
International Journal of Computer Applications (0975 – 8887)

International Conference on Innovation in Communication, Information and Computing (ICICIC) 2013

9

Towards an Approach for Improved Security in Wireless

Networks

T Senthil Kumar

Department of Computer Science Engineering,
Amrita School of Engineering

Ettimadai, Coimbatore

Sugeerth Murugesan
Department of Computer Science Engineering,

Amrita School of Engineering
Ettimadai, Coimbatore

ABSTRACT

Wireless sensor networks are now widely used in military

surveillance, industrial applications and civilian uses such as

pollution control, forest fire detection, farming etc. Their

emergence has posed many unique challenges to researchers.

The security of such networks is of utmost importance and as

such has been extensively researched. These networks are

vulnerable to external threats that may try to gain

unauthorized access with malicious intent. In this paper we

look at a few security algorithms used on wireless sensor

networks. These include SPINS, TinySec, LEAP (Localized

Encryption and Authentication Protocol) and PADS (Practical

Algorithm for Data Security). Areas that are covered include:

architectures and routing protocols, security issues,

algorithms, and performance issues for wireless sensor

network design

Keywords

Tiny Sec, LEAP, PADS, SPINS, Wireless sensor networks,
security algorithms, architectures, SNEP, SPINS.

1. INTRODUCTION
Sensor networks refer to a heterogeneous system combining

tiny sensors and actuators with general-purpose computing

elements. Wireless sensor networks use tiny, inexpensive

sensor nodes characterized by low processing power, radio

ranges, low energy consumption and limited and specific

sensing functions. Hundreds or thousands of these sensors

work together sensing real-world environments, processing

this information and communicating it back to the

coordinator.

Security has become a major concern for every network.

Almost every day we hear about news of some company

falling prey to network attacks. Some attacks are passive,

meaning information is monitored; others are active, meaning

the information is altered with intent to corrupt or destroy the

data or the network itself. Without security measures and

controls in place, your data might be subjected to an attack.

Wireless sensor networks are typically characterized by

limited power supplies, low bandwidth, small memory sizes

and limited energy. This leads to very demanding

environment to provide security.

2. SECURITY PROTOCOLS

2.1 SPINS: Security Protocols for Sensor

Networks
 SPINS is a suite of security building blocks. It is optimized

for resource constrained environments and wireless

communication. SPINS has two secure building blocks: SNEP

and µTESLA.

SNEP provides data confidentiality, two-party data

authentication, and data freshness.

μTESLA provides authenticated broadcast for severely

resource-constrained environments. All cryptographic

primitives (i.e. encryption, message authentication code

(MAC), hash, random number generator) are constructed out

of a single block cipher for code reuse [1]. This, along with

the symmetric cryptographic primitives used reduces the

overhead on the resource constrained sensor network [1]. In a

broadcast medium such as a sensor network, data

authentication through a symmetric mechanism cannot be

applied as all the receivers know the key. μTESLA constructs

authenticated broadcast from symmetric primitives, but

introduces asymmetry with delayed key disclosure and one-

way function key chains [13].

2.1.1 SPINS: Security Protocols for Sensor Networks
SNEP uses encryption to achieve confidentiality and message

authentication code (MAC) to achieve two-party

authentication and data integrity. Apart from confidentiality,

another important security property is semantic security,

which ensures that an eavesdropper has no information about

the plaintext, even if it sees multiple encryptions of the same

plaintext. The basic technique to achieve this is

randomization: Before encrypting the message with a

chaining encryption function (i.e. DESCBC), the sender

precedes the message with a random bit string (also called the

Initialization Vector). This prevents the attacker from

inferring the plaintext of encrypt ted messages if it

knows plaintext-ciphertext pairs encrypted with the same key.

To avoid adding the additional transmission overhead of these

extra bits, SNEP uses a shared counter between the sender and

the receiver for the block cipher in counter mode (CTR). The

communicating parties share the counter and increment it after

each block. SNEP offers the following properties:

i. Semantic security

ii. Data authentication.

iii. Replay protection

iv. Data freshness.

