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ABSTRACT  
Experimentally studies have shown that visual cortical 
neurons apply BCM (Binenstock Cooper and Munro) 
learning rule for modifications in synaptic strength. BCM 
rule uses adaptive threshold and in this both long term 
potentiation (LTP) and long term depression (LTD) is 
automatically taken care of. This overcomes the major 

disadvantage of Hebbian learning in which there is a 
mechanism only for LTP and no mechanism for LTD. Based 
on the above-mentioned experimental findings we apply 
BCM learning rule for the development of orientation 
selectivity by simple cells. We find that BCM learning rule is 
sufficient for segregation of ON and OFF regions in 
developed receptive field (RF) structure of simple cells. 
Starting from unsegregated ON - OFF regions we obtain 

elongated segregated ON and OFF regions in the RF 
structure very similar to actual RF structure of simple cells. 
The orientation selectivity thus developed is also very similar 
to what is found in actual simple cells.  
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1. INTRODUCTION 
A cubic millimeter of primary visual cortex contains about 
100,000 neurons that are heavily interconnected by intrinsic 
and extrinsic afferents. The effort of many neuroanatomists 

over the past has revealed the general outline of these 
connections; however, their function remains a mystery. 
Recently, combined physiological and anatomical 
approaches are beginning to reveal the role of these 
connections in the generation of cortical receptive fields 
(RF). A common theme emerges from all these studies: 
cortical connections are remarkably specific and this 
specificity is determined in great extent by the type of 

connection and the neuronal response properties [1].  

In this paper, we extend the BCM theory [2] to the analysis 
of ON-center and OFF-center retinal and LGN cells, and 
investigate whether BCM synaptic modification can account 
for the segregation of the ON/OFF subfields. There is 
evidence that the adjacent excitatory and inhibitory subfields 
of orientation selective cells in visual cortex are projections 
from ON-center and OFF-center retinal and LGN cells 

respectively and that the proper development of the cortical 
receptive fields requires activity. We explore the segregation 
of the ON- and OFF-center LGN afferents, by using a model 
of a single cortical cell with inputs from ON and OFF LGN 
cells. Our results indicate that there is a relation between the 
organization of simple receptive fields and the input activity 
pattern. 

2. SIMPLE AND COMPLEX CELL 
Neurons in the primary visual cortex have been traditionally 
classified as ―simple‖ and ―complex‖ based on their 

receptive field properties (Hubel & Wiesel, 1962, 1968) [9] 
classified a cell as ―simple‖ based on four different criteria. 

1. The receptive field was spatially subdivided into distinct 
sub regions that responded to either light on (on-
subregion) or light off (off-subregion). 

2. There was spatial summation within each subregion. 
3. There was spatial antagonism between on- and off-

subregions. 
4. The visual responses to stationary or moving spots 

could be predicted from the spatial organization of the 

subregions [3].  

Cells that did not fulfill these four criteria were classified as 
complex cells. The classification approach proposed by 
Hubel and Wiesel correlates well with laminar position and 
synaptic connectivity (Ferster & Lindstrom, 1983; Gilbert, 
1977; Hirsch et al., 2002);  

3. RECEPTIVE FIELD [1] 
That part of the retina whose photoreceptors (rods and cones) 
pertain to a single optic nerve fibre. The response of a neuron 
to stimulation of its receptive field depends on the type of 
neuron and the part of the field that is illuminated; an on-
centre neuron is stimulated by light falling at the centre of its 
receptive field and inhibited by light falling at the periphery; 

an off-centre neuron reacts in exactly the opposite fashion; 
that is, it is inhibited by light falling at the centre of its 
receptive field. In either case, the net response depends on a 
complex switching action in the retina. When an entire 
receptive field is equally illuminated, the response of 
receptors at the centre of the field predominates. 

4. SYNAPTIC PLASTICITY 
Synaptic plasticity [1] is a process in which synapses change 
their efficacy as a consequence of their previous activity. 
Synaptic efficacy (synaptic weight, synaptic strength) can be 
defined as an amplitude of the transmembrane voltage on the 
membrane of the postsynaptic neurons soma which arises as 
a consequence of defined unit stimulation of the presynaptic 
terminal of the synapse (Benuskova, 1988). Synaptic efficacy 

is a measure of the synapses contribution to the summary 
somatic postsynaptic potential which determines the time and 
frequency of the spike train generated after exceeding the 
excitation threshold of the neuron. 

