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ABSTRACT 
It is possible to identify voice disorders using certain features 

of speech signals. A complementary technique could be 

acoustic analysis of the speech signal, which is shown to be a 

potentially useful tool to detect voice diseases[2]. The focus of 

this study is to compare the performances of mel-frequency 

cepstral coefficients (MFCC) and linear predictive cepstral 

coefficients (LPCC) features in the detection of vocal fold 

pathology and also bring out scale to measure severity of the 

disease. The speech processing algorithm proposed estimates 

features necessary to formulate a stochastic model to 

characterize healthy and pathology conditions from speech 

recordings. Two different set of features such as MFCC and 

LPCC are extracted from acoustic analysis of voiced speech of 

normal and pathological subjects. A linear discriminant 

analysis (LDA) classifier is designed and the classification 

results have been reported. 
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1. INTRODUCTION 
The vocal fold pathology mainly affects on the normal 

vibration pattern of the glottis and this in turn brings changes in 

the voice quality [1]. The analysis methods found in the 

literature are mainly based on the periodicity of vocal fold 

vibration and the turbulence in the glottal flow resulting from 

malfunctioning of the vocal folds. Researchers have used vocal 

noise level in the voiced speech as one of the parameter for the 

analysis of normal and pathological voices [2]. Time-domain 

based acoustical parameters are also found in the literature to 

evaluate pathologic voices which include pitch, jitter, shimmer 

etc [1]. In this study cepstral coefficients of voiced speech are 

used as parameters to classify normal voice from pathologic 

voice. The use of cepstrum in the assessment of pathological 

voices is supported by two arguments: on the one hand, 

cepstrum analysis is appropriate for estimating the noise level 

of the voice signal. On the other hand, for the case of sustained 

vowels, the variability of the glottal waveform can also be 

easily detected from cepstral parameters. Cepstral analysis de-

convolves the speech sample in to source and system 

components, compresses the range of the magnitude spectrum, 

and reduces correlation between coefficients. Two of the most 

common are mel-frequency cepstral coefficients (MFCC) and 

linear predictive cepstral coefficients (LPCC), which are used 

in this study for speech feature extraction. A linear discriminant 

analysis (LDA) classifier is used separately on these sets of 

features and also on the combination of these features to test 

their efficacy as a tool for the detection of laryngeal pathology. 

As the same classifier is used on the three feature sets 

independently, three different sets of classification results were 

obtained [2]. As a pre-classified database of voices is used in 

this study, this allows us to make a comparison between the 

efficiencies of the three sets of features, apart from their 

individual efficiencies. Next section deals with the 

methodology used in this application.  

2. METHODOLOGY 
This application has two phases, namely training and testing. In 

the training phase speech sample from different normal and 

pathological subjects is preprocessed to convert it in to a form 

suitable for extraction of features. Feature extraction is a 

process of converting a sequence of speech samples into a set 

of observation vectors which represent events in a probabilistic 

space over which classification is performed. This process is 

also called as speech signal parameterization. The required 

features are extracted and stored as separate normal and 

pathologic templates. This acts as a model for classification. 

Figure 1 shows the block diagram of the application. In the 

testing phase, test sample is preprocessed, converted to a 

parametric form and compared with all other stored templates.  

 

 
Figure 1. Block diagram of the application 

The next step is to select the most accurately matching template 

and classify the sample. For the evaluation of the operating 

capacity of the recognition system 50% of the voice samples 

have been used for the training phase of the classifier, and the 

50% of the remaining samples have been used for the testing 

phase [1]. The next section deals with computation techniques 

and measurements used in this study.  

3. COMPUTATIONAL PROCEDURE 

AND MEASUREMENTS 

3.1 Preprocessing 
The voiced speech data sample (sustained phonation of the 

vowel \a\) is down-sampled at 8 KHz.  And divided into 

20msec equal frames with 10msec overlap using hamming 

window [3]. Figure 2 and Figure 3 shows the windowed speech 

frame of both normal and pathological samples. The source for 

the voiced speech is often modeled as quasi-periodic glottal 

pulses[2]. Hence in Figure 2 normal speech sample shows the 

periodic pattern and in Figure 3 pathological speech sample 
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shows no periodicity due to turbulence of airflow through the 

glottis and pitch perturbations [2]. 

  

 
Figure 2. Windowed speech frame for normal voice sample 

 

 
Figure 3. Windowed speech frame for pathological voice 

sample 

3.2 MFCC estimation 
The term “Mel” is some kind of measurements of perceived 

frequency. The mapping between the real frequency scale (Hz) 

and the perceived frequency scale (Mels) is approximately 

linear below 1 KHz and logarithmic at higher frequency [4]. 

