly improves the performance of genetic

algorithm.

Keywords

Binary strings, fitness function, crossover, mutation, crossover

probability, mutation probability.

1. INTRODUCTION
Genetic algorithm (GA) is a heuristic technique used to solve

optimization problem. Optimization attempts to find the best

solutions for a given problem. GA‘s belong to the larger class

of evolutionary algorithms, which generate solutions to

optimization problems using techniques inspired by natural

evolution.

The basic techniques of the GA‘s follow the principles given

by Charles Darwin ―survival of the fittest‖. The GA aims to

produce ‗offspring‘ better than the parents. In every

generation, a new set of strings is created from the fittest of

the old; a new part is used for good measure. Genetic

Algorithms (GAs) are search algorithms based on the

mechanics of the natural selection process. The basic concept

is that the strong ones tend to survive and weak ones are left

out.

GA‘s have the ability to create an initial population of feasible

solutions. Each feasible solution is encoded as a chromosome,

and each chromosome is given a measure of fitness using

fitness function. The fitness of a chromosome determines its

ability to survive and produce offspring. A finite population of

chromosomes is maintained. Choosing a population size too

small increases the risk of converging prematurely to local

minima i.e., being stuck within neighboring set of strings. A

larger population has a greater chance of finding the global

optimum at the expense of more CPU time.

Genetic algorithm involves three types of operators: Selection,

crossover, and mutation.

Selection: This operator selects chromosomes in the

population for reproduction based on their fitness. The fitter

the chromosome, the more times it is likely to be selected to

reproduce relatively from the large number of initial

population.

Crossover: After the completion of selection process,

crossover operator randomly chooses a position and

exchanges the bits between two chromosomes (parent

chromosomes) to create two offspring (new chromosomes).

The crossover operator roughly imitates biological

recombination between two single chromosome organisms.

Mutation: Mutation is performed after crossover operation by

randomly choosing a chromosome in the new generation to

mutate. This operator randomly chooses a position and flips

some of the bits in the chromosome. Mutation can occur at

each bit position in a string with some probability.

The following steps are repeated until a solution is found:

1. Initially a large population of random chromosome is

 created. Let‘s say there are N chromosomes in the initial

 population.

2. Assign fitness to each chromosome using fitness function

 criteria. F(x) = x2

3. Select two fittest members (pair of parent chromosomes)

 from the current population.

4. Perform crossover and mutation.

5. Repeat step 3, 4 until a new population of N members has

 been created.

The SGA is said to be successful if the final average fitness of

the population after mating (crossover) is better than the

initial average fitness. Probability and randomness are also

essential parts of GA.

2. LITERATURE SURVEY

2.1 SGA Implementation using Integer

Arrays for Storage of Binary Strings
–Pradeep Kanchan, Rio D‘souza

Abstract—The Simple Genetic Algorithm evaluates a group

of binary strings based on their fitness, performs crossover

and mutation on them and tries to generate a group having

maximum fitness. The usual method used for SGA

implementation was by using character arrays for storage of

binary strings. In this paper, the authors have implemented the

SGA using integer arrays for storage of binary strings. Then,

the initial average fitness is compared with the final average

fitness so that the working of SGA can be verified.

http://en.wikipedia.org/wiki/Heuristic_%28computer_science%29
http://en.wikipedia.org/wiki/Evolutionary_algorithm

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT-2014)

2

The SGA implementation given by the authors:

i. Initially puts the chromosome into a pool to be

evaluated.

ii. Finds the decimal equivalent of the

chromosome and calculates its fitness based on

the fitness function criteria. F(x)=x2

iii. Selects the chromosomes to be mated, and

performs crossover and mutation operation.

Until the term condition is not reached. If the

new generation matches the acceptance criteria

they are added to the generation.

Specific Contribution—In this paper, the authors implement

the SGA algorithm using integer arrays. Generally, SGA was

implemented using character strings for representation of

chromosomes. But, this method had some disadvantages

because the storage space was limited. Also, this approach

works for bit strings of small length but not for bit strings of

larger length.