2.1.2 μTESLA: Authenticated Broadcast
Most of the proposals for authenticated broadcast are

impractical for sensor networks, as they rely on asymmetric

digital signatures for the authentication. The TESLA protocol

provides efficient authenticated broadcast but it is not

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovation in Communication, Information and Computing (ICICIC) 2013

10

designed for limited computing environments. μTESLA

solves the following inadequacies of TESLA in sensor

networks:

TESLA authenticates the initial packet with a digital

signature, which is too expensive for sensor nodes. μTESLA

uses only symmetric mechanisms [7].

Disclosing a key in each packet requires too much energy for

sending and receiving. μTESLA discloses the key once per

epoch [7].

It is expensive to store a one-way key chain in a sensor node.

μTESLA restricts the number of authenticated senders

[7].μTESLA uses symmetric authentication but introduces

asymmetry through a delayed disclosure of the symmetric

keys, which results in an efficient broadcast authentication

scheme. For the base station to broadcast authenticated

information to the nodes, μTESLA requires that the base

station and nodes are loosely time synchronized, and each

node knows an upper bound on the maximum synchronization

error [13]. To send an authenticated packet, the base station

simply computes a MAC on the packet with a key that is

secret at that point in time [13]. When a node gets a packet, it

can verify that the corresponding MAC key was not yet

disclosed by the base station (based on its loosely

synchronized clock, its maximum synchronization error, and

the time schedule at which keys are disclosed) [13]. Since a

receiving node is assured that the MAC key is known only by

the base station, the receiving node is assured that no

adversary could have altered the packet in transit. The node

stores the packet in a buffer. At the time of key disclosure, the

base station broadcasts the verification key to all receivers.

When a node receives the disclosed key, it can easily verify

the correctness of the key. If the key is correct, the node can

now use it to authenticate the packet stored in its buffer [1].

2.2 Tiny Sec: A Link Layer Security

Architecture for Wireless Sensor Networks
TinySec is a lightweight, generic security package that can be

integrated into sensor network applications. It is incorporated

into the official TinyOS release. Sensor networks use in

network processing such as aggregation and duplicate

elimination to reduce traffic and save energy. Since in-

network processing requires the intermediate nodes to access,

modify, and suppress the contents of messages, end-to-end

security mechanisms between each sensor node and the base

station cannot be used to guarantee the authenticity, integrity,

and confidentiality of messages [10]. End-to-end security

mechanisms are also vulnerable to certain denial of service

attacks. If message integrity is only checked at the final

destination, the network may route packets injected by an

adversary many hops before they are detected [10]. This kind

of attack will waste energy and bandwidth. A link-layer

security architecture can detect unauthorized packets when

they are first injected into the network. TinySec provides the

basic security properties of message authentication and

integrity (using MAC), message confidentiality (through

encryption), semantic security (through an Initialization

Vector) and replay protection [12]. TinySec supports two

different security options: authenticated encryption (TinySec-

AE) and authentication only (TinySec-Auth). With

authenticated encryption, TinySec encrypts the data payload

and authenticates the packet with a MAC. The MAC is

computed over the encrypted data and the packet header. In

authentication only mode, TinySec authenticates the entire

packet with a MAC, but the data payload is not encrypted.

2.2.1 Encryption
TinySec uses an 8 byte IV and cipher block chaining

(CBC).The structure of the IV is dst||AM||l||src||ctr, where dst

is the destination address of the receiver, AM is the active

message (AM) handler type, l is the length of the data

payload, src is the source address of the sender, and ctr is a 16

bit counter [10]. The counter starts at 0 and the sender

increases it by 1 after each message sent [10].

A stream cipher uses a key K and IV as a seed and

stretches it into a large pseudorandom keystream GK(IV)

