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ABSTRACT 

Wireless sensor networks are now widely used in military 

surveillance, industrial applications and civilian uses such as 

pollution control, forest fire detection, farming etc. Their 

emergence has posed many unique challenges to researchers.  

The security of such networks is of utmost importance and as 

such has been extensively researched. These networks are 

vulnerable to external threats that may try to gain 

unauthorized access with malicious intent. In this paper we 

look at a few security algorithms used on wireless sensor 

networks. These include SPINS, TinySec, LEAP (Localized 

Encryption and Authentication Protocol) and PADS (Practical 

Algorithm for Data Security). Areas that are covered include: 

architectures and routing protocols, security issues, 

algorithms, and performance issues for wireless sensor 

network design 
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1. INTRODUCTION 
Sensor networks refer to a heterogeneous system combining 

tiny sensors and actuators with general-purpose computing 

elements. Wireless sensor networks use tiny, inexpensive 

sensor nodes characterized by low processing power, radio 

ranges, low energy consumption and limited and specific 

sensing functions. Hundreds or thousands of these sensors 

work together sensing real-world environments, processing 

this information and communicating it back to the 

coordinator. 

Security has become a major concern for every network. 

Almost every day we hear about news of some company 

falling prey to network attacks. Some attacks are passive, 

meaning information is monitored; others are active, meaning 

the information is altered with intent to corrupt or destroy the 

data or the network itself. Without security measures and 

controls in place, your data might be subjected to an attack.   

Wireless sensor networks are typically characterized by 

limited power supplies, low bandwidth, small memory sizes 

and limited energy. This leads to very demanding 

environment to provide security.  

2. SECURITY PROTOCOLS 

2.1 SPINS: Security Protocols for Sensor 

Networks 
 SPINS is a suite of security building blocks. It is optimized 

for resource constrained environments and wireless 

communication. SPINS has two secure building blocks: SNEP 

and µTESLA. 

SNEP provides data confidentiality, two-party data 

authentication, and data freshness. 

μTESLA provides authenticated broadcast for severely 

resource-constrained environments. All cryptographic 

primitives (i.e. encryption, message authentication code 

(MAC), hash, random number generator) are constructed out 

of a single block cipher for code reuse [1]. This, along with 

the symmetric cryptographic primitives used reduces the 

overhead on the resource constrained sensor network [1]. In a 

broadcast medium such as a sensor network, data 

authentication through a symmetric mechanism cannot be 

applied as all the receivers know the key. μTESLA constructs 

authenticated broadcast from symmetric primitives, but 

introduces asymmetry with delayed key disclosure and one-

way function key chains [13].  

2.1.1 SPINS: Security Protocols for Sensor Networks 
SNEP uses encryption to achieve confidentiality and message 

authentication code (MAC) to achieve two-party 

authentication and data integrity. Apart from confidentiality, 

another important security property is semantic security, 

which ensures that an eavesdropper has no information about 

the plaintext, even if it sees multiple encryptions of the same 

plaintext. The basic technique to achieve this is 

randomization: Before encrypting the message with a 

chaining encryption function (i.e. DESCBC), the sender 

precedes the message with a random bit string (also called the 

Initialization Vector). This prevents the attacker from 

inferring the plaintext of encrypt ted messages if it 

knows plaintext-ciphertext pairs encrypted with the same key. 

To avoid adding the additional transmission overhead of these 

extra bits, SNEP uses a shared counter between the sender and 

the receiver for the block cipher in counter mode (CTR). The 

communicating parties share the counter and increment it after 

each block. SNEP offers the following properties: 

i. Semantic security 

ii. Data authentication. 

iii. Replay protection 

iv. Data freshness. 

2.1.2 μTESLA: Authenticated Broadcast 
Most of the proposals for authenticated broadcast are 

impractical for sensor networks, as they rely on asymmetric 

digital signatures for the authentication. The TESLA protocol 

provides efficient authenticated broadcast but it is not 
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designed for limited computing environments. μTESLA 

solves the following inadequacies of TESLA in sensor 

networks: 

TESLA authenticates the initial packet with a digital 

signature, which is too expensive for sensor nodes. μTESLA 

uses only symmetric mechanisms [7]. 

Disclosing a key in each packet requires too much energy for 

sending and receiving. μTESLA discloses the key once per 

epoch [7]. 

It is expensive to store a one-way key chain in a sensor node. 

