
International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

5

Security Deliberations in Software Development

Lifecycle

S. Shanmuga Priya

J.J. College of Engineering and Technology
Tiruchirappalli, Tamilnadu

P. D. Sheba Keiza Malarchelvi
J.J. College of Engineering and Technology

Tiruchirappalli, Tamilnadu

ABSTRACT

Security is a serious problem in software development which

when not taken into consideration, exploits vulnerabilities in

software. Such security related problems need to be

addressed as early as possible while building software.

Security problems exist for many reasons. A major thing is

that, software cannot resist security attacks. Software security

vulnerabilities are often caused due to the flaws that might be

in specification, design, implementation or testing. These

flaws are unknowingly injected by the software developers

during development or left unnoticed by the software testers

while testing for defects in software. This requires that

developers and testers use methods that consistently produce

secure software, which results in a defect less product.

Security must be integrated into the software development life

cycle from the beginning and must persist until the product is

in use. This paper brings out the security deliberation that

have to be paid due attention in the various phases of software

development life cycle while developing a software.

Keywords
Software Development Life Cycle, Requirements, Design,

Development, Threat Modeling, Security Testing.

1. INTRODUCTION
As computer‟s rule the modern world, software‟s become

inevitable. The software‟s are developed in large – scale

which results in low quality, high cost, and unreliable product

that fail to meet the end user requirements. Mainly much of

the developed software fails to look into the security issues

that happen in real time which results in a defective product.

People use software bearing in mind that it is reliable, can be

trust upon and the operation they perform is secured.

Application security deals with the protection of software

after it‟s built, whereas software security is a process of

designing, building and testing software for its security.

Testing software for its correct functionalities is an essential

routine that is carried out in any software built. In practice,

security goes unnoticed that results in several undesired

functionalities and such product vanishes from the software

market in a shorter span. As in practice, the security

considerations in software has always been addressed only in

the production environment and henceforth security is always

considered to be a non-functional requirement. Sometimes,

this might result in serious causes which lead the product to

failure.

In order to overcome the security defects in any software, the

stakeholders must also think at right time about the required

security solutions that a product must satisfy. The right time

could possibly be the initial phase of the software

development life cycle and must be followed in the

subsequent phases too that could result in high quality, low

cost, least effort and defect less product built on-time. The

formal software development life cycle (SDLC) techniques

include requirement analysis and gathering, designing,

developing, testing, deployment and maintenance of the

software. Whatever the software process methodology that

has been chosen, security issues have to be thought of and

suitable security solutions have to be incorporated right from

the initial phase of the software development life cycle. In this

paper, the security considerations to be addressed in the

software development life cycle are presented.

1.1 Software Security Rules
 In [1] Banerjee and Pandey, has given twenty one security

rules which if practically applied from the beginning of SDLC

i.e., from requirement analysis phase will certainly make

room to produce secure and reliable development of software.

All the stakeholders who involves in developing the software

must obey these rules to ensure that vulnerabilities are not

introduced into the software system. The rules are:

i) Rule of Awareness - The rule suggests a constant

acquisition of new information and updating the existing

knowledge relating to security aspect for the software

development team which includes software architecture,

software developers and software testers [2].

ii) Rule of Prevention - The rule suggests that the security in

software must be synchronized in such a way that it must be

able to prevent any kind of threat from internal as well as

external source rather then let it happen and later on cure it.

iii) Rule of Accountability - The rule of accountability

suggests that a log needs to be maintained for all the

tasks/activities/acts performed during an operation/action with

the purpose of prevention of the security policy violations and

enforcement of certain liabilities for those acts [3].

iv) Rule of Confidentiality - The rule suggests that

confidentiality must be maintained by ensuring that

information is not accessed by unauthorized persons [4].

v) Rule of Integrity - The rule suggests that integrity must be

maintained by ensuring that information is not altered by

unauthorized persons in a way that is not detectable by

authorized users [4].

vi) Rule of Availability - The rule states that a balanced

approach needs to be maintained between security and

availability providing a system that is highly secure and

available at all the times [5].