[10]. The keystream is then xored against the message: C =

(IV, GK(IV) xor P) [10]. The fastest stream ciphers are faster

than the fastest block ciphers, which might make them look

tempting in a resource constrained environment. However,

stream ciphers have a failure mode: if the same IV is ever

used to encrypt two different packets, then it is often possible

to recover both plaintexts [10]. Guaranteeing that IVs are

never reused requires IVs to be fairly long, say, at least 8

bytes. Since an 8-byte overhead in a 30-byte packet is

unacceptable in the resource constrained sensor network,

TinySec uses block cipher. Using a block cipher for

encryption has an additional advantage [10]. Since the most

efficient message authentication code (MAC) algorithms use a

block cipher, the nodes will need to implement a block cipher

in any event. Using this block cipher for encryption as well

conserves code space. The advantage of using CBC is that it

degrades gracefully in the presence of repeated IVs. If we

encrypt two plaintexts P1 and P2 with the same IV under

CBC mode, then the cipher texts will leak the length (in

blocks) of the longest shared prefix of P1 and P2, and nothing

more [12]. For instance, if the first block of P1 is different

from the first block of P2, as will typically be the case, then

the cryptanalyst learns nothing apart from this fact. CBC

mode is provably secure when IVs do not repeat. However,

CBC mode was designed to be used with a random IV, and

has a separate leakage issue when used with a counter as the

IV (note that the TinySec IV has a 16 bit counter). To fix this

issue, TinySec pre-encrypts the IV. The creators of TinySec

give reasons behind their choice of cipher in . Initially they

found AES and Triple-DES to be slow for sensor networks.

They found RC5 and Skipjack to be most appropriate for

software implementation on embedded microcontrollers.

Although RC5 was slightly faster, it is patented. Also, for

good performance, RC5 requires the key schedule to be pre

computed, which uses 104 extra bytes of RAM per key.

Because of these drawbacks, the default block cipher in

TinySec is Skipjack [13].

2.2.2 Message integrity
TinySec always authenticates messages, but encryption

is optional. TinySec uses a cipher block chaining construction,

CBC-MAC for computing and verifying MACs. CBC-MAC

is efficient and fast, and the fact that it relies on a block cipher

as well minimizes the number of cryptographic primitives we

must implement in the limited memory available [10].

However the standard CBC-MAC construction is not secure

for variably sized messages. Adversaries can forge a MAC for

certain messages. Bellare, Kilian, and Rogaway suggest three

alternatives for generating MACs for variable sized messages.

The variant used in TinySec xors the encryption of the

message length with the first plaintext block [10].

2.2.3 Keying Mechanism
The simplest keying mechanism is to use a single

network-wide TinySec key among the authorized nodes.

However, this cannot protect against node capture attacks. If

an adversary compromises a single node or learns the secret

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovation in Communication, Information and Computing (ICICIC) 2013

11

key, she/he can eavesdrop on traffic and inject messages

anywhere in the network. Hence, TinySec uses a separate key

for each pair of nodes who might wish to communicate. This

provides better resilience against node capture attacks: a

compromised node can only decrypt traffic addressed to it and

can only inject traffic to its immediate neighbours. But Per-

link keying limits the passive participation and local

broadcast. A less restrictive approach is for groups of

neighbouring nodes to share a TinySec key rather than each

pair. Group keying provides an intermediate level of

resilience to node capture attacks: a compromised node can

decrypt all messages from nodes in its group, but cannot

violate the confidentiality of other groups' messages and

cannot inject messages to other groups [10].

2.3 LEAP (Localized Encryption and

Authentication Protocol)
LEAP is a key management protocol for sensor networks that

is designed to support in network processing, while at the

same time restricting the security impact of a node

compromise to the immediate network neighborhood of the

compromised node. The design of the protocol is motivated

by the observation that different types of messages exchanged

between sensor nodes have different security requirements,

and that a single keying mechanism is not suitable for meeting

these different security requirements.

Hence, LEAP supports the establishment of four types of

keys for each sensor node – an individual key shared with the

base station, a pairwise key shared with another sensor node, a

cluster key shared with multiple neighboring nodes, and a

group key that is shared by all the nodes in the network [8].

The protocol used for establishing and updating these keys is

communication and energy efficient, and minimizes the

involvement of the base station [8]. LEAP also includes an

efficient protocol for inter-node traffic authentication based

on the use of one-way key chains. A salient feature of the

authentication protocol is that it supports source

authentication without precluding in-network processing and

passive participation.

2.3.1 Individual Key
Every node has a unique key that it shares pairwise with

the base station. This key is used for secure communication

between a node and the base station. For example, a node may

send an alert to the base station if it observes any abnormal or

unexpected behavior by a neighboring node. Similarly, the

base station can use this key to encrypt any sensitive

information, e.g. keying material or special instruction that it

sends to an individual node.