μTESLA restricts the number of authenticated senders 

[7].μTESLA uses symmetric authentication but introduces 

asymmetry through a delayed disclosure of the symmetric 

keys, which results in an efficient broadcast authentication 

scheme. For the base station to broadcast authenticated 

information to the nodes, μTESLA requires that the base 

station and nodes are loosely time synchronized, and each 

node knows an upper bound on the maximum synchronization 

error [13]. To send an authenticated packet, the base station 

simply computes a MAC on the packet with a key that is 

secret at that point in time [13]. When a node gets a packet, it 

can verify that the corresponding MAC key was not yet 

disclosed by the base station (based on its loosely 

synchronized clock, its maximum synchronization error, and 

the time schedule at which keys are disclosed) [13]. Since a 

receiving node is assured that the MAC key is known only by 

the base station, the receiving node is assured that no 

adversary could have altered the packet in transit. The node 

stores the packet in a buffer. At the time of key disclosure, the 

base station broadcasts the verification key to all receivers. 

When a node receives the disclosed key, it can easily verify 

the correctness of the key. If the key is correct, the node can 

now use it to authenticate the packet stored in its buffer [1]. 

2.2 Tiny Sec: A Link Layer Security 

Architecture for Wireless Sensor Networks 
TinySec is a lightweight, generic security package that can be 

integrated into sensor network applications. It is incorporated 

into the official TinyOS release. Sensor networks use in 

network processing such as aggregation and duplicate 

elimination to reduce traffic and save energy. Since in-

network processing requires the intermediate nodes to access, 

modify, and suppress the contents of messages, end-to-end 

security mechanisms between each sensor node and the base 

station cannot be used to guarantee the authenticity, integrity, 

and confidentiality of messages [10]. End-to-end security 

mechanisms are also vulnerable to certain denial of service 

attacks. If message integrity is only checked at the final 

destination, the network may route packets injected by an 

adversary many hops before they are detected [10]. This kind 

of attack will waste energy and bandwidth. A link-layer 

security architecture can detect unauthorized packets when 

they are first injected into the network. TinySec provides the 

basic security properties of message authentication and 

integrity (using MAC), message confidentiality (through 

encryption), semantic security (through an Initialization 

Vector) and replay protection [12]. TinySec supports two 

different security options: authenticated encryption (TinySec- 

AE) and authentication only (TinySec-Auth). With 

authenticated encryption, TinySec encrypts the data payload 

and authenticates the packet with a MAC. The MAC is 

computed over the encrypted data and the packet header. In 

authentication only mode, TinySec authenticates the entire 

packet with a MAC, but the data payload is not encrypted. 

2.2.1 Encryption 
TinySec uses an 8 byte IV and cipher block chaining 

(CBC).The structure of the IV is dst||AM||l||src||ctr, where dst 

is the destination address of the receiver, AM is the active 

message (AM) handler type, l is the length of the data 

payload, src is the source address of the sender, and ctr is a 16 

bit counter [10]. The counter starts at 0 and the sender 

increases it by 1 after each message sent [10]. 

A stream cipher uses a key K and IV as a seed and 

stretches it into a large pseudorandom keystream GK(IV) 

[10]. The keystream is then xored against the message: C = 

(IV, GK(IV) xor P) [10]. The fastest stream ciphers are faster 

than the fastest block ciphers, which might make them look 

tempting in a resource constrained environment. However, 

stream ciphers have a failure mode: if the same IV is ever 

used to encrypt two different packets, then it is often possible 

to recover both plaintexts [10]. Guaranteeing that IVs are 

never reused requires IVs to be fairly long, say, at least 8 

bytes. Since an 8-byte overhead in a 30-byte packet is 

unacceptable in the resource constrained sensor network, 

TinySec uses block cipher. Using a block cipher for 

encryption has an additional advantage [10]. Since the most 

efficient message authentication code (MAC) algorithms use a 

block cipher, the nodes will need to implement a block cipher 

in any event. Using this block cipher for encryption as well 

conserves code space. The advantage of using CBC is that it 

degrades gracefully in the presence of repeated IVs. If we 

encrypt two plaintexts P1 and P2 with the same IV under 

CBC mode, then the cipher texts will leak the length (in 

blocks) of the longest shared prefix of P1 and P2, and nothing 

more [12]. For instance, if the first block of P1 is different 

from the first block of P2, as will typically be the case, then 

the cryptanalyst learns nothing apart from this fact. CBC 

mode is provably secure when IVs do not repeat. However, 

CBC mode was designed to be used with a random IV, and 

has a separate leakage issue when used with a counter as the 

IV (note that the TinySec IV has a 16 bit counter). To fix this 

issue, TinySec pre-encrypts the IV. The creators of TinySec 

give reasons behind their choice of cipher in . Initially they 

found AES and Triple-DES to be slow for sensor networks. 