Figure 4 shows the block diagram for the computation of 

MFCC. 

 

To obtain MFCC, first perform discrete Fourier transform 

(DFT) on each frame of speech signal. Power spectrum of each 

speech frame is then weighted by a series of filter frequency 

response whose center frequencies and bandwidths roughly 

match those of auditory critical band filters. These filters follow 

mel-scale whereby band edges and center frequencies of the 

filters are linear for low frequency (<1000Hz) and 

logarithmically increase with increasing frequency [4].  

Thus these filters are called as mel–scale filters and collectively 

a mel-scale filter bank.  Therefore we can use the following 

formula (1) to compute the mels for a given frequency f in Hz 

[5]: 

)
700

1(log2595 10

f
                                   (1) 

The mel-scale filter bank implementation used in this study 

includes 24 triangular filters, non-uniformly spaced along the 

frequency axis [6], as shown in Figure 5. The next step in 

determining the mel cepstrum is to compute the energy in the 

each mel-filter. The real cepstrum associated with this energy is 

called as mel cepstrum and computed using discrete cosine 

transform (DCT) of log energies. The coefficients of mel 

cepstrum are called as MFCC. The 1st MFCC (zero-order 

MFCC), indicates average log energy in each frame and is 

usually dropped [7]. The remaining first 12 MFCC coefficients 

are considered from each speech frame. The first and second 

order derivatives of MFCC are also estimated in order to 

improve the classification accuracy resulting in a feature vector 

of 36 coefficients representing each frame [6]. 

 

 
           

Figure 4. Block diagram of MFCC estimation 

 

 

 
       

 Figure 5. Mel-filter bank containing 24 triangular 

overlapping filters. 

3.3 LPCC estimation 
The linear prediction method provides a robust accurate method 

for estimating the parameters of time varying system 

representing vocal tract. It is used to separate vocal tract 

components and excitation components in time domain, hence 

easy to implement, and achieves data compression. Figure 6 

shows the block diagram of the computation of LPCC. 

 

 
Figure 6. Block diagram of LPCC estimation 

 

It is used for the prediction of current sample as a linear 

combination of past samples from the basis of linear prediction 

analysis. By minimizing the sum of squared error between 

actual speech samples and the linear predicted ones, a unique 

set of prediction coefficients are determined. Vocal tract 

transfer function is given as [8],  
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where ak are the LPC coefficients, G is the gain term in the 

LPC model and p is the order of the prediction filter. 

 

For the computation of LPCC, auto-correlation sequence is 

calculated from windowed speech segment. LPC coefficients 
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are calculated by means of Levinson-Durbin algorithm from 

auto-correlation sequence. LPCC coefficients ck can be derived 

directly from the LPC coefficient set   k by means of the next 

recursion formula (3), 
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LPCC feature vector containing 12 coefficients per frame is 

extracted for the population of normal and pathological 

samples.  

   Figure 7 and Figure 8 shows the variations in MFCC and 

LPCC for normal and pathologic speech frame. Significant 

variation between normal and pathological voice sample is 

observed in case of MFCC than LPCC. 

 
Figure 7. Plot of MFCC for normal and pathological voice 

sample 

 

 
Figure 8. Plot of LPCC for normal and pathological voice 

sample 

 

3.4 LDA Classifier 
Objective of LDA is to perform dimensionality reduction while 

preserving as much of the class discriminatory information as 

possible. In LDA, between class scatter and within class scatter 

are used to formulate criteria for class seperability [9]. The 

solution obtained by maximizing  this  criterion  gives  the  

direction  of  the projection of the data down to one dimension, 

and is estimated as [10],  

                                                                    (4) 

where    denotes mean of normal class,    denotes mean of 

pathological class,    denotes within class scatter.  

 

Mean of each class is defined as,  
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where    denotes number of samples in the class ‘j’. Within 

class scatter is the expected covariance of each class and is 

defined as,  

        
 
                                                                   (6) 

where  

                           
           

  

   
              (7) 

Projections or transformations are obtained from (4) which 

represents 1-D invariant subspace of the vector space in which 

the transformation is applied. Once the transformation matrix is 

obtained data sets are transformed to the new vector space. This 

completes the training phase of the classifier. Assuming a set of 

M-dimensional samples                      , N1 of 

which belong to the class ω1, N2 to class ω2 , we obtain a scalar 

y by projecting the samples x onto a line, 

 

                                                                                                       
         

Test vectors are also transformed according to (8) to the new 

vector space. The decision threshold used for the classification 

in the transformed  space is the mean of normal class and 

pathological class mean,  in the transformed space, and is given 

as , 

    
        

 
                                                                                  

 

where             are the mean of normal and pathological 

classes in the transformed space and are estimated as, 

                                                                                (10) 

 

Based on above threshold the given test sample, ‘t’ is classified 

as belonging to normal class if t ≥ μ0 or to pathology class 

otherwise. Severity level of vocal fold pathology is estimated 

by finding the distance of the test vector from pathological 

class mean. Figure 9, Figure 10 and Figure 11 shows the LDA 

plot based on MFCC, LPCC and combination of MFCC and 

LPCC feature vectors into 1-D (dimensional) space 

respectively. One can observe a clear discrimination between 

normal and pathological voice samples in case of MFCC as 

compared to LPCC and combination of features, obtained by 

maximizing the ratio of between class scatter to within class 

scatter in LDA. 

