
Special Issue of International Journal of Computer Applications (0975 – 8887)

on Electronics, Information and Communication Engineering - ICEICE No.6, Dec 2011

25

Optimize Prefetching in P2P VoD Systems

Parag Bafna Annappa

National Institute of Technology Karnataka, Surathkal,
Mangalore-575025 India

ABSTRACT
In Peer-to-Peer Video on Demand system free VCR-like

operations are very frequent. The uncertainty of frequent VCR

operations makes it difficult to provide play as download

services. To address this problem, we propose Optimize

prefetching for Peer-to-Peer Video-on-Demand systems.

Through simulation results, we demonstrate that the proposed

prefetching scheme significantly reduces the seeking delay

compared to the Distributed prefetching scheme.

1. INTRODUCTION

MULTIMEDIA communications has been in continuous state of

evolution over the past few years. After the application level

multicast, video streaming is boosted by P2P networks.

Multimedia streaming can be categorized into live streaming and

on-demand streaming. In live streaming systems, the source

servers broadcast videos, and all the clients are synchronous.

Successful examples include CoolStreaming [1], and PPLive [2].

On the other hand, On-demand streaming or Video on Demand is

an interactive multimedia service, which delivers video content

to the users. Differing live streaming, for on-demand streaming,

mostly clients demand different video or different parts of the

same video.

Video on Demand are systems which allow users to select and

watch content on demand. This results in increase seeking delay

and stress on streaming server. The uncertainty of frequent VCR

operations makes it difficult to provide high quality real-time

streaming services. To address this problem, prefetching is

proposed. Different strategies are adopted. In this paper we

proposed Optimized Prefetching strategy and compared our

strategy with Distributed Prefetching strategy.

The rest of this paper is organized in different sections as

followed. In section II, we discussed the related work. In section

III, we discussed proposed Optimize Prefetching strategy.

Section IV illustrates the performance evaluation and comparison

of our strategy with Distributed Prefetching strategy. Section V

presents a brief conclusion.

2. RELATED WORK

Recently, on-demand streaming through peer-to-peer overlays

has attracted significant attentions. A series of Prefetching

strategy have been proposed to improve performance of VoD

systems, including distributed prefetching[5], random

prefetching[6] and etc.

The random prefetching blindly fetch segments of video from

other peers. Unpredictable user viewing behaviors have not been

addressed in random prefetching. As a result high seek latency.

The distributed prefetching[5], prefetch the segment according to

user viewing behavior. In this technique user viewing behavior

logs are maintained by a tracker server. The distributed

prefetching techniques improves hit ratio by considering user’s

access patterns, however extracting a user viewing pattern from

user viewing behavior logs require large computation to be

performed by tracker server.

3. OPTIMIZE PREFETCHING

To overcome drawbacks of different prefetching techniques

discussed earlier in section II, we proposed a new prefetching

technique called “Optimize prefetching strategy”. In this

technique, each peer maintains the record of playback segments

(we divided video into segments) by other peers in the same

session. This information is obtained through gossiping. Once

the state information are collected from all peers (in same

session), each peer creates a table of available segments in that

particular session. Figure 1 shows the state information table

received by a particular peer I.

Peer ID Records

I 1,2,5,8,11,20

J 5,6,7,8,9,11

K 1,2,8,15,16,17

L 6,8,9,11,12,17

M 9,10,11,12,13

N 4,5,6,7,8,9,20

O 2,3,4,6,7,8

P 3,4,5,6,7,8,9

Fig 1: Information Received by peer I

Each peer performs the necessary computation to create a list

shown below (Fig. 2). First row of the list contain segment

number and second row contain number of occurrence of that

segment in record. The peer then requests for a segment near to

its play head position, which didn’t exist in that session

(count=0). In case of Fig. 2 missing segments like 10, 14, 18, and

19 would be requested from peers in other session depending on

current play head position. If there is no such segment exists than

peer request for a segment which has highest count in list (count

is present in second row of list). If there is no response from

shortcut neighbors, the desired segment is requested from server

as a last resort. It is important to note that each peer also prefetch

the segments near to its play head position as an urgent

downloading target. If bandwidth allows, the peer also tries to

fetch anchors. Anchors are segments each consisting of 10

continuous seconds, and are distributed throughout the media file

with fixed interval (e.g. 300 seconds). The algorithm for optimize

prefetching strategy is presented below.

Segment

number

1 2 3 4 5 6 7 8 9 10

Count 2 3 2 4 4 5 4 7 5 0

Segment
number

11 12 13 14 15 16 17 18 19 20

Count 4 2 1 0 1 1 2 0 0 2

Fig 2: List Created by Peer I.

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Electronics, Information and Communication Engineering - ICEICE No.6, Dec 2011

26

.