Thus, it is directly proportional to the amplitude and duration 
of the postsynaptic potential (PSP) at the synapse. Synaptic 
weight (excitatory PSP after unit stimulation of the synapse) 
depends on two groups of factors (Benuskova, 1988; Kral, 

1997): 

A. Presynaptic factors: released amount of the transmitter 
B. Postsynaptic factors: number of the receptors types and 

properties of the receptors input electric impedance 
(depends on the morphology of the dendritic spine and 
its electric properties) 
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Change of these synaptic properties leads to the change of 
synaptic strength. This change can be short or long-lasting 
and negative or positive. 

 

5. SYNAPTIC STRENGTH 
The strength of a synapse is defined by the change in 
transmembrane potential resulting from activation of the 
postsynaptic neurotransmitter receptors. This change in 

voltage is known as a postsynaptic potential, and is a direct 
result of ionic currents flowing through the postsynaptic ion 
channels. Changes in synaptic strength can be short–term and 
without permanent structural changes in the neurons 
themselves, lasting seconds to minutes — or long-term 
(long-term potentiation, or LTP), in which repeated or 
continuous synaptic activation can result in second 
messenger molecules initiating protein synthesis, resulting in 
alteration of the structure of the synapse itself. Learning and 

memory are believed to result from long-term changes in 
synaptic strength, via a mechanism known as synaptic 

plasticity. 

6. BCM THEORY AND BCM NEURON 

[2, 4] 
Experimental data from the developing visual cortex have 
led to the formulation of a synaptic modification rule, known 
as Bienestock-Cooper-Munro (BCM) rule (Bienenstock et al, 
1982). The model has two main features:First, it postulates 
that a neuron possesses a synaptic modification threshold 

(LTP/LTD threshold or 𝑀 , which dictates whether the 

neuron.s  acticity at any given instant will lead to 
strengthening or weakening of its input synapses. Thus, the 

modification threshold, 𝑀  determines the direction of 

synaptic efficacy change. Synaptic modification varies as a 

nonlinear (parabolic) function () of postsynaptic activity 

(y) which is defined as the product between presynaptic 
activity (A) and synaptic efficacy (S). Although the firing 
rate of a neuron T(t) depends in a nonlinear fashion on the 
postsynaptic potentials, BCM theory considers that the 
region between the excitation threshold and saturation may 

be reasonably approximated by a linear input-output 
relationship of the model neuron (Benuskova, 2001). The 

function (y) changes sign at a particular value of y, that is 

the modification threshold m. m is the point of crossover 

from LTD to LTP. If postsynaptic activity is below 

m(y<m), but above baseline, (y) is negative and synaptic 

efficacies are weakened. Conversely, if y exceeds m, active 

synapses (y) becomes positive and active synapses 

potentiate. 

For any value of y<m, synaptic strength decays until it 

reaches 0. 

(y(t),M(t))= y(t).[y(t) - M(t)];  

T(t) = ∑ S(t)A(t); 

dS = δA (δ is the modification rate) 

Synaptic weight (S) changes according to Hebb‘s learning 
rule which requires correlate pre- and postsynaptic activity at 
the synapse.  

 

7. MATERIAL AND METHODS 
Receptive fields of orientation selective cells in visual cortex 
are composed of excitatory and inhibitory subfields 

connected to ON and OFF center retinal and LGN cells, 
respectively. Various theoretical ideas have been proposed to 
account for the manner in which this subfield segregation 
develops. In 1962, Hubel and Wiesel had suggested that 
simple cells in primary visual cortex acquire the property of 
orientation selectivity due to the structure of their receptive 
field (RF). The RF structure of these cells is composed of 
segregated elongated ON/OFF subfields. They suggested that 

the ON subfield of a RF is formed due to the convergence of 
inputs from several ON center relay cells all having their RF 
centers lying along the axis of the subfield. Similarly, an 
OFF subfield is formed due to the convergence of inputs 
from several OFF center cells arranged in a similar fashion at 
an adjacent location [5, 6, and 7]. 

In this paper we have chosen to model the spatial properties 
of the retinal preprocessing by convolving the input activities 

with Difference of Gaussian (DOG) filter.  The nature uses 
the Difference of Gaussian as the basis for the architecture of 
the retina‘s visual receptive field. The retina actually 
implements DOG band pass filters at several spatial 
frequencies. 

8. ASSUMPTIONS FOR 

SIMPLIFICATION 
For mathematical simplification, we take the following 
assumptions: 

1. Some retinal Ganglion cells are highly transient while 

others have a more stationary response. In our work we 
have assumed stationary temporal filter. This 
assumption is appropriate because a BCM model is a 
rate based model of synaptic plasticity which is not very 
sensitive to the temporal properties of their input. 