vii) Rule of Non-repudiation - The rule states that the

objective of non-repudiation is to ensure undesirability of a

transaction by any of the parties involved where a trusted third

party can play an important role [5].

viii) Rule of Access Control - The rule suggests that access to

resources and services must be permission based and the user

if given permission must be permitted/allowed to access those

resources and services and these eligible users must not be

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

6

denied access to services that they legitimately expect to

receive [4].

ix) Rule of Identification & Authentication – The rule

suggests that the process of identification and authentication

must be implemented to determine who can log on to a system

and their legitimate association which various users with

respect to their granted access rights [6].

x) Rule of Accuracy - The rule suggests that the software

development team must perform the various actions,

activities, methods, process & tasks correctly and accurately

every time [2].

xi) Rule of Consistency - The rule suggests that the various

requirements, protocols or standards or policies designed for

securing the software system must be consistent in any case.

xii) Rule of Authorization – The rule suggests that the process

of authorization must be implemented to determine what a

subject can do on the system.

xiii) Rule of Privacy - The rule states that privacy can ensures

that individuals maintain the right to control what information

is collected about them, how it is used, who has used it, who

maintains it, and what purpose it is used for [4].

xiv) Rule of Assessment/Evaluation - The rule suggests that

each and every process irrespective of size must be evaluated

and assessed after it has been created by the software

developer [2].

xv) Rule of Excellence - The rule suggests that security is a

subset of quality and the control and variability of the security

features will depend on the quality [2].

xvi) Rule of Flexibility - The rule suggests that the various

requirements regarding security must not be rigid and must be

flexible as well as realizable [2].

xvii) Rule of Fortification (Protection) – The rule suggests

that the various process used in security engineering process

must be secured in individuality and totality [2].

xviii) Rule of Unambiguity - The rule suggests that for easy

implementation of software security, the details pertaining to

it must be clear and concise [2].

xix) Rule of Error Classification - The rule suggests that

errors must be categorized & classified according to a schema

containing a set of security rules for better understanding of

the problem which might have an impact on the security of

the software [7, 8].

xx) Rule of Auditability - The rule suggests that auditability

must be implemented to judge the accountability feature of

software security and aids in redesign a full proof security

policy and procedures for implementing a secure software

system [9].

xxi) Rule of Interoperability - This rule suggests that if more

software are interacting or communicating with each other

then all the software involved in the interaction or

communication must be secured.

 The organization of the paper is as follows. Section 2

explains the Security Requirement Elicitation. Section 3

highlights Design Level Security. Section 4 describes the

Security Development Considerations. Section 5 elaborates

on Security Testing. Section 6 gives the Conclusion.

2. SECURITY REQUIREMENT

ELICITATION
Requirement Engineering is the main building block for any

software. Requirement gathering phase in SDLC is considered

to be the most important and serious one, as this phase

directly deals with the customer. Security requirements can

vary, depending on the system construction purpose.

Traditionally security requirements have been considered to

be “nonfunctional” or “quality” requirements like reliability,

scalability, robustness etc. Usually security requirements are

prepared after a product is finished and sold, that leads to

software vulnerabilities. The requirement elicitation activity

involves interaction with the customer to discover, confirm,

document and analyze the requirements. This phase is the key

and base to the rest of the phases in SDLC, which when made

a strongest foundation, the other phases could be built

securely that result in a quality product.

 The software security requirements are intended to be: (a)

Testable and verifiable (Functional Security Requirements are

testable whereas Non – Functional Security Requirements are

non testable), (b) Clear, concise and non-ambiguous, (c)

Implementable by software engineers even without security

knowledge, (d) Capable of preventing modern software

vulnerabilities when used correctly in development.

2.1 Categories of Security Requirements
In [11] Paco Hope and Peter White have classified security

requirements into three categories as: Functional Security

Requirements is a security related description that is

integrated into each functional requirement. Typically, this

also says what shall not happen. This requirement artifact can,

for example, be derived from misuse cases. Non – Functional

Security Requirements lists the properties that are security

related architectural requirements, like "robustness" or

"minimal performance and scalability". This requirement type

is typically derived from architectural principals and good

practice standards. Derived Security Requirements is derived

from functional and non-functional security requirements.

