
Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Electronic Design and Signal Processing (ICEDSP) 2012

34

RISC Architecture based DLX Processor for Fast

Convolution and Correlation

Sumalatha S

Department of ECE
Acharya Institute of technology

Bangalore-90, Karnataka.

Rajeswari
Department of ECE

Acharya Institute of technology
Bangalore-90, Karnataka.

Jayalaxmi.H
Department of ECE

Acharya Institute of technology
Bangalore-90, Karnataka.

ABSTRACT
The need for convolution and correlation arises most

frequently in all signal processing applications, which

demands for optimization in processing speed. In this paper

an efficient architecture for the implementation of Fast

Correlation and Convolution using FPGAs through DLX 32-

bit RISC processor is proposed. The proposed methodology

mainly focuses on the design of 32-bit pipelined RISC

processor based on the DLX architecture to perform fast

convolution and correlation operations. The experimental

results demonstrate that Field Programmable Gate Arrays

FPGAs provide flexibility in architecture design and optimizes

the processing speed in few nano seconds.

General Terms

Convolution, Correlation, Architecture, Processors,

Keywords

FPGA, DSP, Modelsim, correlation, convolution, Spartan3,

Xilinx.

1. INTRODUCTION
DSPs are commonly used to speed up the computation of

many signal and image processing algorithms. Though easy

to program, DSPs have a fixed architecture that limits the

kind of operations that can be performed[1]. DSPs therefore

do not provide a system-on-a-chip solution which is a

drawback when space and mobility are a concern. ASICs

on the other hand provide the greatest amount of flexibility

in designing the architecture but suffer from a long and

tedious design process. Furthermore, the high cost of

designing and fabricating an ASIC can make it prohibitive to

use [2]. Reconfigurable devices such as FPGAs provide a

middle ground. The design process is shorter and cheaper

than for an ASIC and they provide much greater flexibility

than DSPs making it possible to develop a variety of

algorithms like convolution and correlation from start to

end on the FPGA. Another important advantage of FPGAs is

that they are reconfigurable and also a process can be

completed in a span of nano-seconds so that the same chip

can be used for different purposes.

1.1 DLX Processor
The DLX Microprocessor is a RISC Processor designed by

John L. Hennessy and David A. Patterson, the principal

designers of the MIPS and the Berkeley RISC designs

(respectively), the two benchmark examples of RISC design

[3,4]. The DLX is essentially simplified MIPS with simple

32-bit load/store architecture. The DLX design is widely used
in university-level computer architecture courses[5] to help

students to get knowledge about the RISC processor in

terms of instruction encoding & decoding, pipelined

operations, functions of each component within the

processor, types of instruction set and operations etc. It is

based on classic Harvard architecture of Separate instruction

and data memories to allow simultaneous instruction fetching

and data memory transactions. It supports 3 types of
instruction formats (I, R & J) & uses immediate &

displacement addressing modes. In non pipelined execution,

each instruction takes 5-clock cycles.

1.2 Convolution And Correlation
Convolution is the most important and fundamental concept

in signal processing and analysis. By using convolution, we

can construct the output of system for any arbitrary input

signal, if impulse response of that system is known. The

convolution can be defined for functions on groups other than

Euclidean space. In particular, the circular convolution can

be defined for periodic functions (that is, functions on the

circle), and the discrete convolution can be defined for

functions on the set of integers.. The mathematical definition

of convolution in discrete time domain [6] is given in

eqn.(1)

 = (1)

 On the other hand correlation [6] is a measure of similarity of

two waveforms as a function of a time-lag applied to one of

them. This is also known as a sliding dot product or inner-

product. It also has applications in pattern recognition. single

particle analysis, electron tomography averaging,

cryptanalysis, and neurophysiology. For discrete functions, the

cross-correlation is defined as shown in eqn. (2)

 (2)

k = 0,±1,±2,…..

 where x(n) & y(n) are two real signal sequences, each of

which has finite energy. The index k is the (time) shift

parameter and the subscripts xy on the cross correlation

sequence Rxy(k) indicate the sequence being correlated. The

order of the subscript with x preceding y, indicates the

direction in which one sequence is shifted, relative to the

other. i.e. x(n) is un-shifted and y(n) is shifted by k units in

time, to the right for k positive and to the left for k negative.

Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Electronic Design and Signal Processing (ICEDSP) 2012

35

2. IMPLEMENTATION
The proposed method mainly concentrates on the design of

32-bit pipelined RISC processor based on the DLX

architecture to perform fast convolution and correlation

operations, which is most required for almost all signal

processing applications. The processor is designed to handle

both integer and IEEE-754 floating point data formats

making it effective for any application requiring floating

point operations, namely graphics and scientific.

Additionally, many modern multimedia applications requires

the use of concurrent data calculations, which it can

handle smoothly because of three pipeline stages. The

processor design follows classic Harvard architecture of

separate instruction and data memories to allow simultaneous

instruction fetching and data memory transactions. The

processor is designed by a powerful and flexible hardware

descriptive language VHDL[7]. VHDL model of the DLX

microprocessor consists of various functional units which

were created as components. These components were coded as

separate modules which were composed, simulated and then

instantiated in the main entity. This microprocessor contains

the following functional modules as shown in fig-1.

Fig 1: VHDL model of DLX processor

2.1 Implementation of DLX Processor
Assembler: This module converts the assembly code

written in text editor into equivalent binary instructions by

following dlx instruction formats.

Counter Unit: Functions as instruction fetching module. Once

it fetches one instruction from ROM the program counter is

automatically incremented to fetch further instructions from

the instruction memory.

Instruction decoding and control unit: Instruction fetched is

decoded based on I-type or R-type format. The controller then

fetches operands from the RAM(data memory) if data is

reside in register specified in register fields of the instruction
otherwise 16- bit immediate data is sign extended to make 32-

bit data and issues command to ALU as per the opcode

decoded by decoder.

ROM(Program Memory): General purpose ROM memory

module for instruction storage, in which instructions are
downloaded from the in binary form by following the DLX

instruction format.

RAM (Data Memory): Data memory is also called register file

that contains all the 32-bit general purpose registers and 32-bit

floating point registers of the microprocessor. The register file

is not containing any reserved registers, such as the PC, the
status register, or other special registers so that all register

can be used for all operation.
ALU: Arithmetic and logic unit, performs particular operation
on the given operators and operands. Various command
operations that can be performed are Addition, Subtraction,
AND, OR, XOR, logical comparisons, shift (left / right),
divide, multiply Increment, decrement etc.

The complete methodology of DLX processing is described

in the following flowchart shown in fig-2.

Fig 2: Processing model of DLX processor

Start

If Clock =’0’ &

Reset=’1’

Initialize all Registers

& Memory If Sel=0

Integer unit

Floating

point

unit

Fetch instruction from

program memory

If instruction

is ALU

Perform ALU

operation

Perform MOVE

operation

A <--imm_val

A <--B

B <--A

If enable=’1’

Result=result1 Count=count+1

Stop

Yes

Yes

Yes

Yes No

No

No

No

Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Electronic Design and Signal Processing (ICEDSP) 2012

36

Devices Available Used Percentage of
device utilized

Flip Flops 7168 100 1%
Slices 3584 961 26%
4 input LUTs 7168 1759 24%
Bonded IOBs 97 9 9%
BRAMs 16 1 6%
MULT18X18s 16 3 18%
GCLKs 8 1 12%

2.2 Implementation of convolution
The response y(n) of LTI system as a function of the input

signal x(n) and the unit sample response h(n) is called a

convolution and is given by

Y(n) = 





k

knhkx)()((3)

The index in the summation k indicates both the input signal

x(k) and impulse response h(n-k) are functions of k.The

process of computing convolution between x(k) and h(n-k)

involves following four steps.

Folding: fold h(k) about k=0 to obtain h(-k)

Shifting: shift h(-k) by n to the right if n is positive or to the

left if n is negative to obtain h(n-k)

Multiplication: multiply x(k) by h(n-k) to obtain the product

sequence.

