
Special Issue of International Journal of Computer Applications (0975 – 8887)

on Electronics, Information and Communication Engineering - ICEICE No.1, Dec 2011

12

A Pipelined Architecture for High Throughput Efficient
Turbo Decoder

S. M. Karim Girish Mahale Indrajit Chakrabarti
Indian Institute of Technology

Kharagpur
IBM India Pvt Ltd.
Bangalore, India

Indian Institute of Technology
Kharagpur

ABSTRACT
This paper presents a new pipelined architecture of Turbo

decoder which runs at nearly four times the speed of a recently

reported architecture with a reasonable increase in hardware.

The proposed architecture is based on block-interleaved

pipelining technique which enables the pipelining of the add-

compare-select-offset (ACSO) kernels. Moreover next

iteration initialization (NII) method has been adapted in the

proposed work to initialize sliding window border values. The

decoder chip consumes 219.8 mW of power at a maximum

operating frequency of 192.3 MHz when implemented using

0.18 μm CMOS technology. Synthesis results indicate that the

designed turbo decoder can achieve a decoding throughput of

38.46 Mb/s with an energy efficiency of 1.14 nJ/ bit/ iteration

at the maximum operating frequency. The proposed

architecture is therefore considered suitable for a real time

wireless application such as video-telephony in mobile

networks.

Keywords:

Iterative turbo decoder, high speed architecture, sliding

window, block interleaved pipelining, pipelined ACSO.

1. INTRODUCTION

Turbo codes [1] have been adopted in various standards for

wireless communication systems, such as 3GPP [2], W-

CDMA [3], CCSDS [4], IEEE 802.16, and DVB-RCS [5] due

to the outstanding performance in terms of bit error rate (BER)

at very low signal-to-noise ratio (SNR).
Turbo decoder as shown in Figure 1 consists of two

constituent decoders, known as soft-input soft-output (SISO)
decoders, which communicate iteratively through an
interleaver/de-interleaver. The SISO decoders calculate the log-
likelihood ratios (LLR) of each of the two component codes
using maximum a posteriori probability (MAP) algorithm,
often simplified to MAX-Log-MAP or Log-MAP algorithm for
efficient implementation in VLSI circuit. The throughput and
complexity of turbo decoders and receivers are mostly
determined by the SISO decoders. This is why active research
in design of high-throughput MAP decoders has been
undertaken.

The decoding of turbo code is based on the utilization of
the a priori information of the component code iteratively. The
a priori information for one component code is obtained by
permuting the extrinsic information derived from the LLR
values of the other component code. In an alternate cycle, the
original codeword followed by the interleaved codeword is
getting decoded by the component decoder. The intermediate
soft values obtained from one iteration are used for the next
iteration. Finally, the decision is made after running the
iterations completely. Due to this iterative process, it is difficult
to achieve a high throughput with the conventional turbo

decoders used in the recent applications. Applications of a
heuristic approach to reduce the total number of iterations and
modification of architectural design have been recently
reported [6] to alleviate the throughput bottleneck of the turbo
decoder.

Figure 1. Decoding structure for turbo code

Reduction of the critical path delay of the computational
unit paves the way for attaining high throughput. Add-
Compare-Select-Offset (ACSO), the computational kernel in
SISO decoder, calculates the state metric values in recursive
manner which poses restrictions on the reduction of critical
path delays. ACSO can be pipelined with minimal silicon area
overhead to reduce the critical path delays and hence the
system operating frequency can be increased to yield high
throughput. However, pipelining the ACSO structure requires
the data blocks to be processed independently. The warm-up
property allows data dependency to be circumvented by
dividing data frame into sub blocks with appropriate border
values.

The MAP algorithm [1] was used in the original turbo
decoding. However, as it is too complicated to be implemented
in VLSI, it gave way to the computationally less intensive
Max-Log-MAP [7] and Log-MAP algorithms [7] that operate
in the logarithmic domain. In these two algorithms, the
multiplications are replaced with additions, and the
exponentiations disappear. To improve the decoding speed,
sliding window MAP algorithm [8] was introduced to the turbo
decoding.

Researchers have extensively delved into the feasibility of
achieving high-throughput implementations of turbo decoder.
These high-throughput architectures are based on parallel
processing [9]-[11], look-ahead computation [12]-[14] and
pipelined architecture [14]-[15].