In [12], Malik Imran Daud, has categorized the security

requirements as: i) Functional Security Requirements, ii) Non-

Functional Security Requirements, iii) Derived Security

Requirements, iv) User Stories (Mainly used for developing

Agile Software), and v) Abuse Case.

2.2 Steps for Security Requirement

Elicitation
According to Kotonya .G and Sommerville .I [13], have given

the requirement engineering process which includes activities

as: i) Requirement Elicitation ii) Requirement Analysis and

Negotiation, and iii) Requirement Validation

In [14], Asoke K. Talukder et al. has given 8 steps for security

requirement elicitation which are as follows:

Step 1: Identify Assets

Step 2: Functional Requirements

Step 3: Security Requirements

Step 4: Threat and Attack Tree

Step 5: Rate the risk

Step 6: Decision on In-Vivo vs In-Vitro

Step 7: Non-functional Requirements

Step 8: Iterative – which insists that the step 1 through 7 can

be repeated until it‟s identified that all the security

requirements are collected.

2.2.1 Kinds of Security Requirements
In [15] Donald G. Firesmith has given the kinds of security

requirements as: i) Identification Requirements, ii)

Authentication Requirements, iii) Authorization

Requirements, iv) Immunity Requirements, v) Integrity

Requirements, vi) Intrusion Detection Requirements, vii)

Non-repudiation Requirements, viii) Privacy Requirements,

ix) Security Auditing Requirements, x) Survivability

Requirements, xi) Physical Protection Requirements and xii)

System Maintenance Security Requirements

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

7

2.3 Threat Modeling for Security

Requirement Elicitation
In [16] Suvda Myagmar et al. proposed how threat modeling

can be used as a foundation for the specification of security

requirements. Threat modeling involves understanding and

identifies the various threats to a system. During gathering

and analysis of security requirements, these threats were

analyzed that makes decisions whether to mitigate or accept

the risk associated with the threat. The threat modeling and

security requirement identification could provide basis for the

rest of the security system phases. In [17], Lee M. Clagett

gave the threat modeling process which starts by identifying

the assets of a system, and potential threats to those assets. A

threat exists when an entry point leads to the access of an

asset. Attacks to achieve that threat can be illustrated using

different diagrams. For example, a system may store

passwords which are an asset to an adversary, and the threat is

that an adversary steals those passwords. A diagram would

then be made to represent the different attacks that could

achieve the threat of stolen passwords. Once the diagram is

complete, it highlights the areas that need mitigation to

prevent the overarching threat from being realized. Any attack

that is not mitigated, or is mitigated improperly, has a

vulnerability that could be exploited to gain access to the asset

that the system protects.

2.4 Modeling Security Requirements with

Abuse Cases
In [18], Chun Wei (Johnny) Sia, stated that the misuse and

abuse cases could be used to elicit security requirement at the

earliest. Business Analyst must analyze the business, identify

critical assets and security services, identify vulnerabilities

and must analyze misuse case to propose security requirement

mechanisms. An abuse case is a use case where the results of

the interaction are harmful to the system, one of the actors, or

one of the stakeholders in the system. An interaction is

harmful if it decreases the security (confidentiality, integrity,

or availability) of the system.

In [19], Martyn Fletcher et al. have proposed how to

effectively combine functional and security requirements, the

interactions and iterations that is needed between functional

and non-functional requirement processes to meet the

objectives of Distributed Aircraft Maintenance Environment

(DAME) system. The requirement process must focus on

things: i) Functional Requirements in that consider the system

as „Black box‟, ii) Asset concerns, iii) Consider non-

functional goals of the system, and iv) Identify the threat

environments by identifying the potential attackers of the

system.