Summation: sum all the values of the product sequence to

obtain the value of the output y(n).

2.3 Implementation of Cross Correlation
The cross correlation is similar in nature to the convolution of

two functions, whereas convolution involves reversing a

signal and shifting it and multiplying by another signal,

correlation involves shifting and multiplying. Thus the

convolution of x(n) with y(-n) yields cross correlation Rxy (k).

3. SIMULATION AND SYNTHSES

RESULTS
Simulations were conducted to verify the feasibility of the

proposed technique. The VHDL code for the DLX

microprocessor was programmed in Xilinx-ISE 9.1i and

was simulated successfully in Modelsim XE III 6.2C

tool [8]. Individual blocks of the DLX Microprocessor

Architecture was created as different modules and simulated

separately and verified. for accurate results. Later these

modules were instantiated in the Main Architecture. The

main Architecture was then used to implement both

convolution and correlation algorithms. The algorithms were

written by following op-codes as well as instruction

formats of DLX processor then it is processed by designed

architecture and simulated successfully using Modelsim XE

III 6.2C tool. Both algorithms were verified for various

integer samples. The fig.3 and fig.4 shows simulation results

for both convolution and correlation.

Fig 3: Simulation result of convolution

 Fig 4: simulation results of correlation

The simulation results shows that the designed DLX

architecture works as a pipelined processor with each

instruction in pipelined execution takes 3-clock cycles. The

processing speed or both convolution and correlation was

found to be 13 nanoseconds. Finally the proposed design

is implemented on Spartan-3 XC3s400 FPGA board [9]

and verified the design by running both convolution and

correlation programs for various integer samples, with

verifying results for each case.

The RTL model of synthesized code is shown in fig-5 and

also the number of devices used in the Spartan3 FPGA board

is listed in Table-1.

Fig 5: RTL model of the proposed method

Table-1: List of components used on XC3S400 Board

Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Electronic Design and Signal Processing (ICEDSP) 2012

37

4. CONCLUSION
The primary objective of coding DLX processor using VHDL

language was successfully completed. The designed

architecture is examined by running both integer and floating

point instruction. Finally the correlation and convolution

algorithms were written and results are obtained by simulation

as well as by realizing the code on Spartan-3 FPGA board. On

future the performance of the proposed design is to be

embedded for signal processing applications involving

convolution and correlation, optimizing its speed of operation.

5. REFERENCES
[1] J mirald.’The future of high performance COTS signal

processing hybrid FPGA/DSP architecture, the optimal

solution in DSPFPGA.com resorce guide-2006

[2] Z.Guo.W Najjar F Vahid and K.Vissers. “ A antitative

analysis of the speedup factors FPGAs over processors,

in ACM/SIGDA International Symposium on Field

Programmable Gate arraya_FPGA Monterey C.A22-24

Febraury 2004 vol 12 pp 162-170

[3] Patterson D Hennessy,J.”Computer Architecture A

Quantitative approach” Morgan Kaufmann Publishers

1996, in Second edition.

[4] Patterson D Hennessy,J. “Computer Architecture A

Quantitative approach” Morgan Kaufmann Publishers

1996, in Third edition.

[5] Ellard et al. “On the design of a new CPU architecture

for pedagogical purposes”, Proceedings of the 2002

workshop on Computer architecture education: Held in

conjunction with the 29th International Symposium on

Computer Architecture, May 2002

[6] John G Prokis, Dimitris G Monolakis “Digital Signal

Processing-priniples,algorithms and applications”

Prentice Hall of India Pvt Ltd ©2007 4th edition.

[7] P. J. Ashenden The Student’s Guide to VHDL. San

Francisco, CA:Morgan Kaufmann, 1998..

[8] http://www.eda.ncsu.edu/wiki/Tutorial:Modelsim_Tutori

al

[9] www.xilinx.com/support/documentation/userguides/ug33

1.pdf