2.2 Evolving a Computer Program to

Generate Random Numbers using the

Genetic Programming Paradigm
–John R Koza

Abstract—This paper gives an idea that it is possible to use

genetic programming paradigm to breed a computer program

to perform the task of converting a sequence of consecutive

integers into pseudo-random bits with near maximal entropy

using a randomizer.

Steps given by author for breeding a randomizer:

i. To identify the set of terminals. The terminals

in the genetic programming paradigm

correspond to the input being genetically bred

to the computer program.

ii. To identify a sufficient set of functions for the

problem.

iii. To identify fitness function for evaluating how

good a given computer program is at solving

the problem at hand.

iv. Selecting the values of certain parameters. The

important parameter here is population.

v. Criterion for terminating a run and accepting a

result.

Specific Contribution—The goal of this paper was to

genetically breed a computer program to convert a sequence

of consecutive integers into a sequence of random binary

digits. This paper gives an idea of how to go about generating

random numbers. The Author gives the implementation of

SGA which makes use of random numbers (random bits 0 and

1) for the creation of a chromosome. Usually SGA involves

both crossover and mutation but in this paper mutation is not

done by the author. This paper stops the SGA when 51

generations are done.

2.3 Solving ISP Problem by using Genetic

Algorithm
–Fozia Hanif Khan, Nasiruddin Khan, Syed Inayatulla, Shaikh

Tajuddin Nizami

Abstract— The purpose of this study was to propose a new

representation method of chromosomes using binary matrix

and to use a new fittest criteria as a method for finding the

optimal solution for TSP. In this paper the authors are

introducing new fittest criteria for crossing over, and have

applied the algorithm on symmetric as well as asymmetric

TSP, also presented asymmetric problem in a new and

different way.

Steps of algorithm given by the authors:

i. Randomly create the initial population of

individual strings of the given TSP problem

and create a matrix representation of each.

ii. Fitness is assigned to each individual in the

population using fitness criteria measure. The

selection criteria depend upon the value of

strings if it is close to 1.

iii. By applying crossover and mutation operation

new offspring population of strings are created

from the two existing strings in the parent

population.

iv. If required the resultant off-springs are

mutated.

v. New offspring is called as parent population

and step (iii) and (iv) are continued until a

single offspring which will be an optimal or

near optimal solution to the problem is got.

Specific Contribution—In this paper authors have given a

procedure for solving TSP by using genetic algorithm. The

authors provided the fittest criteria and applied the algorithm

for symmetric as well as asymmetric TSP which is used to

solve the problem easily.

3. PROBLEM STATEMENT
The first step will be to implement the SGA algorithm. In the

paper [1], the effect of mutation and crossover is studied, but

the crossover points are not varied by the authors. This paper

deals with varying crossover points on SGA with crossover

and mutation probabilities. Basically, crossover points are

varied from 1 to n (where n<=2) and its effect on both the

initial and final average fitness value is observed. Hence the

effect of varying crossover points on SGA will be studied.

4. PROPOSED METHODOLOGY

4.1 Algorithm
1. Generate random population;

2. Evaluate initial fitness using fitness function;

3. Evaluate initial average fitness;

4. While (generation<max generation and CP<1 and MP>0)

5. selection of two individuals.

6. N-Point crossover(); //for N=1, 2

7. Mutation();

8. CP=CP+0.01;

9. MP=MP-0.001;

10. Form new population;

11. End while

12. Show max average fitness;

In the above algorithm, CP stands for crossover probability

and MP stands for mutation probability.

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT-2014)

3

4.2 Initial Design

Figure 1: Block Diagram of working of SGA

5. COMPARISON OF BOTH

ALGORITHM
For comparison and analysis, we used SGA implementation

using integer arrays for storage of binary strings and Analysis

of effect of varying crossover points (one point and two point

crossover) on simple genetic algorithm.

