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ABSTRACT 
Simple cells found in primary visual cortex are orientation 
selective. It has been experimentally found that they acquire 
this property with time i.e. learning of orientation selectivity 
takes place. Many computational models have been proposed 
for the development of orientation selectivity. Most of the 
models proposed so far are either abstract in nature or are 
very simplified version of actual learning mechanism. In this 
work we propose a model for development of orientation 

selectivity based on spike timing dependent plasticity 
(STDP), which till now is considered to be the actual 
learning mechanism adopted by neural circuits. We could 
obtain elongated segregated receptive field structure thus 
giving simple cells the property of orientation selectivity. 
We also observe that input activity plays a major role in the 
development of orientation selectivity, too much or too less a 
correlation between the inputs activities do not result in the 
formation of segregated ON and OFF regions in the RF 

structure [1]. There is also a need of normalization for the 
development of orientation selectivity.  

Keywords 
Simple cells, visual cortex, Hebbian model, STDP, BCM 
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1. INTRODUCTION 
The brain is complex network of neurons with 
interconnections. The visual cortex of the brain is that part of 
the cerebral cortex responsible for processing visual 
information. The average number of neurons in the adult 

human primary visual cortex, in each hemisphere, has been 
estimated at around 140 million [2]. The scientists are trying 
to simulate and understanding of the brain functions with the 
computation of different theories i.e. Hebbian[3], STDP[4] 
and BCM[5] learning rules. 

The image captured by each eye is transmitted to the brain 
by optic nerves. These nerves terminate on the cells of the 
Lateral Geniculate Nucleus (LGN), the first relay in brain 

visual pathway. The cells of LGN then project to the primary 
visual cortex. It is in the primary visual cortex that brain 
begins to construct the image.  

The scientists has been invented some computational 
learning method to develop the receptive fields to simulate 
primary visual cortex. In this paper, we take STDP method 
to develop the receptive field in primary visual cortex[6]. We 
also extend the effect of normalization for STDP to the 

analysis of ON-center and OFF-center LGN cells, and 
investigate whether normalization effects for the segregation 
of the ON/OFF subfields[1]. The effect of correlation factor 
is also analyzed for the input activity. The activities at time t 
of the ON type and OFF type LGN cells at location i with 
appropriate correlations were generated as given in Goodhill 
1993[7]. 

1.1 Synaptic Plasticity 
Synaptic plasticity [5,8] is the ability of the connection, or 
synapse between two neurons to change in strength in 
response to either use or disuse of transmission over synaptic 
pathways . Plastic change also results from the alteration of 
the number of receptors located on a synapse. There are 
several underlying mechanisms that cooperate to achieve 
synaptic plasticity, including changes in the quantity of 
neurotransmitters released into a synapse and changes in 

how effectively cells respond to those neurotransmitters. 
Synaptic plasticity[9] in both excitatory and inhibitory 
synapses has been found to be dependent upon calcium. 
Since memories are postulated to be represented by vastly 
interconnected networks of synapses in the brain, synaptic 
plasticity is one of the important neurochemical foundations 
of learning and memory. 

1.2 Synaptic Strength 
The strength of a synapse is defined by the change in 
transmembrane potential resulting from activation of the 
postsynaptic neurotransmitter receptors. This change in 
voltage is known as a postsynaptic potential, and is a direct 
result of ionic currents flowing through the postsynaptic ion 
channels. Changes in synaptic strength[10] can be short–

term and without permanent structural changes in the 
neurons themselves, lasting seconds to minutes or long-term 
(long-term potentiating, or LTP), in which repeated or 
continuous synaptic activation can result in second 
messenger molecules initiating protein synthesis, resulting in 
alteration of the structure of the synapse itself. Learning and 
memory are believed to result from long-term changes in 
synaptic strength, via a mechanism known as synaptic 

plasticity. 