 

 

 
 

Figure  9. LDA 1-D plot for MFCC 

 

 

 
 

Figure 10.  LDA 1-D plot for LPCC 

 

 

 
 

Figure 11. LDA 1-D plot for MFCC & LPCC 
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3.5 Voice samples  

The voice samples for this study are taken from such a database 

distributed by Kay Elemetrics Corporation [11]. This database 

of acoustic records originally developed by Massachusetts Eye 

and Ear Infirmary (MEEI) Voice and Speech Lab. Speech 

database consists of sustained phonation of the vowel /a/ 

sampled at sampling frequencies of 25 KHz or 50 KHz with 

16-bit resolution.  

 

The normal voice records are about 3 seconds long, whereas 

pathologic voice records are about 1 second long. The 

recordings were made in a controlled environment. In this 

study, 50 normal and 300 pathological voice samples pertaining 

to different types such as adductor, paralyses, leukoplakia, 

vocal nodule have been used. These include both male and 

female voice samples of different age group. 

4. PERFORMANCE EVALUATION AND 

RESULTS 

Performance of the classifier is evaluated as follows [1], 

(1) True positive (TP): The classifier detected pathology        

when pathology was present. 

(2) True negative (TN): The classifier detected normal        

when normal voice was present. 

 (3) False positive (FP): The classifier detected pathology       

when normal voice was present (false acceptance). 

 (4) False negative (FN): The classifier detected normal       

when pathology was present (false rejection). 

 (5) Sensitivity (SE): Likelihood that pathology will be       

detected given that it is present. 

 (6) Specificity (SP): Likelihood that the absence of       

pathology will be detected given that it is absent. 

 (7) Accuracy: The accuracy with which the classifier is       

able to classify the given sample to the correct group. 

Sensitivity (%) = 100[TP/ (TP+FN)] 

Specificity (%) = 100[ TN / (TN+FP)] 

Accuracy (%) = 100 [(TN+TP)/ (TN+TP+FN+FP)] 

Simulation is done using MATLAB and the results of 

classification are depicted in Table 1. These results were 

calculated based on the number of samples used for testing.  

 
Table 1: Results 

Features Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

MFCC 

LPCC 

MFCC &LPCC 

94 

82 

89.33 

88 

76 

92 

93.14 

81.14 

89.71 

 

5. DISCUSSIONS 

Due to the fact that sounds were recorded in a controlled 

environment, no other preprocessing than the windowing is 

used. MFCC provides better results as compared to LPCC 

because, it takes human perception sensitivity with respect to 

frequencies into consideration. The bandwidth and the center 

frequency of the mel-filter banks roughly match the critical 

bandwidths of auditory neurons. MFCC has the advantage of 

energy compaction and dimensionality reduction, as most of 

the information lies in the first cepstral coefficients. MFCC 

allows modeling of the effects induced by the presence of 

pathology over the excitation (vocal folds) and the system 

(vocal tract). LPCC models the vocal tract response, and most 

of the voice pathologies affects the vocal folds (affects such as 

change in mass, elasticity and tension), hence less significant in 

identifying pathological voice from the normal ones. It is 

observed that the combination of features also give less 

accurate results as compared to MFCC alone. This clearly 

shows that, combination of features decreases the between class 

variance. Though LDA algorithm is found to be optimal when 

class distributions are Gaussian, it suffers from a small sample 

size problem when dealing with high dimensional data, 

resulting in a within class scatter matrix to be nearly singular. 

This problem can be eliminated by first reducing the 

dimensionality using principal component analysis and then 

using LDA on resulting data.  

6. CONCLUSION 

In this study two different set of features such as mel-frequency 

cepstral coefficients (MFCC) and linear predictive cepstral 

coefficients (LPCC) were extracted from acoustic analysis of 

voiced speech of normal and pathological subjects. The LDA 

classifier is designed and implemented for pathologic voice and 

the performances of different set of features were compared. 

The MFCC have shown better classification results compared 

to other feature combinations. A scale based on MFCC could 

be used to evaluate the level of severity of the disease.   
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