2.5 Difficulties in Security Requirements

Gathering
i) Security is constantly changing.

ii) Software security requirements must be stated in a

positive tone.

iii) Software security requirements must be language

and platform independent.

iv) Software security requirements must be testable and

verifiable for the development process to work.

v) A project may only require some software security

requirements, but not all.

3. DESIGN LEVEL SECURITY
The design phase falls next to requirement elicitation. In this,

the architects, developers and designers make a complete

study on the requirements specification, and they propose

secure design elements, software architecture, secure design

review and conduct threat modeling as per the requirements

specified. Design phase typically intend the functionalities

and follows as per the specifications given by the customers.

The designer prepares a design specification which is very

technical focusing on how to implement the system. The

functional and non-functional requirement specifications are

needed to describe the system‟s security features.

3.1 Security Design Principles
There are various security design principles in existence

which provides guidelines on how to design a secure system.

Security design guidelines must be known in before hand and

can be incorporated them in advance in SDLC. The Security

Design Principles as described by Saltzer and Schroeder [21]

are:

i) Principle of Least Privilege: Subject must be given

privileges that are necessary for completing its task and

those rights must be discarded after use.

ii) Principle of Fail-Safe Defaults: This principle means that

the default is lack of access permission. The protection

scheme identifies conditions for which access permission

could be granted. If action fails, system as secure as when

action begins.

iii) Principle of Economy of Mechanism: Keep the design

mechanisms as simple as possible, called as KISS

principle.

iv) Principle of Complete Mediation: Every access must be

checked and ensured if they are authorized to enjoy the

privileges.

v) Principle of Open Design: Design must not be secret. The

security mechanisms must be independent on the

ignorance of potential attackers, but rather on the

possession of specific, more easily protected by using

passwords or other security implementations.

vi) Principle of Separation of Privilege: Requires multiple

conditions and to grant privilege that do not depend on a

single condition.

vii) Principles of Least Common mechanism: Insists that the

mechanism must not be shared. If shared, every shared

mechanism represents a possible information path

between users and must be designed with great care to be

sure it does not unintentionally compromise security.

viii) Principles of Psychological Acceptability: Adding

security mechanisms especially in the human interface

must not produce additional complexity to the system

and the correct protection mechanisms must be applied

automatically.

3.2 Threat Modeling for Design Level

Security
Threat modeling is an iterative process for modeling security

threats and identifies design flaws that can be exploited by

these threats so that systems can be securely designed and

countermeasures implemented to mitigate these threats. Even

though the threat modeling can be added in every phases of

SDLC, it‟s considered essentially in designing phase. The

system, at design time, allows system architects to validate

and discover whether the design meets the level of acceptable

risks. Flaws in the design can be exposed, and the information

thus gathered is used to improve the security quality of the

design before the system is ever implemented. The designers,

program managers and architects could participate in threat

modeling.

http://www.andrew.cmu.edu/course/95-750/docs/CaseModels.pdf
http://securesoftwaredev.com/security/confidentiality/
http://securesoftwaredev.com/security/integrity/
http://securesoftwaredev.com/security/availability/

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

8

The major advantages of threat modeling in design level

security are it identifies the security problems, investigates

potential threats and vulnerabilities, helps in planning for

security tests depending on the identified threats, helps in

reducing the software support costs by identifying

vulnerabilities during design and development, as when the

product gets into production, security defects might be

reduced considerably.

3.3 Systematic Approach to Create a

Threat Model
In [22] Meier J. D. et al. proposed five major threat modeling

steps as follows which is an iterative approach that could be

used through out the development life cycle to discover more

about the design. The Fig. 1 shows the iterative threat

modeling process.

Fig. 1 The iterative threat modeling process [22]

The five threat modeling steps are:

Step 1: Identify security objectives. On identifying the

security objectives clearly, focus on the threat modeling

activity that helps to analyse the amount of effort that is need

to spent on subsequent steps.

Step 2: Create an application overview. This step helps to list

out the important characteristics of an application which helps

to identify the relevant threats used during step 4.