1.3 SPIKE TIME DEPENDENT 

PLASTICITY (STDP) 
Spike Timing Dependent Plasticity (STDP)[4,11] is a 
biological process that adjusts the strength of connections 
between neurons in the brain. The process adjusts the 
connection strengths based on the relative timing of a 
particular neuron's output and input action potentials (or 
spikes). The STDP process is a tentative candidate for a 
hypothesis that fully explains the development of an 

individual's brain. 
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Under the STDP process, if an input spike to a neuron tends, 
on average, to occur immediately before that neuron's output 
spike, then that particular input is made somewhat stronger. 
If an input spike tends, on average, to occur immediately 
after an output spike, then that particular input is made 
somewhat weaker hence it is: "Spike-Timing-Dependent 
Plasticity". Thus, inputs that might be causing the spiking of 
the neuron are made even more likely to contribute in the 

future, while inputs that are not causing the neuron to spike 
are made less likely to contribute in the future. The process 
continues until subsets of the initial set of connections 
remain, while the influence of all others is reduced to 0. 
Since a neuron produces an output spike when many of its 
inputs occur within a brief period the subset of inputs that 
remain are those that tended to be correlated in time. In 
addition, since the inputs that occur before the output are 

strengthened, the inputs that provide the earliest indication of 
correlation will eventually become the final input to the 
neuron. Although the process occurs throughout the brain, its 
implementation is achieved at the level of individual 
neurons, and there is no need for any central oversight. 

1.4 Weight Normalization 
Weight normalization refers to a procedure whereby some 
measure of the total synaptic weight onto the recipient 
neuron is used to limit the growth of the synaptic weights. 
There are two ways to normalize the synaptic weights: (i) 
subtractive normalization and (ii) multiplicative 
normalization[12]. The implementation of the weight 
normalization is explained in method and material. 

Hebb’s theoretical considerations[3] and neurocomputational 
models proposed the idea that memories could be encoded in 
neural networks by changes in synaptic strength. At present, 
there are robust connectionist models that support this 
idea[10]. Exploring neurobiological data corresponding to 

this hypothesis started when Bliss and Lomo (1973) 
discovered long-term potentiating (long-lasting form of 
synaptic plasticity) in hippocampus[13,14]. 
 

2. MATERIAL AND METHODS 
We take simple neuron in the primary visual cortex receiving 
input from the 13x13 ON/OFF LGN[1]. Both ON/OFF 
activity are generated by the random numbers. Various 

theoretical ideas have been proposed to account for the 
manner in which this subfield segregation develops. In 1962, 
Hubel and Wiesel had suggested that simple cells in primary 
visual cortex acquire the property of orientation selectivity 
due to the structure of their receptive field (RF)[6]. The RF 
structure of these cells is composed of segregated elongated 
ON/OFF subfields. They suggested that the ON subfield of a 
RF is formed due to the convergence of inputs from several 

ON center relay cells all having their RF centers lying along 
the axis of the subfield. Similarly, an OFF subfield is formed 
due to the convergence of inputs from several OFF center 
cells arranged in a similar fashion at an adjacent location 
[15,16]. 

In this paper we have chosen to model the spatial properties 
of the retinal preprocessing by convolving the input activities 
with Difference of Gaussian (DOG) filter.  The nature uses 

the Difference of Gaussian as the basis for the architecture of 
the retina’s visual receptive field. The retina actually 
implements DOG band pass filters at several spatial 
frequencies. First, we stored the input activity in form of an 
array and this activity is used for STDP method.  

3. ARCHITECTURE OF MODEL 
In this subsection, the basic architecture of the model is 
described. In our simulation of the receptive field 
development of simple cells in visual cortex, the neuron 
receives inputs from two channels, one corresponds to ON-
center lateral geniculate cells, and the other to OFF-center 
cells. The two pathways that are ON and OFF cells do not 
interact at the level of LGN but converge in the cortex. . 

For the development of thalamocortical connections we 
assume a two layer structure as shown in the figure 1. The 
output layer composed of a simple cortical cell, which 
represent cell of layer IV C of cat primary visual cortex [16, 
17]. The input layer, which represents the corresponding 
LGN layer, is subdivided into two dimensional sheets. One 
sheet labeled “ON” consisting of ON-type LGN cells and 
other sheet labeled “OFF” consisting of OFF type-LGN 
cells. 