2. The reflected light from the object is focused by the lens 
in our eyes onto the retina. It is then sampled and 
transduced by the receptor in the retina where the retinal 
circuitry transforms these signals. The Ganglion cells 

which are the output neurons of the retina transmit this 
information through the optic nerve via optic chiasm. In 
this, input from the both eyes cross into the Lateral 
Geniculate Nucleus (LGN). From the LGN, the signal is 
projected to the visual cortex. 

3. The LGN has a complex system, including a massive 
feedback from the cortex. Recently it was shown by 
Siellito et al. in 1994, that this back projection has a 
significant impact on the temporal correlation in LGN.  

Welicky and Katz in 1994, has demonstrated that it 
increases the correlation between LGN layers from 

Figure 1: The BCM Synaptic Modification Rule denotes 

the y output activity of the neuron,M is the modification 

threshold. 
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different eyes. 

4. For simplicity we have chosen, to model the LGN as 
simple relay station which does not alter the response 
properties of the retinal ganglion cells.    

9. ARCHITECTURE OF MODEL 
In this subsection, the basic architecture of the model is 
described. In our simulation of the receptive field 
development of single cells in visual cortex, the neuron 
receives inputs from two channels; one corresponds to ON-
center lateral geniculate cells, and the other to OFF-center 
cells. The two pathways that are ON and OFF cells do not 
interact at the level of LGN but converge in the cortex.  

For the development of thalamocortical connections we 
assume a two layer structure as shown in the figure 2. The 
output layer composed of a single cortical cell, which 
represent cell of layer IV C of cat primary visual cortex [7]. 
The input layer, which represents the corresponding LGN 
layer, is subdivided into two dimensional sheets. One sheet 
labeled ―ON‖ consisting of ON-type LGN cells and other 
sheet labeled ―OFF‖ consisting of OFF type-LGN cells. 

We also assume that cells of each center type are present at 
all locations in both the sheets of the LGN layer. Each LGN 
cell is constrained to always arborize over a fixed, 
topographically appropriate circular patch of cortical cells 
with diameter of 13 grid units. Also, in the beginning the 
cortical cell is connected to both types of all the LGN cells 
lying in topographically appropriate circular region in the 
LGN layer. For computational convenience all the synaptic 

contacts between one LGN cell (ON or OFF) and one 
cortical cell are lumped together and are represented by a 
single quantity that is synaptic strength. The value of the 
synaptic strength at time t between LGN cell in sheet labeled 
―ON‖ and cortical cell is given by ―SON‖. Similarly the 
synaptic strength between LGN cell in sheet labeled ―OFF‖ 
and cortical cell is given by ―SOFF‖. The ON and OFF Cell 
has 13*13 connections (169 each). The input of ―ON‖ cell is 

given by ―AON‖ where, AON represents the activity of ON 
cell. Its weight is randomly taken as from 0.8 to 1.2 (0.8 + 
0.4*rand) by generating a random number between 0-1. 
Initially, we take threshold as 0.8. It means that it will give 
output as 1 when its value is more than 0.8 otherwise it will 
give zero. The same treatment is applicable for OFF type 
cell. The synaptic weight for ON and OFF type cell are 
represented as SON and SOFF respectively. The total input 

of ON cell and OFF cell to the cortical cell is given by 
equation 3. 

 

𝑇𝑂𝑁 =   𝑆𝑂𝑁𝑖 .𝐴𝑂𝑁𝑖 ………………… (1)

169

𝑖=1

 

 
Similarly for ―OFF‖ cells  

𝑇𝑂𝐹𝐹 =   𝑆𝑂𝐹𝐹𝑖 .𝐴𝑂𝐹𝐹𝑖 …………… (2)

169

𝑖=1

 

 
The total post synaptic response to the cortical cell is given 
by 

 

y=TON+TOFF…………………………(3) 

The sigmoid function sets the maximum and minimum 
values of the postsynaptic response relative to spontaneous 
cortical activity. Thus we can make the following relation 

y= (1/ (1+exp (-y)))……………………(4) 

The threshold is made variable depending on the post-
synaptic response. Therefore we have calculated average of 
total post synaptic response(y). This is given as                                                             

sumy = sumy+y…………………………(5) 

avy =  sumy/t1…..………………………(6) 

 We define a nonlinear function  as 

 = y * (y-avy)…………………...………(7) 

Therefore change in synaptic weight is given as follows 

dSONi = δ *  *AONi……………..……(8) 

Where, dSONi is the change in the synaptic weight of ith ON 

cells, AON is the input to the ON cells and delta is a leaning rate. 