Step 3: Decompose your application. A detailed application

study and understanding the mechanism of the application

makes it easier to uncover detailed threats.

Step 4: Identify threats. Use details from steps 2 and 3 to

identify threats relevant to your application scenario and

context.

Step 5: Identify vulnerabilities. Review the layers of your

application to identify weaknesses related to your threats. Use

vulnerability categories to help you focus on those areas

where mistakes are most often made.

 In [10], Shawn Hernan et al. proposed threat modeling using

STRIDE acronym for Spoofing identity, Tampering,

Repudiation, Information disclosure, Denial of service and

Elevation of privilege was mapped to the security policies and

guards against them. The mapping is shown in the Table 1:

Table 1 Mapping of Threat to Security Policies

Threat Security Policy (Property)

Spoofing Authentication

Tampering Integrity

Repudiation Non-Repudiation

Information disclosure Confidentiality

Denial of service Availability

Elevation of privilege Authorization

The STRIDE model with Threat Modeling helps in

identifying designing flawless in software architecture. The

DFD or use case diagrams can be used in designing, which

depicts the flow of system. Vulnerability analysis is also an

important part in security design phase which can occur in any

phase of SDLC.

3.4 Security Patterns for Design Phase
In [23], Joseph Yoder and Jeffrey Barceló were first to adapt

design patterns for information security. It is easy to

document what the system is required to do and difficult in

identifying to list out what the system is not supposed to do.

They proposed security design patterns for information

security. The security patterns are:

i) Single Access Point: Providing a security module and a way

to log into the system. This pattern suggests that keep only

one way to enter into the system.

ii) Check Point: Organizing security checks and their

repercussions. Authentication and authorization are two basic

entity of this pattern.

iii) Roles: Organizing users with similar security privileges.

iv) Session: Localizing global information in a multi-user

environment.

v) Full View with Errors: Provide a full view to users,

showing exceptions when needed.

vi) Limited View: Allowing users to only see what they have

access to.

vii) Secure Access Layer: Integrating application security

with low-level security.

viii) Least Privilege: Privilege state must be shortest lived

state.

ix) Journaling: Keep a complete record of usage of resource.

x) Exit Gracefully: Designing systems to fail in a secure

manner.

At the end of the design, the attack surface is analyzed. If the

attack surface area is high, above process is repeated until the

attack surface is reduced to the minimum level.

In [24], Nobukazu Yoshioka et al. proposed security patterns

in terms of security concepts for each phase of software

development. They have also shown the patterns for

requirement phase, design phase and implementation phase

and described the achievements of researches on utilizing

those proposed security patterns, including methodologies to

develop secure software systems on adopting those security

patterns.

3.5 Design Review
The Project Manager oversees periodic system design reviews

of the system functions, performance requirements, security

requirements, and platform characteristics. A

system/subsystem design review is held at the end of the

design phase to resolve open issues regarding one or more of

the system-wide or subsystem-wide design decisions and

architectural design of a software system or subsystem

A software design review is held at the end of the design

phase to resolve open issues regarding one or more of the

following: i) Software-wide design decisions, ii)

Architectural design of a software item, and iii) Detailed

design of a software item or portion thereof (such as a

database) .

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

9

4. SECURITY DEVELOPMENT

CONSIDERATIONS
A well secured architecture produced by using threat

modeling provides good guidelines during development

phase. During the implementation phase, the product team

codes, tests, and integrates the software. Provided a good

security requirements and designing details, but poorly coded,

leads to vulnerabilities which results in non-secure software as

end product that is undesirable. The threat modeling of

designing phase provides important guidance during the

implementation phase. Developers pay attention to ensure the

correctness of code that mitigates high-priority threats and

testers focus their testing on ensuring that such threats are

blocked or mitigated. In addition to these, the developer must

constantly monitor the security requirements and upgrade it in

implementation in order to produce an up to date product.