They found RC5 and Skipjack to be most appropriate for 

software implementation on embedded microcontrollers. 

Although RC5 was slightly faster, it is patented. Also, for 

good performance, RC5 requires the key schedule to be pre 

computed, which uses 104 extra bytes of RAM per key. 

Because of these drawbacks, the default block cipher in 

TinySec is Skipjack [13].  

2.2.2 Message integrity 
TinySec always authenticates messages, but encryption 

is optional. TinySec uses a cipher block chaining construction, 

CBC-MAC for computing and verifying MACs. CBC-MAC 

is efficient and fast, and the fact that it relies on a block cipher 

as well minimizes the number of cryptographic primitives we 

must implement in the limited memory available [10]. 

However the standard CBC-MAC construction is not secure 

for variably sized messages. Adversaries can forge a MAC for 

certain messages. Bellare, Kilian, and Rogaway suggest three 

alternatives for generating MACs for variable sized messages. 

The variant used in TinySec xors the encryption of the 

message length with the first plaintext block [10].  

2.2.3 Keying Mechanism 
The simplest keying mechanism is to use a single 

network-wide TinySec key among the authorized nodes. 

However, this cannot protect against node capture attacks. If 

an adversary compromises a single node or learns the secret 
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key, she/he can eavesdrop on traffic and inject messages 

anywhere in the network. Hence, TinySec uses a separate key 

for each pair of nodes who might wish to communicate. This 

provides better resilience against node capture attacks: a 

compromised node can only decrypt traffic addressed to it and 

can only inject traffic to its immediate neighbours. But Per-

link keying limits the passive participation and local 

broadcast. A less restrictive approach is for groups of 

neighbouring nodes to share a TinySec key rather than each 

pair. Group keying provides an intermediate level of 

resilience to node capture attacks: a compromised node can 

decrypt all messages from nodes in its group, but cannot 

violate the confidentiality of other groups' messages and 

cannot inject messages to other groups [10]. 

2.3 LEAP (Localized Encryption and 

Authentication Protocol) 
LEAP is a key management protocol for sensor networks that 

is designed to support in network processing, while at the 

same time restricting the security impact of a node 

compromise to the immediate network neighborhood of the 

compromised node. The design of the protocol is motivated 

by the observation that different types of messages exchanged 

between sensor nodes have different security requirements, 

and that a single keying mechanism is not suitable for meeting 

these different security requirements. 

Hence, LEAP supports the establishment of four types of 

keys for each sensor node – an individual key shared with the 

base station, a pairwise key shared with another sensor node, a 

cluster key shared with multiple neighboring nodes, and a 

group key that is shared by all the nodes in the network [8]. 

The protocol used for establishing and updating these keys is 

communication and energy efficient, and minimizes the 

involvement of the base station [8]. LEAP also includes an 

efficient protocol for inter-node traffic authentication based 

on the use of one-way key chains. A salient feature of the 

authentication protocol is that it supports source 

authentication without precluding in-network processing and 

passive participation. 

2.3.1 Individual Key 
Every node has a unique key that it shares pairwise with 

the base station. This key is used for secure communication 

between a node and the base station. For example, a node may 

send an alert to the base station if it observes any abnormal or 

unexpected behavior by a neighboring node. Similarly, the 

base station can use this key to encrypt any sensitive 

information, e.g. keying material or special instruction that it 

sends to an individual node. 

2.3.2 Group Key 
This is a globally shared key that is used by the base 

station for encrypting messages that are broadcast to the 

whole group [8]. For example, the base station issues 

missions, sends queries and interests. Note that from the 

confidentiality point of view there is no advantage to 

separately encrypting a broadcast message using the 

individual key of each node [8]. However, since the group key 

is shared among all the nodes in the network, an efficient 

rekeying mechanism is necessary for updating this key after a 

compromised node is revoked. ]. 

 

 

2.3.3 Cluster Key 
A cluster key is a key shared by a node and all its 

neighbours, and it is mainly used for securing locally 

broadcast messages, e.g., routing control information, or 

securing sensor messages which can benefit from passive 

participation [8]. For passive participation to be feasible, 

neighbouring nodes should be able to decrypt and authenticate 

some classes of messages, e.g., sensor readings, transmitted 

by their neighbours [8]. This means that such messages should 

be encrypted or authenticated by a locally shared key. 

Therefore, in LEAP each node possesses a unique cluster key 

that it uses for securing its messages, while its immediate 

neighbours use the same key for decryption or authentication 

of its messages [12]. 