Each LGN cell is constructed to always arborize over a 
fixed, topographically appropriate circular patch of cortical 
cell with diameter of 13 grid unit. Also, in the beginning the 
cortical cell is connected to both types of all the LGN cells 
lying in topographically appropriate circular region in the 
LGN layer. For computational convenience all the synaptic 
contacts between one LGN cell (ON or OFF) and cortical 
cell are lumped together and are represented by a single 

quantity i.e. synaptic strength. The value of the synaptic 
strength at time t between LGN cell i in sheet labeled “ON” 
are cortical cell is described by its peak synaptic 

conductance gi
ON (t). Similarly the synaptic strength between 

LGN cell i in sheet labeled “OFF” and cortical cell is given 

Figure 1: The pathway of ON/OFF channel, 

different randomly generated input activity to the 
13X13 ON/OFF centre cell 
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by gi
OFF (t). The synaptic strength of the feed forward 

connection between LGN cell and cortical cell is considered 
to be modifiable. An integrate-and-fire neuron model 

describes each of the cortical cells. The membrane potential 
of the integrate-and-fire model neuron of the cortical cell 
then changes according to 

𝑚
𝑑𝑉

𝑑𝑡
=  𝑉𝑟𝑒𝑠𝑡 −  𝑉 𝑡 + 𝐺𝑒𝑥 𝑡  𝐸𝑒𝑥 −  𝑉 𝑡  + 𝐺𝑖𝑛(𝐸𝑖𝑛 −𝑉)  

With𝑚 = 20𝑚𝑠, 𝑉𝑟𝑒𝑠𝑡 = −70𝑚𝑉 𝑎𝑛𝑑  

𝐸𝑖𝑛 = −70𝑚𝑉. Eex is the reverse potential for the 

excitatory synapses, Ein is reverse potential for inhibitory 
synapses and V(t) is the membrane potential at time step t of 
the cortical cell in the cortical sheet. When the membrane 
potential of the neuron reaches the threshold value of -
54mV, the neuron fires an action potential and subsequently 
membrane potential is reset to -60mV. 

Whenever a particular ON (and OFF) type of LGN cell fires, 
the corresponding peak synaptic conductance contributes 
towards the value of excitatory synaptic conductance (Gex): 

𝐺𝑒𝑥 𝑡 + 1 =  𝐺𝑒𝑥 𝑡 +   𝑔
𝑖
𝑂𝑁 𝑡 .𝐴𝑖

𝑂𝑁(𝑡)
𝑀

𝑖

+   𝑔
𝑖
𝑂𝐹𝐹 𝑡 .𝐴𝑖

𝑂𝐹𝐹(𝑡)
𝑀

𝑖

 

Here M is the total number of ON (and OFF) type LGN cells 

connected to a particular cortical cell. Locking onto the 
above equation we can see that only activate presynaptic cell 
are contributing toward the increase of the value of 
excitatory synaptic conductance. During the time dt when 
there is no presynaptic activity this synaptic conductance 
decays exponentially. 

𝑒𝑥
𝑑𝐺𝑒𝑥

𝑑𝑡
= −𝐺𝑒𝑥   𝐻𝑒𝑟𝑒 𝑒𝑥 = 5𝑚 

AiON(t) and AiOFF(t) are defines as the defined as the 
activity at time t of the ON type and OFF type LGN cells at 
location i respectively. 

The model is based on a Spike-Timing Dependent Plasticity 

rule in which a function F(t) determines the amount of 

synaptic modification arising from a single pair of pre- and 

post synaptic spikes separated by a time t. The function 
shown in figure 2:  

𝐹 𝑡 =  
𝐴+exp(𝑡/+)          𝑖𝑓 𝑡 < 0 
−𝐴−exp(𝑡/−)      𝑖𝑓 𝑡 > 0

  

All value used for model are listed in the table 1.  

 

 

 

 

 

 

 

Table 1: Standard Parameters for STDP  

 
S.No PARAMETER SYMBOL OPT. 

VALUE 

1 Number of iterations   T 2700000 

2 Number of input synapses    

 Excitatory synapses(for ON 

and OFF center) 

nSe 169*2 

 Inhibitory synapses nSi 0 

3 Spread rho 1.54 

4 Conductance -Excitatory 

synapses 

gampa 0.015 

5 Time constants   

 For total excitatory synaptic 

conductance 

tampa 5ms 

 For membrane potential tm 20ms 

 For parameter Pa tap 20ms 

 For parameter  M tam 20ms 

6 Correlation Factor h 0.22 

7 Incremental Factor on arrival 

of action potential at a 

synapse ( For Pa) 