4.1 Implementation Elements of Secure

Development Life Cycle
In [25], Steve Lipner and Michael Howard gave the elements

of Secure Development Life Cycle that can be applied in the

implementation phase. The coding standards help developers

to avoid flaws being injected to the software that can lead to

security vulnerabilities. Apply security-testing tools including

fuzzing tools provides structured but invalid inputs to the

software being developed to maximize the error detection that

might lead to software vulnerabilities. Apply static-analysis

code scanning tools can be used to detect some kinds of

coding flaws that result in vulnerabilities, including buffer

overruns, integer overruns, and uninitialized variables. These

tools can assist in discovering the vulnerabilities which needs

special attention. Code reviews supplement automated tools

and tests by applying the efforts of trained developers to

examine source code for detecting and removing potential

security vulnerabilities. They are a crucial step in the process

of removing security vulnerabilities from software during the

development process.

In [26], Agrawal and Khan gave a software vulnerability

detection and analysis framework (SVDAF) which is

independent to development life cycle. The proposed

framework concentrates on vulnerability analysis that analyse

vulnerable inputs at each phase and reports vulnerabilities that

can be sent as a feedback in the software life cycle that the

vulnerable inputs could be modified to secure outputs.

Security Checklists of various SDLC phases were also listed

that could be cross checked for all the phases which when

followed could result in a secured software.

The developer can test the code in the development

environment. While testing, developer can play the role of an

attacker and test the code by giving invalid inputs which

breaks the security of the system being developed. As well as

the developer can play the developer role and could make the

code tightly secure to prevent the attackers intruding the

system.

5. SECURITY TESTING
Security testing must not concentrate on whether the

developed system satisfies the documented requirements

alone and must try to work beyond it to cover the full aspect

of the system intended to build. Software security testing

must essentially be risk-based rather than requirement based.

It is difficult to find security bugs in developed software. For

example, buffer overflow problems which occur during

construction phase (if bound checking is not done in code)

often remain invisible during standard testing. Lack of

awareness about security in most developers and

unavailability of proper approach for secure software

development are also big reasons why security bugs generated

that remain undetected. Applying security from starting stages

is more costly approach in maximum software development

that‟s why companies and customer are not concentrating

about security issues and security bugs remain undetected.

5.1 Methods of Security Testing
 Two major methods of security testing are: i) Functional

Security testing which is adopted to check whether the

software behaves according to certain specific functional

requirements as expected. ii) Risk-based Security testing that

addresses the negative requirements that are expected, what

the software must not do. Negative test requirements are also

derived from the risk analyse and tests are conducted to cover

it. During software security testing, Test Case, Test Plan and

Test Suite can be generated in a way as it could cover both

functional security testing and risk-based testing inputs.

Malik Imaran Daud [12] has proposed few other testing

methods. They are: a) Penetration Testing that is performed

to find out the vulnerabilities in the software. The

vulnerabilities when discovered must be viewed seriously and

counter measures can be implemented. The various

penetration testing are: i) Target Testing, ii) External Testing,

iii) Internal Testing, iv) Blind Testing, and v) Double Blind

Testing. b) Fuzz Testing which is implemented by tools called

fuzzers that are programs or scripts which submits some

combination of inputs to test a system.

Gu Tian-Yang et al. [27] have proposed several methods of

security testing as i) Formal security testing, ii) Model-based

security testing, iii) Fault injection-based security testing, iv)

Fuzzy testing, v) Vulnerability scanning testing, vi) Property-

based testing, vii) White box-based security testing, and viii)

Risk-based security testing.

Fig. 2 Types of code analysis

 Fig. 2 shows the basic types of code analysis. Static Code

Analysis involves pre-compiled source code to be evaluated

for conformance to identify security requirements whereas

dynamic code analysis is performed on post-compiled source

code that is actually running which is capable of identifying

defects on codes while it is actually executed.

There are two ways of testing that are manual or automation.

Manual testing carried out by the testers. Testers test the

software manually for the defects. It requires a tester to play

the role of an end user and use most of all features of the

application to ensure its correct behavior. They follow a

written test plan that leads them through a set of important test

cases [28]. The problems with manual testing are, it is very

time consuming process, not reusable, has no scripting

facility, great effort required, and some errors remain

uncovered [29].