Similarly for OFF cells, 

dSOFFi = δ *  *AOFFi………   ………(9) 

Where, dSOFFi is the change in the synaptic weight of ith 
OFF cells and AOFF is the input to OFF cells.   

10. WEIGHT NORMALIZATION 
Weight normalization is an essential feature in the 
development of receptive field. It is a procedure whereby 

some measure of the total synaptic weight onto the recipient 
neuron is used to limit the growth of the synaptic weights. 
Normally there are two ways to normalize the synaptic 

Figure 2: The pathway of ON/OFF channel, different randomly 

generated input activity to the 13X13 ON/OFF centre cell 
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weights that are multiplicative normalization and subtractive 
normalization [8].  

The implementation of the weight normalization is explained 
below 

11. SUBTRACTIVE NORMALIZATION 
In the beginning OST (Original Sum Total) is calculated as  

OST=sum(sum(SON))+sum(sum(SOFF))……..(10) 

Subtractive normalization factor K is calculated as  

K = NST-OST/TC…………………..…(11) 

Where NST is New Sum Total and calculated as OST in the 
loop and TC is the total connections. Finally, the subtractive 
normalization is performed as 

SON = SON-K………………………   (12) 

and 

SOFF = SOFF – K……………………..(13) 

After this normalization SON and SOFF less than zero are 
set to zero and SON and SOFF greater than SMAX are set to 

SMAX. 

12. MULTIPLICATIVE 

NORMALIZATION 
For the implementation of multiplicative normalization, we 
calculate a factor  

K1 = OST/ NST………………….……(14) 

Now the weights are re-scaled as: 

SON = SON*K1……………………….(15) 

And  

SOFF = SOFF * K1……………………(16) 

13. ACTIVITIES OF LGN CELLS 
The activities at time t of the ON type and OFF type LGN 

cells at location i with appropriate correlations (h=0.2) were 
generated as given in Goodhill 1993.   

The standard parameters used in the model, are shown in the 
Table 1.  

 
 

 

Table 1: Standard Parameters 

Sl. Parameter Symbol Optimal 

Value 

1 Number of Iterations t1 35000 

2 Number of Input 

Activities 

ON-CENTER 

OFF-CENTER 

 

 

AON 

AOFF 

 

 

169 

169 

3 Synaptic Weight (Initial) SON 

SOFF 

From 0.8 

to 1.2 

4 Learning rate Δ 0.1 

    

6 Maximum Synaptic 

strength 

SMAX 6 

7 Time Difference Dt 0.5 

 

14. RESULTS AND ANALYSIS: 
In our model, we stored random numbers in a 35000x169 
array. This array used for generation of input activity. We 

run this model with optimal constraints as given in table 1, 
for nine times and found same result (segregated RF) as 
shown in figure 3. 

14.1 Effect of Correlation Factor 'h' on 

Development of Simple Cell RF Structure 
The correlation factor ‗h‘ determines how correlated or 
uncorrelated the activities of ON and OFF type of LGN cells 
are? In this model, we vary ‗h‘ from 0 to 0.5 in the step of 
0.1. h=0, means that ON and OFF cell activities are 
anticorrelated, h=0.5 means that the activities are perfectly 

correlated. As can be seen from figure 4 that for h=0 the 
activities of ON and OFF type cells are not same at any 
spatial location whereas for h=0.5 the activities of ON and 
OFF type cells are exactly similar at all the spatial locations. 
The development of receptive field is also dependent on 
amount of correlation between the ON and OFF type of LGN 
cells. We varied the value of ―h‖ and kept all the other 
variables constant as mentioned in the table 1.   

 

 

 

Figure 4: The effect of correlation factor (h) on the 

development of RF for same input activity. ‘h’ 

vary from 0 to 0.5 with the step of 0.1 Figure 3: Development of RF for same input activity 
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15. DISCUSSION 
The BCM model is an important theoretical treatment of 

plasticity in the developing visual cortex that appears 
applicable to many other brain regions [2]. As we have seen 
that when the correlation factor is varied, the segregation 
gets disturb. After the particular value of h, the segregation 
does not occur. 

We found that optimal value of h is 0.2. The reason is that as 
the correlation between ON and OFF type cell increases the 
synaptic strength of connection between ON/OFF and simple 

cell increase/decrease in similar fashion from similar spatial 
locations.  

It is obvious that if we decrease the learning rate then we 
have to increase the number of iterations. 
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