Parallel processing and look-ahead computation achieve
high throughput at the cost of complexity and silicon area. But
the pipelined technique presented in [14] demonstrates the use
of pipelining technique to enhance the throughput with minimal
impact on silicon area. It employs two levels of pipelined
ACSO in the form of block-interleaved pipelining (BIP) [14]-
[15] at the architectural level to design a high-throughput MAP

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Electronics, Information and Communication Engineering - ICEICE No.1, Dec 2011

13

decoder. Increasing the number of pipeline stages can further
reduce the critical path whereas the complexity remains within
a tolerable increase. The proposed work aims at increasing the
level of pipelining at the ACSO and subsequent stage of design
in order to decrease the critical path delays. However, the
consequent increase in latency due to the high level of
pipelining is not desirable. With a view to making the proposed
design suitable for real time applications like wireless video
communication the sliding window technique along with the
next iteration initialization (NII) [16] method has been utilized
in the present work to circumvent further delay in calculating
the dummy backward metrics.

The remainder of this paper is organized as follows.
Section II describes the sliding window Log-MAP algorithm.
Section III describes the pipelined ASCO kernel and data flow
for block interleaved sliding window Log-MAP procedure with
sliding window next iteration initialization method. The
implementation of the pipelined Log-MAP decoder architecture
is described in Section IV, followed by an ASIC
implementation of the Log-MAP Turbo Decoder chip in
Section V. Finally, conclusions are drawn in section VI.

2. SLIDING WINDOW LOG-MAP

ALGORITHM

A. LOG-MAP Algorithm

A Log-MAP decoder [17] computes the branch

metrics (',)k s s , forward state metrics 1 ()k s , backward

state metrics
1
(')

k
s

 and the log-likelihood ratio

(LLR) ()kL u using the following equations

1

1
(',) [()]

2

n

k k k c kl kl

l

s s u L u L y x

 (1)

*

1 '() max [(') (',)]k s k ks s s s (2)

*

1 (') max [() (',)]k s k ks s s s (3)

k

k

*

s', s: u 1

*

s', s: u 0

() max [(')+ () (',)]

max [(')+ () (',)]

k k k k

k k k

L u s s s s

s s s s

 (4)

where k is a trellis index, uk is the data at the kth trellis
index, s and s’ are trellis states. L(uk) is a priori information, xk
denotes the transmitted codeword, yk denotes the received
codeword, n is the number of parity bits, and Lc is the channel
reliability value.

 The sign bit of the parameter L(uk) (LLR) decides whether
the transmitted bit uk was +1 or -1, whereas its magnitude
represents the confidence of the decision taken. The

*
max (,)x y operation is defined as

 * | |
max (,) max(,) ln 1

x y
x y x y e

 (5)

The
*

max (,)x y can be implemented by an add-compare-

select-offset (ACSO) unit as shown in Figure 2. A small look-
up table (LUT) is used to provide the correction term to be
added with the state metric values.

Figure 2. Conventional ACSO Architecture

B. Sliding Window Data Flow Graph

The present work is based on the sliding-window log-MAP
algorithm [8] as it minimizes the metric storage requirements.
The sliding window Log-Map algorithm (SW Log-MAP) can
be derived via the warm-up property which states that the

forward and the backward metrics k and
k

 converge after a

few constraint lengths have been traversed in the trellis,
independent of the initial conditions. The warm-up period (L)
[8] is normally taken as four times the constraint length. In
sliding window technique, the warm-up property can be
employed for computing the backward metrics as shown in the
data flow graph in Figure 3, where the warm-up and the
computation processes are depicted using dashed and solid
lines, respectively.

Sliding window is based on three recursion units, two of
which are used for backward recursion (RUB1 and RUB2) and
the third is used for forward recursion (RUA) unit. In the data
flow graph, the vertical axis represents the processing time
expressed in units of a symbol period. The horizontal axis
represents the received symbol or trellis time. Figure 3
describes how the L symbols {Yk}L<k≤2L are decoded. Over the
duration from time t=L to 2L-1, RUB1 performs L recursions,

starting from Y3L-1 to Y2L. The state vector
k

 is initialized with

the all-zero value and after processing L symbols, convergence

is reached and
2 L

 is obtained. Next, between t=2L and 3L-1,

RUB2 starts from state
2 L

 to compute
2 1L

down to
L

 . The

vectors {
k

 }L<k≤2L are stored in the state vector memory unit

for LLR computation. Finally, between t=3L to 4L, the

recursion unit RUA generates the vectors {
k

 }L<k≤2L and the

vector
k

 corresponding to the computed
k

 is extracted from

the memory in order to compute LLR L(uk). This process is
repeated after every L cycles.