Automation testing covers all the problems of manual testing.

Automation testing automates the steps of manual testing

using automation tools such as QuickTest Pro (QTP) and Test

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

10

Complete (TC). It increases the test execution speed, more

reliable, repeatable, programmable, comprehensive and

reusable. Hence this testing process must be done very

efficiently. There must be benefits in all aspects while testing

software. It would be better to automate the testing process

instead doing it manually which is being needed for the

emerging fields of Search based software engineering,

Security testing can be manual or automated using several

testing tools available in the market which makes testing

easier and faster.

5.2 Security Testing Approach
In [30], Aaron Marback et al. have proposed a security testing

approach that derives test cases from design-level. The

approach has four folded activities as: i) Build threat trees

from threat modeling, ii) Generating security tests from threat,

iii) Trees generate test inputs contains valid and invalid

inputs, and iv) Assigning input values to parameters.

5.3 Use of Threat Modeling in Security

Testing
Threats identified during threat modeling allow the

identification of security tests to verify both new and existing

security flaws. Penetration tests can be driven by attack

vectors for the vulnerabilities identified during threat

modeling. Threats and misuse cases can drive unit test cases

during implementation so that vulnerabilities in the system

can be avoided as the threats to the system have been

identified.

6. CONCLUSION
Security measures and controls in the software's life cycle

must not be constrained to the requirements, design, code, and

test phases. It is essential to continue performing code

reviews, security tests, configuration control, and quality

assurance during deployment and operations to ensure that

updates and enhancements do not introduce security

weaknesses or vulnerability issues in the software. In future,

we have planned to reuse threat modeling which are used in

the requirement elicitation and design phase to automatic

generation of security test case in the testing phase.

7. REFERENCES
[1] Banerjee C., Pandey S. K., “Software Security Rules:

SDLC Perspective”, International Journal of Computer

Science and Information Security (IJCSIS), Vol. 6,

No.1,.

[2] Sodiya A. S., Onashoga S. A., and Ajayi O. B.,

“Toward Building Secure Software Systems”, Vol. 3, pp.

636 – 645, 2006.

[3] Vladimir Golubev, “Using of Computer Systems

Accountability Technologies in The Fight against

Cybercrimes”, Computer Crime ResearchCenter.

Available: http://www.crimeresearch.org/

library/Using.htm.

[4] http://www.albion.com/security/intro-4.html

[5] Neil Daswani, Christoph Kern, Anita Kesavan,

“Foundations of security What Every Programmer Needs

to Know”, APRESS, pp. 44, 2007.

[6] http://en.wikipedia.org/wiki/Access_control

[7] http://www.fortify.com/vulncat/en/vulncat/index.html

[8] http://www.fortify.com/security-resources/taxonomy.jsp

[9] Elizabeth Wasserman, “The Role of Auditing in IT and

Security”,Available:http://www.ciostrategycenter.com/B

oard/smarts/role_of_audit/index.html

[10] Shawn Hernan, Scott Lambert, Tomasz Ostwald, Adam

Shostack, “Uncover Security Design Flaws using The

STRIDE Approach”, msdn.microsoft.com, Nov. 2006.

Available: http://msdn.microsoft.com/en-

us/magazine/cc163519.aspx.

[11] Paco Hope and Peter White, “Software Security

Requirement the foundation for security”, Cigital Inc.,

Available: http://sqgne.org/presentations/2007-08/Hope-

Sep-2007.pdf

[12] Malik Imran Daud, “Secure Software Development

Model: A Guide for Secure Software Life Cycle”,

Proceedings of the International MultiConference of

Engineers and Computer Scientists, Vol. I, IMECS,

Hong Kong, March 17-19, 2010.

[13] Kotonya G. and Sommerville I., “Requirement

Engineering Process and Techniques”, John Wiley and

Sons, 1998.

[14] Asoke K. Talukder, Vineet Kumar Mayura, Santhosh

Babu G., Jangam Ebenezer, Muni Sekhar V., Jevitha K.