2.3.2 Group Key
This is a globally shared key that is used by the base

station for encrypting messages that are broadcast to the

whole group [8]. For example, the base station issues

missions, sends queries and interests. Note that from the

confidentiality point of view there is no advantage to

separately encrypting a broadcast message using the

individual key of each node [8]. However, since the group key

is shared among all the nodes in the network, an efficient

rekeying mechanism is necessary for updating this key after a

compromised node is revoked.].

2.3.3 Cluster Key
A cluster key is a key shared by a node and all its

neighbours, and it is mainly used for securing locally

broadcast messages, e.g., routing control information, or

securing sensor messages which can benefit from passive

participation [8]. For passive participation to be feasible,

neighbouring nodes should be able to decrypt and authenticate

some classes of messages, e.g., sensor readings, transmitted

by their neighbours [8]. This means that such messages should

be encrypted or authenticated by a locally shared key.

Therefore, in LEAP each node possesses a unique cluster key

that it uses for securing its messages, while its immediate

neighbours use the same key for decryption or authentication

of its messages [12].

2.3.4 Pairwise Shared Key
Every node shares a pairwise key with each of its

immediate neighbours. In LEAP, pairwise keys are used for

securing communications that require privacy or source

authentication [8]. For example, a node can use its pairwise

keys to secure the distribution of its cluster key to its

neighbours, or to secure the transmissions of its sensor

readings to an aggregation node.

2.4 Practical Algorithm for Data Security

(PADS)
This algorithm is primarily used for one-time pads (OTP). The

message’s integrity and authenticity are based on the security

of the message authentication code. A 4-byte Message

Authentication Code (MAC) is used, meaning an attacker

would have to go through 232 attempts, at most, to get a MAC

that is a match. The security of the OTP is dependent on the

key that is generated. A MAC, also known as a cryptographic

checksum, results from the public application of an input via a

secret key. Usually of fixed length, it is attached to the input

to validate the input’s integrity and authenticity. For

confidentiality, a new key is generated at each transmission,

with the security of the protocol involved dependent upon the

Key Derivation Function described by IEEE’s Standard

specifications for Public-Key Cryptography [1]. These factors

reduce the ability of an attacker to create an OTP as a match.

The time an attacker would need to create a match will be past

the lifetime of a typical sensor network [1]. An example of

such a method is SPINS, which is a three-part approach

providing for an authentication routing protocol as well as a

three-part approach providing authenticated streaming

broadcasts as well as two-party data authentication, data

confidentiality, and freshness [12].

An algorithm that does basic embedding calculates a MAC

using the static part of the packet [12]. The MAC is added to

the data and a time synced key is created based on a secret

key shared between the sender and the receiver. Any attacker

would have to be time synced with the network or he or she

would be unable to break the encryption [12]. They also use a

basic detection algorithm to locate the embedded pad, remove

it, and return it to its original value. The location and removal

are done by the base station since it shares with the embedded

sensor node the secret key.

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovation in Communication, Information and Computing (ICICIC) 2013

12

TABLE 1. A COMPARATIVE STUDY OF SECURITY ALGORITHMS

Security Algorithm Mechanism Merits
Parameter For

measurement

1. A Genetic Algorithm

Approach for Security

Authentication in the

wireless Sensor

By applying the multi-objective

optimization, we devise a mechanism to

guarantee each node’s authentication.

The mechanism doesn’t base on the

key or encryption algorithm. the

simulation

proves that this security mechanism

works well and is valuable in

practical.

length of binary

bit string when the string

length equals 60(L =30),

2. Practical Algorithm

for Data Security

(PAD)

It calculates a MAC using the static part

of the packet. The MAC is added to the

data and a time synced key is created

based on a secret key shared between

the sender

and the receiver. Any attacker would

have to be time synced

with the network or he or she would be

unable to break

the encryption

It appears to offer better security for

a smaller key size, thereby reducing

processing overhead.

Three areas are evaluated:

latency (the average time

a packet takes to reach the

base

station), throughput in bits

per second, and average

energy

Use per node.