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Electronics, Information and Communication Engineering - ICEICE No.1, Dec 2011

14

Figure 3. Data flow graph of the sliding-window log-MAP

decoder with the assumption that the computation and

warm up periods are equal to L

3. PIPELINED ACSO UNIT

A pipelined architecture for the ACSO unit is shown in
Figure 4. In ACSO, the look-up table (LUT) is implemented by
combinational logic. To prevent arithmetic overflow and to
reduce hardware complexity, metric normalization schemes are
employed by the metric re-scaling block in the ACSO. At each

time instant, one checks if any of the state metrics (or) is

larger than 2q-2, where q represents the word length of the state
metrics. If one of the state metrics is larger than 2q-2, then 2q-2 is

subtracted from all the state metrics (or). The state

metrics remain same if their values are well below the
maximum value that can be represented by the word length
[14]. The ACSO is divided into four parts by inserting the q bit
registers, and the critical path is therefore broken into shorter
ones. This technique improves the clock frequency up to four
times compared to the conventional ACSO. Registers should be
inserted at proper location such that the critical path can be
divided into almost equal parts.

Figure 4. The pipelined ACSO Architecture; R denotes

register

ACSO units with two and four stages of pipelining have
been synthesized in Synopsys DesignVision using Faraday
0.18μm library. Table I depicts the critical path length and the
maximum frequency obtained in two cases. It may be observed
that by the four level pipeline of the ACSO block, reduction of
the critical path can be achieved by a factor nearly equal to four
compared to the conventional ACSO block.

TABLE I. Comparison of Pipelined ACSO Units

However, incorporating the warm up property in the sliding
window increases the latency for the pipelined ACSO structure.
This unwanted delay can be circumvented by using the warm-

up free calculation (initialized by the previous iteration

values) in the sliding window Log-Map algorithm. It is the
sliding window next iteration initialization method [13], in
which the pointer generated by backward recursion at the
iteration k is used to initialize the backward recursion at k+1th

iteration. The values corresponding to the previous iteration

are stored in memory and in the next iteration, these are used to
start calculation of the backward metric

Figure 5 shows the corresponding data flow graph for the
block of size N=16L with pipeline level M=4 such that the
block is divided into few sub blocks each of size 4L. The
forward state metrics are calculated within a sub block, while
the backward state metrics are recursively computed within a

sliding window. The backward state metric
L

 obtained from

the trellis section between 2L and L in the previous iteration is

used to start calculation for the trellis section between L and

0. The initial values of the backward state metrics for all sub
blocks are obtained in a similar fashion. The forward state
metric values at the end of each sub block are used to start the
forward recursion of the next sub block. For example,

values at 4L trellis stage in the 1st sub block will be used to start
the forward recursion process of the 2nd sub block in the next
iteration. The forward and backward recursions were initialized
by using zero vectors for the starting iteration.

Figure 5. Data-flow graph of sub block interleaved MAP

computation for sliding window with warm-up free β

calculation

4. ARCHITECTURE OF THE

PIPELINED LOG-MAP DECODER

The architecture of SISO (soft input soft output) decoder
for Log-Map turbo decoder chip is shown in Figure 6.

ACSO type critical path

(ns)

max. frequency

(MHz)

Conventional ACSO 6.8 147.06

Two level pipelined 3.6 277.78

Four level pipelined 1.8 555.55

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Electronics, Information and Communication Engineering - ICEICE No.1, Dec 2011

15

Figure 6. Architecture of the SISO decoder chip where WI

and Wpm denote the input data precision and the path-

metric precision respectively

The SISO architecture is implemented following the block
interleaved pipelining technique and using the sliding window
Log-MAP algorithm with warm-up free backward metric
calculation, as shown in data flow graph (vide Figure 5). The

proposed SISO decoder is composed of unit, unit,

unit, and LLR unit all of which are pipelined. The unit has

one 4L×Wpm RAM to store the values and one
in

 RAM to

store the initial values of to be used to initialize the

calculation for the next iteration. Another storage unit of size
4L×WI is required in the form of LIFO (where WI is the input
data precision). The LIFO buffer is required to reorder the input

sequence into the unit, since the unit operates in a time

reversed order

C. Branch Metric Calculation unit

The branch metrics are computed based on the

knowledge of the input and the output associated with the

branch transition from one state to another. To reduce the

memory, the branch metric unit (BMU) only stores the
B j

k

and

the other branch metrics can be generated from the stored
B j

k

where j=0, 1, ..., 2m-1, B=2m+1-1 and m is the order of the

associated encoder memory. The word length of the BMU can

be reduced to 2m x nbm bits [15] where nbm stands for number of

bits to represent a single branch metric.