Table 1. Result of Paper [1]

Runs

SGA without probability variation

Pop

size

Max

gen

Initial Avg

Fitness

Final Avg

Fitness

1

50 10 279.7 897.8

2

100 10 306.33 882.51

3

200 50 318.275 941.345

4

200 100 296.245 929.495

5

300 100 313.7833 928.7933

Table 2. Result for One Point Crossover

Runs

Analysis of effect of varying crossover points

on SGA with probability variation for one

point crossover

Pop

size

Max

gen

Initial Avg

Fitness

Final Avg

Fitness

1

50 10 7265.98 20401.66

2

100 10 12185.85 37354.31

3

200 50 29123.06 88209

4

200 100 28270.36 88209

5

300 100 53423.89 158404

Table 3. Result for Two Point Crossover

Runs

Analysis of effect of varying crossover points

on SGA with probability variation for two

point crossover

Pop

size

Max

gen

Initial Avg

Fitness

Final Avg

Fitness

1

50 10 6136.1 21073.18

2

100 10 12573.27 37721.41

3

200 50 29272.01 89401

4

200 100 29045.33 89401

5

300 100 56491.15 159201

Figure 2: SGA without variation in probabilities

Figure 3: Analysis of effect of varying crossover points on

SGA with probability variation for One Point Crossover

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT-2014)

4

Figure 4: Analysis of effect of varying crossover points on

SGA with probability variation for Two Point Crossover

We observe from all the above graphs that the Analysis of

effect of varying crossover points on SGA with variations in

probabilities for both One Point Crossover and Two Point

Crossover works more efficiently as compared to the SGA

without variations in probabilities.

6. CONCLUSION
In this paper, we have placed more emphasis on varying

crossover points on simple genetic algorithm. Basically, the

crossover point is varied from 1 to n (where n<=2) and its

effect on both the initial and final average fitness is analyzed.

Then, Analysis of effect of varying crossover points on simple

genetic algorithm is compared with the paper [1].

In the paper [1], the crossover points are not varied by the

authors. In the proposed paper, the crossover points are varied

such as one point crossover and two point crossover with

crossover and mutation probabilities and its effect on the final

average fitness is analyzed. We have seen that the fitness

increases as crossover probability increases and mutation

probability decreases. We have come to the conclusion that

the final average fitness value after the crossover (one point

and two point) is more than the initial average fitness value.

Experimental results show that the proposed scheme

significantly improves the performance of genetic algorithm

and its better than paper [1].

7. ACKNOWLEDGMENT
I would like to thank my project guide Mr. Pradeep Kanchan.

I extend my thanks to my H.O.D, Mr. Prasanna Kumar H. R.

and Principal, Dr. Niranjan N. Chiplunkar. I thank the

almighty, my parents, and friends for their constant

encouragement.

8. REFERENCES
[1] Kanchan, Pradeep, D‘souza Rio, ―SGA implementation

using integer arrays for storage of binary strings‖,

International Conference on Machine Learning and

Computing (ICMLC), 2010.

[2] Koza, John R., ―Evolving a computer program to

generate random numbers using the Genetic

Programming paradigm‖, Proceedings of the Fourth

International Conference on Genetic Algorithms, 1991.

[3] Khan, Fozia Hanif, Khan, Nasiruddin, Inayatulla, Syed,

Nizami, Shaikh Tajuddin, ―Solving ISP problem by using

Genetic Algorithm‖, International Journal of Basic &

Applied Sciences IJBAS-IJENS, Vol:09 No:10.

[4] Koza, John R., ―Genetic Programming: A paradigm for

genetically breeding populations of computer programs

to solve problems‖, Proceedings of the 2nd International

IEEE Conference on tools for Artificial Intelligence,

1990.

[5] Mitchell, Melanie, ―An Introduction to Genetic

Algorithms‖, 1998 :Prentice Hall.

[6] Goldberg, David E., ―Genetic Algorithms in search,

Optimization and Machine Learning‖, 1989 :Addison-

Wesley.

[7] Davis, L., ―Genetic algorithms and simulated annealing‖,

1987 :Pittman.

[8] Holland, J. H., ―Adaptation in natural and artificial

systems‖, 1975 :University of Michigan Press.