A. Algorithm

Segment Select () //Find the next segment to prefetch

{

 Find the segments Si that didn’t exist in buffermap//count =0

 Return S; //S is the desired segment;

}

Segment Select1()

{

 Find the segment Si that did exist in buffermap with highest

count

 Return S;

}

Void Prefetch () // The function to do prefetching

{

 While (prefetching set is not empty)

 {

 segment S = select ();

 else if(S ==null)

 segment S= select1();

 else if(S==null && bandwidth_is_available)

 Download anchor;

 Broadcast(S); //Broadcast the prefetching of segment

 If (segment S is cached by a peer in same session)

 //situation where same segment is also requested by some other

peer

 {

 Download segment S;

 Remove the segment S from prefetching list;

 }

 else if (segment S is located on a remote peer P)

 {

 Connect with the peer P;

 Download Segment S;

 Remove segment S from the prefetching set;

 }

 else // when timeout expires

 {

 Send the segment request to server;

 Connect with server;

 Download segment S;

 Remove segment S from the prefetching set;

 }

 }

}

4. PERIONFORMANCE EVALUATION

We implemented an event-driven simulator coded in C++ to

conduct a series of simulations in this section. For the end-to-end

latency setup, we employ real-world node-to-node latency matrix

(2500*2500) measured on Internet [8].We do not consider the

queuing management in the routers. The default streaming rate is

set to 500kbps.The upload and Download bandwidth of peers is

set to 500kbps.

Fig. 3 shows the comparison of percentage of VCR request

satisfied by segments prefetched for Optimize and Distributed

prefetching [5]. Optimize prefetching focus on downloading

segment which is near to its play head position and rarest in the

session or have highest popularity (highest count). On the other

hand, Distributed prefetching, prefetch segment according to user

behavior, while ignoring segments rarity. In Fig. 3 it is observed

that our scheme has higher percentage of VCR request satisfied

by segments prefetched than Distributed prefetching.

X-axis=Number of peers,

Y-axis= VCR request satisfied by segments prefetched(%)

Fig 3 : Comparison of percentage of VCR request satisfied by

segments prefetched

Fig. 4 shows comparison of the ratio of the amount of played

data to the amount of download data for complete session, of

Distributed prefetching and Optimize prefetching. In Fig. 4 it is

observed that Optimize prefetching have higher ratio of the

amount of played data to the amount of download data than

Distributed prefetching.

Fig. 5 shows comparison of network traffic due to Distributed

prefetching and Optimize prefetching. We considered gossip

message as network traffic. In Fig. 5 it is observed that

distributed prefetching had high network traffic than Optimize

prefetching.

X-axis=Number of peers,
Y-axis= ratio of the amount of played data to the amount of download

data(%)

Fig 4: Comparison of ratio of the amount of played data to

the amount of download data

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Electronics, Information and Communication Engineering - ICEICE No.6, Dec 2011

27

X-axis=Number of peers,
Y-axis= Network traffic

Fig 5: Comparison of network traffic

5. CONCLUSION

In order to provide a VCR-oriented VoD service for P2P

networks, we proposed an Optimize prefetching strategy. Our

strategy focuses on improving the availability of rarest content in

a session. Extensive simulation experiments were conducted.

Experimental results demonstrate that the proposed prefetching

scheduling algorithm scheme can significantly improve the

seeking performance

6. ACKNOWLEDGEMENT

We thank Douglas Schmidt for his helpful advice on peer to peer

video streaming.

7. REFERENCES

[1] Cool Streaming www.coolstreaming.us/ [20-Nov-2010]

[2] PPTV www.pptv.com/ [20-Nov-2010]

[3] Y. He, Y. Liu, “VOVO: VCR-Oriented Video-on-Demand

in Large-Scale P2P Networks”. In Proc of IEEE Trans.

Parallel and Distributed Systems vol 20, april.2008

[4] H. Yu, D. Zheng, B. Zhao, W. Zheng, “Understanding User

Behavior in Large-Scale Videoon-Demand Systems”. In

Proc of EuroSys 2006.

[5] C. Zheng, G. Shen, S. Li, “Distributed Prefetching Scheme

for Random Seek Support in P2P Streaming Applications”.

In Proc of ACM workshop on Advances in P2P multimedia

streaming 2005.

[6] B. Cheng, H. Jin, X. Liao, “Supporting VCR functions in

P2P VoD services using ring assisted overlays”. In Proc of

ICC 2007.

[7] C. Huang, J. Li, K.W. Ross, “Can Internet Video-on-

Demand be Profitable”. In Proc of ACM SigComm 2007.

[8] “Meridian node to node latency matrix (2500*2500),” 2005,

meridian project.

http://www.cs.cornell.edu/People/egs/meridian/data.php

[9] B. Cheng, X. Liu, Z. Zhang, and H. Jin, “A Measurement

Study of Peer-to-Peer Video-on-Demand System,” In Proc.

of IPTPS’07, Belleue, USA, Apr. 2007.