D. Forward and Backward State Metric (SM)

Calculation module

.The structure of a forward state metric calculator (unit)

bears resemblance to that of the backward state metric

calculator (unit). However, the unit provides the output

of sum of the forward state metric and the branch metric to the

LLR-unit for LLR calculation. Whereas, the unit gives the

backward state metric values, which have been stored in
memory. Based on the precision of the calculation and the
hardware complexity, the state metric is represented by a 9 bit

unsigned number. The unit and unit updates the state

metrics in parallel employing 2K-1 ACSO kernels, where K is
the constraint length. Along with the β-calculation unit, the β -
unit also has 2K-1 LIFO (each LIFO has the size of 4L×Wpm) so
that each LIFO stores the intermediate 4L backward path

metrics (L from each sub block) for each state. The
in

 RAM

(whose size is equal to the number of windows in each sub
block multiplied by 2Wpm) is used to store the initial values

of to start the backward state metric calculation in the next

iteration.

5. ASIC IMPLEMENTATION OF MAP

DECODER

The MAP decoder has been implemented using a

Standard cell based design methodology. It uses Faraday 0.18

μm library, targeting the UMC 0.18 μm six-metal

Mixmode/RFCMOS Process. The MAP decoder has been

implemented in Verilog and its functionality has been verified

using a Synopsys register transfer level (RTL) simulator.

Table II shows the area and power requirement for the

designed component and the whole of the turbo decoder. Each

sub module in the RTL behavioral description of the MAP

architecture has been translated into a gate-level netlist using a

Synopsys DesignVision tool.

TABLE II. Area and power for the proposed pipelined
Turbo Decoder

Design Module Area (mm2) Power

(mW)

SISO Decoder 0.45 38.4

Interleaver–Deinterleaver

memory

0.25 19.1

Input buffer 0.52 62.6

MAP Decoder without input

buffer

1.33 157.2

Turbo Decoder 1.85 219.8

The corresponding layout as depicted in Fig. 7 has

been generated using Cadence SOC Encounter tool. Layout-

versus-schematic (LVS) and design-rule-check (DRC) have

been followed by static timing verification using Synopsys

PrimeTime analyzers at the sub block and full chip levels.

Power has been calculated using Synopsys PrimePower.

TABLE III. Pipelined turbo Decoder IC Characteristics

Turbo decoder [18] [14] This

work

Technology 0.25 μm 0.18 μm 0.18 μm

Supply Voltage (Volts) 2.5 1.8 1.8

Core Size (mm2) 8.9 8.7 9.65

Max. System Clock (MHz) 135 285 192.3

Max. throughput (Mbps) 5.48 27.6 38.46

Power Consumption (mW) n.a 330 219.8

Energy efficiency

(nJ/b/iteration)

6.98 2.36 1.14

Table III summarizes the key characteristics of the

designed pipelined turbo decoder architecture and provides

comparison with two important existing turbo decoder

implementations.

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Electronics, Information and Communication Engineering - ICEICE No.1, Dec 2011

16

Figure 7. Chip layout diagram of pipelined turbo decoder

6. CONCLUSIONS

This paper presents high throughput architecture for Log-MAP

Turbo decoder by combining block interleaved pipelining

(BIP) and sliding window techniques with next iteration

initialization method. Moreover, the design has been

synthesized and in a 1.8V, 0.18 μm CMOS process. It has

been demonstrated that the proposed architecture achieves the

goal of high throughput turbo decoders. High-throughput

operation has been achieved via four level block-interleaved

pipelining of the ACSO kernel. The latency is also reduced by

warm up free backward metric calculation. The new

architecture speeds up the decoding process with a tolerable

increase in hardware resource. The designed MAP decoder

core consumes an area of 9.65 mm2 and can achieve a

decoding throughput of 38.46 Mb/s with a latency of 11.3μs

with five iterations. The interleaver size is 512 bit. The chip

consumes 219.8 mW of power at 1.8-V supply when operating

at maximum frequency of 192.3 MHz. The proposed design is

deemed appropriate for real time wireless video applications.

7. REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near

Shannon limit error-correcting coding and decoding:

Turbo codes,” in Proc. IEEE Int. Conf. Communications,

Geneva, Switzerland, pp. 1064–1070, May 1993.

[2] Third Generation Partnership Project, “3GPP home

page,” www.3gpp.org.

[3] Japan’s Proposal for Candidate Radio Transmission

Technology on IMT-2000: W-CDMA [Online].

Available: http://www.arib.or.jp/IMT-2000/proponent.

[4] Telemetry Channel Coding, Consultative Committee for

Space Data Systems (CCSDS), Blue book 101.0-B-4,

May 1999.

[5] C. Douillard, M. Jezequel, C. Berrou, N. Brengarth, J.

Tousch, and N. Pham, “The turbo codec standard for

DVB-RCS,” in Proc. 2nd Int. Symp. Turbo Codes and

Related Topics, Brest, France, Sept. 2000.

[6] J. Kaza and C. Chakrabarti, “Design and implementation

of low-energy turbo decoders,” IEEE Trans. VLSI

Systems, vol. 12, no. 9, pp. 968–977, Sep. 2004.

[7] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and

sub-optimal maximum a posteriori algorithms suitable for

turbo decoding,” European Trans. Telecomm., vol. 8, no.

2, Mar.-Apr. 1997.

[8] E. Boutillon, W. J. Gross, and P. G. Gulak, “VLSI

architectures for the map algorithm,” IEEE Transactions

on Communications, vol. 51, no. 2, pp. 175-185, Feb

2003.

[9] G. Prescher, T. Gemmeke, and T. Noll, “A

Parameterizable Low-Power High-Throughput Turbo-

Decoder,” in Proc. 2005 IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP

2005), Philadelphia, Pennsylvania, USA, pp. V–25–28,

Mar. 2005.

[10] D. Gnaedig, E. Boutillon, J. Tousch, and M. Jezequel,

“Towards an optimal parallel decoding of turbo codes,”

in Proc. 4nd International Symposium on Turbo Codes &

Related Topics, Apr. 2006.

[11] O. Muller, A. Baghdadi, and M. Jezequel, “From

Parallelism Levels to a Multi-ASIP Architecture for

Turbo Decoding,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 17, no. 1, pp. 92–

102, Jan. 2009.

[12] T. Miyauchi, K. Yamamoto, and T. Yokokawa, “High-

performance programmable SISO decoder VLSI

implementation for decoding turbo codes,” in Proc. IEEE

Global Telecommunications Conf., vol. 1, pp. 305–309,

2001.

[13] M. Bickerstaff, L. Davis, C. Thomas, D. Garret, and C.

Nicol, “A 24 Mb/s radix-4 LogMAP turbo decoder for 3

GPP-HSDPA mobile wireless,” in IEEE ISSCC Dig.

Tech. Papers, pp. 150–151, 2003.

[14] S. Lee, N. Shanbhag, and A. C. Singer, “A 285 MHz

pipelined MAP decoder in 0.18 um CMOS”, IEEE J.

Solid-State Circuits, vol. 40, no. 8, pp. 1718–1725, Aug.

2005.

[15] Seok-Jun Lee, Naresh R. Shanbhag, and Andrew C.

Singer, “Area-efficient high-throughput MAP decoder

architectures,” ICASSP, pages 25–28, 2005.

[16] J. Dielissen and J. Huiskens, “State Vector Reduction for

Initialization of Sliding Windows MAP,” in Proc. 2nd

International Symposium on Turbo Codes & Related

Topics, Brest, France, pp. 387–390, Sep. 2000.

[17] J. Woodard and L. Hanzo, “Comparative study of turbo

decoding techniques: An overview”, IEEE Trans.

Vehicular Technology, vol 49 no. 6, pp. 2208–2233, Jun

2000.

[18] M. C. Shin and I. C. Park, (2007). “SIMD processor-

based turbo decoder supporting multiple third-generation

wireless standards”, IEEE Trans. Very Large Scale

Integration (VLSI) Syst., vol. 15, no. 7, pp. 801–810, Jul.

2007.