3. Path Redundancy

Based Security

Algorithm(PRSA)

The algorithm uses alternative routing

paths for each data transmission call to

overcome the sensor network attack. To

enhance network reliability, PRSA

allows sensor node data to be sent on

defined routing paths using various

transmission modes including round

robin, redundant and selective modes.

The algorithm improves

sensor network resistance and

reduce network vulnerability

to security threats.

Parameters such as low

link cost in sinkhole

attack, node power,

number of hops to

destination, node, and a

combination of node ID

number and power reflect

the presence of adversary

nodes.

4. Advanced

Encryption Standard

(AES)

The standard comprises three block

ciphers, AES-128, AES-192 and AES-

256, adopted from a larger collection.

Each of these ciphers has a 128-bit

block size, with key sizes of 128, 192

and 256 bits, respectively

Provides different block and key

size during the encryption process.

Shows promising power

consumption result during the

encoding process.

Cost, Power consumption

and time

3. CONCLUSION
As architectures play a key purpose in wireless sensor

networks so do unique security issues such as how security

affects context and design matters as well as working with

confidentiality, integrity, and authenticity. Algorithms also

have a role in the process of constructing a wireless sensor

network. It should be noted, no single security solution is

likely to address all security risks. Organizations should

implement multiple approaches to completely secure wireless

application access. Based on security analysis of all the

wireless sensor networks, we conclude that all the above

algorithms are excellent solutions that can be recommended

for network attacks. Every solution has its own advantages

and disadvantages.

4. REFERENCES

[1] Shafi Goldwasser and Silvio Micali. Probabilistic

encryption. Journal of Computer Security, 28:270–299,

(1984).

[2] Adrian Perrig, Ran Canetti, Dawn Song, and J. D. Tygar.

Efficient and secure source authentication for multicast.

In Network and Distributed System Security

Symposium, NDSS ’01, February 2001.

[3] Adrian Perrig, Ran Canetti, J.D. Tygar, and Dawn Song.

Efficient authentication and signing of multicast streams

over lossy channels. In IEEE Symposium on Security

and Privacy, May 2000.

[4] Samuel R. Madden, Michael J. Franklin, Joseph M.

Hellerstein, and Wei Hong. TAG: A tiny aggregation

service for ad-hoc sensor networks. In The Fifth

Symposium on Operating Systems Design and

Implementation (OSDI 2002), 2002.

[5] Samuel R. Madden, Robert Szewczyk, Michael J.

Franklin, and David Culler. Supporting aggregate queries

over ad-hoc wireless sensor networks. In Workshop on

Mobile Computing and Systems Applications, 2002.

[6] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A

concrete security treatment of symmetric encryption:

Analysis of the DES modes of operation. In Proceedings

of 38th Annual Symposium on Foundations of Computer

Science (FOCS 97), 1997.

[7] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The

security of the cipher block chaining message

authentication code. Journal of Computer and System

Sciences, 61(3):362-399, December 2000.

[8] Chris Karlof David Wagner. In Secure Routing in

Wireless Sensor Networks: Attacks and

Countermeasures.

[9] Wadaa, S. Olariu, L. Wilson, M. Eltoweissy, K. Jones.

On Providing Anonymity in Wireless Sensor Networks.

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovation in Communication, Information and Computing (ICICIC) 2013

13

In Proceedings of the Tenth International Conference on

Parallel and Distributed Systems (ICPADS’04).

[10] Chris Karlof, Naveen Sastry, David Wagner. TinySec: A

Link Layer Security Architecture for Wireless Sensor

Networks. ACM SenSys 2004, November 3-5, 2004.

[11] Sencun Zhu, Sanjeev Setia, Sushil Jajodia. LEAP:

Efficient Security Mechanisms for Large-Scale

Distributed Sensor Networks. In The Proceedings of the

10th ACM conference on Computer and communications

security, 2003.

[12] Mayank Saraogi, Security in Wireless Sensor Networks.

[13] Daniel E. Burgner, Luay A. Wahsheh, Security of

Wireless Sensor Networks, 2011 Eighth International

Conference on Information Technology: New

Generations.