2.3.4 Pairwise Shared Key 
Every node shares a pairwise key with each of its 

immediate neighbours. In LEAP, pairwise keys are used for 

securing communications that require privacy or source 

authentication [8]. For example, a node can use its pairwise 

keys to secure the distribution of its cluster key to its 

neighbours, or to secure the transmissions of its sensor 

readings to an aggregation node. 

2.4 Practical Algorithm for Data Security 

(PADS) 
This algorithm is primarily used for one-time pads (OTP). The 

message’s integrity and authenticity are based on the security 

of the message authentication code. A 4-byte Message 

Authentication Code (MAC) is used, meaning an attacker 

would have to go through 232 attempts, at most, to get a MAC 

that is a match. The security of the OTP is dependent on the 

key that is generated. A MAC, also known as a cryptographic 

checksum, results from the public application of an input via a 

secret key. Usually of fixed length, it is attached to the input 

to validate the input’s integrity and authenticity. For 

confidentiality, a new key is generated at each transmission, 

with the security of the protocol involved dependent upon the 

Key Derivation Function described by IEEE’s Standard 

specifications for Public-Key Cryptography [1]. These factors 

reduce the ability of an attacker to create an OTP as a match. 

The time an attacker would need to create a match will be past 

the lifetime of a typical sensor network [1]. An example of 

such a method is SPINS, which is a three-part approach 

providing for an authentication routing protocol as well as a 

three-part approach providing authenticated streaming 

broadcasts as well as two-party data authentication, data 

confidentiality, and freshness [12]. 

 

An algorithm that does basic embedding calculates a MAC 

using the static part of the packet [12]. The MAC is added to 

the data and a time synced key is created based on a secret 

key shared between the sender and the receiver. Any attacker 

would have to be time synced with the network or he or she 

would be unable to break the encryption [12]. They also use a 

basic detection algorithm to locate the embedded pad, remove 

it, and return it to its original value. The location and removal 

are done by the base station since it shares with the embedded 

sensor node the secret key. 
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TABLE 1. A COMPARATIVE STUDY OF SECURITY ALGORITHMS

  

Security Algorithm Mechanism Merits 
Parameter For 

measurement 

1. A Genetic Algorithm 

Approach for Security 

Authentication in the 

wireless Sensor 

By applying the multi-objective 

optimization, we devise a mechanism to 

guarantee each node’s authentication. 

The mechanism doesn’t base on the 

key or encryption algorithm. the 

simulation 

proves that this security mechanism 

works well and is valuable in 

practical. 

length of binary 

bit string when the string 

length equals 60(L =30),  

2. Practical Algorithm 

for Data Security 

(PAD) 

It calculates a MAC using the static part 

of the packet. The MAC is added to the 

data and a time synced key is created 

based on a secret key shared between 

the sender 

and the receiver. Any attacker would 

have to be time synced 

with the network or he or she would be 

unable to break 

the encryption 

It appears to offer better security for 

a smaller key size, thereby reducing 

processing overhead. 

Three areas are evaluated: 

latency (the average time 

a packet takes to reach the 

base 

station), throughput in bits 

per second, and average 

energy 

Use per node. 

3. Path Redundancy 

Based Security 

Algorithm(PRSA) 

The algorithm uses alternative routing 

paths for each data transmission call to 

overcome the sensor network attack. To 

enhance network reliability, PRSA 

allows sensor node data to be sent on 

defined routing paths using various 

transmission modes including round 

robin, redundant and selective modes. 

The algorithm improves 

sensor network resistance and 

reduce network vulnerability 

to security threats. 

Parameters such as low 

link cost in sinkhole 

attack, node power, 

number of hops to 

destination, node, and a 

combination of node ID 

number and power reflect 

the presence of adversary 

nodes. 

4. Advanced 

Encryption Standard 

(AES) 

The standard comprises three block 

ciphers, AES-128, AES-192 and AES-

256, adopted from a larger collection. 

Each of these ciphers has a 128-bit 

block size, with key sizes of 128, 192 

and 256 bits, respectively 

Provides different block and key 

size during the encryption process. 

Shows promising power 

consumption result during the 

encoding process. 

Cost, Power consumption 

and time 

3. CONCLUSION 
As architectures play a key purpose in wireless sensor 

networks so do unique security issues such as how security 

affects context and design matters as well as working with 

confidentiality, integrity, and authenticity. Algorithms also 

have a role in the process of constructing a wireless sensor 

network. It should be noted, no single security solution is 

likely to address all security risks. Organizations should 

implement multiple approaches to completely secure wireless 

application access. Based on security analysis of all the 

wireless sensor networks, we conclude that all the above 

algorithms are excellent solutions that can be recommended 

for network attacks. Every solution has its own advantages 

and disadvantages. 
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