A+ (Ap) 0.005 

8 Detrimental factor (for M), 

every time post synaptic 

neuron fires an action 

potential 

A- (Am) 1.05*Ap 

9 Potentials   

 Threshold Potential Xth -54mV 

 Inhibitory synaptic potential Ecl(𝐸𝑖𝑛) -70mV 

 Resting Potential E1(𝑉𝑟𝑒𝑠𝑡) -70mV 

 Excitatory synaptic potential Eampa 0mV 

 Membrane reset potential Xrest  -60mV 

 

 

Figure 2: The STDP modification function. The change of the 

peak conductance at a synapse due to a single pre- and 

postsynaptic action potential pair is F (Δt) times the maximum 

value 𝐠max with Δt the time of the presynaptic spike minus 

the time of the postsynaptic spike. In this figure, F is expressed 

as a percentage. 
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4. WEIGHT NORMALIZATION 
The implementation of the weight normalization is explained 

below: 

4.1 Subtractive normalization 
At the starting of iteration we calculate the sum of all 
synaptic weights for ON and OFF LGNs and after updating 
of synaptic weight we also calculate the sum of all synaptic 

weights for ON and OFF LGNs.  Subtractive normalization 
factor (sn) is calculated as  

𝑠𝑛 =
 𝑤𝑗

𝑛
𝑗=1 − 𝑤𝑗−1

𝑛
𝑗=1

𝑛
 

Where i is ith iteration, wj is the weight of jth connection 
and n is total number of ON and OFF connection synaptic 
weight. All ON and OFF synaptic weights are normalized 
(by subtracting sn from all synaptic weights) as:  

𝑤𝑗 = 𝑤𝑗 − 𝑠𝑛 

Subtractive normalization is combined with hard bounds 

0 ≤ wj ≤ wmax in order to avoid runaway of individual 

weights. 

4.2 Multiplicative Normalization 
For the implementation of multiplicative normalization, we 
calculate a multiplication normalization factor as 

𝑚𝑛 =
 𝑤𝑗−1

𝑛
𝑗=1

 𝑤𝑗
𝑛
𝑗=1

 

Now all the weights are re-scaled as: 

𝑤𝑗 = 𝑤𝑗 ∗𝑚𝑛 

 

 

 

5. RESULTS AND ANALYSIS 
The random numbers are stored in a separate data file. This 
file is using to generate the input activity for the ON and 
OFF centre cell. All random numbers are range from 0 to 1as 
shown in figure 3.  

 

 

 

 

 
Figure 4(a) shows the segregation of RF for STDP method 
without normalization .Though we obtained the segregation 
of RF but it is clear that they are not in good shape as par the 

previous research papers.  

When we apply normalization technique (Subtractive and 
Multiplicative) then we obtained the segregation of RF with 
good   shape as shown in figure 4(b). We also developed the 
receptive field for different input activity. 

Figure 5: Receptive Field is Segregated for the different 

input activity, using STDP method with normalization, the 

value of correlation factor (h=0.22) 

 

 

Figure 4(b): Segregation of Receptive Field using STDP 

method with normalization, the value of correlation factor 

(h=0.22) 

 

 

Figure 4(a): Segregation of Receptive Field using STDP 

method without normalization, the value of correlation 

factor (h=0.22) 

 

Figure 3: Random numbers for 270000 iterations of input 

activity and range from 0 to 1. Only 1000 random numbers 

are shown in the figure. 
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In the figure 4 and figure 5, the receptive field developed for 
different input activities. We also vary correlations factor (h) 
from 0.16 to 0.5. For correlations factor (h=0.25), segregated 
receptive field is developed in more than two part as shown 
in figure 6 (taken same input activity as in figure 4). For 

correlations factor (h=0.27), distributed segregated receptive 
field is developed as shown in figure 7 (taken same input 
activity as in figure 4). This is analysis that the receptive 
field developed with the normalization in appropriate shape. 

 

 

 

 

6. DISCUSSION 
However, there is no evidence present for normalization of 
synaptic weight in the biological system, even though we 

used normalization technique in STDP model. STDP model 
is more realistic as compare to BCM and other models 
because STDP model is more near to biological system 
where as BCM model is basically a mathematical model. 

The correlation factor (h) varies from 0.1 to 0.5 and it is 
analyzed that there is no segregation of RF, if the value of h 
is greater than 0.27 and less than 0.1. The same size of two 
receptive field is developed with h=0.22. 

The model executed for 10 different input activities and this 
is found that after the segregation of receptive field, more 
than 30 connections are available for ON and OFF centers. 
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