P., Saurabh Samanta, Alwyn Roshan Paris, “Security-

aware Software Development Life Cycle (SaSDLC) –

Processes and Tools”, Accepted for Presentation at

WOCN 2009, Cairo, Egypt, 28-30 April 2009.

[15] Donald G. Firesmith, “Engineering Security

Requirements”, Firesmith Consulting, U.S.A Vol. 2, No.

1, January-February 2003. Available:

http://www.jot.fm/issues/issue_2003_01/column6.

[16] Suvda Myagmar, Adam J. Lee, and William Yurcik,

“Threat Modeling as a Basis for Security Requirements”,

IEEE Symposium on Requirements Engineering for

Information Security (SREIS), August 2005.

[17] Lee M. Clagett, “Security Requirements for the

Prevention of Modern Software Vulnerabilities and a

Process for Incorporation into Classic Software

Development Lifecycles”, Thesis dissertation.

[18] Chun Wei (Johnny), Sia, “Misuse Cases and Abuse

Cases in Eliciting Security Requirements”, 25 Oct 2005.

[19] Martyn Fetcher, Howard Chivers, Jim Austin,

“Combining Functional and Security Requirements‟

Processes”, ROLLS ROYCE PLC-REPORT-PNR, Vol.

93025, 2005.

[20] Swapnesh Taterh, Yadav K. P., Sharma S. K., “Threat

Modeling and Security Pattern used in Design Phase of

Secure Software Development Life Cycle”, International

Journal of Advanced Research in Computer Science and

Software Engineering, Vol. 2, Issue 4, April 2012.

[21] Saltzer, Jerome H. and Schroeder, Michael D., “The

Protection of Information in Computer Systems”,

Proceedings of the IEEE 63, pp. 1278-1308, September

1975.

[22] Meier J.D., Alex Mackman, Blaine Wastell, “Threat

Modeling Web Applications Patterns & Practices

http://en.wikipedia.org/wiki/Access_control
http://www.fortify.com/security-resources/taxonomy.jsp
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx

International Journal of Computer Applications (0975 – 8887)

International Conference on Information and Communication Technologies (ICICT- 2014)

11

Library”, Microsoft Corporation, May 2005. Available:

http://msdn.microsoft.com/en-us/library/ff648006.aspx

[23] Joseph W. Yoder and Jeffrey Barcalow (1997),

“Architectural Patterns for Enabling Application

Security”, Proc., 4th Conference on Patterns Languages

of Programs (PLoP'97) Monticello, Illinois.

[24] Nobukazu Yoshioka, Hironori Washizaki and Katsuhiasa

Maruyama, “A survey on security patterns –– progress in

informatics”, No.5, pp.35-47, (2006).

[25] Steve Lipner and Michael Howard, “The Trustworthy

Computing Security Development Lifecycle”, Security

Engineering and Communications, Security Business and

Technology Unit, Microsoft Corporation, March 2005.

[26] Agrawal A. and Khan R. A., “A Framework to Detect

and Analyze Software Vulnerabilities – Development

Phase Perspective”, International Journal of Recent

Trends in Engineering, Vol. 2, No. 2, November 2009.

[27] Gu Tian-yang, Shi Yin-sheng, and Fang You-yuan,

Research on Software Security Testing, World Academy

of Science, Engineering and Technology, 2010.

[28] Chilenski J. and Miller S., “Applicability of modified

condition/decision coverage to software testing”,

Software Engineering Journal, pp. 193–200, September

1994.

[29] Mark Fewster and Dorothy Graham. Software test

automation: effective use of test execution tools. ACM

Press/Addison-Wesley Publishing Co., New York, NY,

USA, 1999.

[30] Aaron Marback, Hyunsook Do, Ke He, Samuel

Kondamarri, Dianxiang Xu, Security Test Generation

using Threat Trees, Proc. Fourth Int‟l Workshop

Automation of Software Test (AST ‟09), May 2009.

