
Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Electronic Design and Signal Processing (ICEDSP) 2012

15

Digital Arithmetic Coding with AES Algorithm

Archek Praveen Kumar

Lecturer,
Dept of Electronics &

Communication
Amity University, Rajasthan

Deepika Bansal
Lecturer,

Dept of Electronics &
Communication

Amity University, Rajasthan

ABSTRACT

The paper presents the security and compression of data by

Digital Arithmetic coding with AES (Advanced Encryption

Standard) algorithm. basic research is to arithmetically encode

the data first and then encrypt it by using AES algorithm then

transmits the code. At the receiving end the data is decrypted

and decoded to produce the user data. The paper has an

advantage of encoding/decoding and compression of data at a

time. The input data size is of 128 bits or 256 bits in AES, so

the idea is to compress the data before encryption by

arithmetic coding. For encoding/decoding use digital

arithmetic coding and for encryption/decryption we use AES

algorithm. The arithmetic coding is similar to Huffman coding

they both achieve their compression by reducing the average

number of bits required to represent the symbol. Arithmetic

coding stands out in terms of elegance, effectiveness and

versatility, since it is able to work most efficiently in largest

number of circumstances and purposes. AES is advanced

encryption standard process where deals with substation and

permutation of data for proper secure.

General Terms

Arithmetic encoding, AES encryption, AES decryption,

Arithmetic Decoding.

1. INTRODUCTION

There are so many techniques for the transmission of data

with proper encryption and decryption but the idea is to

transfer the data over perfect security and compression at a

time. Encoding transforms data into another format using a

scheme that is publicly available without any key so that it

can easily be reversed. Encryption is for maintaining

data confidentiality and requires the use of a secret key in

order to return to plaintext. Encryption does not expand the

data except for a few bytes of padding at the end of the last

block. The resulting data are not compressible at any rate

because they are basically random, no algorithm is able to

effectively compress them, so best method is to compress the

data first, then encrypt them. The data is encoded with

arithmetic coding where the result is arithmetically encoded

according to probability and then the result is encrypted with

AES algorithm. The algorithm described by AES is

a symmetric-key algorithm, meaning the same key is used for

both encrypting and decrypting the data. AES is based on a

design principle known as a substitution-permutation network.

AES is the first publicly accessible and open cipher approved

by the National Security Agency (NSA) for top
secret information.

2. GENERAL BLOCK DIAGRAM

The input data to be transmitted can be characters or

numerical values. The input characters are divided in to sub

groups and that group of data is encoded by using arithmetic

coding and final range is encoded to hexadecimal or to binary

numbers. Then by using AES algorithm that data is encrypted

and transmitted through wired or wireless. At the receiving

end the encrypted data is decrypted and then it is decoded by

using arithmetic decoding technique and the original data is
retrieved.

Fig 1: Block diagram of the arithmetic coding with AES

3. BLOCK DESCRIPTION

3.1 Digital Arithmetic Coding
Digital arithmetic coding is the advanced technique of the

arithmetic coding. Firstly the arithmetic coding deals with

probability theory. Basically all the characters, special

characters and numerical are shared in a range from 0 to 1.

Arithmetic coding is divided in two parts.

 Arithmetic coding is very simple. Its basic properties

are used in the computational techniques required for a

practical implementation.

 Considering practical implementation aspects,

including arithmetic operations with low precision, the

subdivision of coding and modeling, the realization of

adaptive encoders and also analyze the arithmetic

coding computational complexity, and techniques to

reduce it.

Digital

Arithmetic

encoding

AES

Decryption

AES

encryption

Digital

Arithmetic

Decoding

encoding

input

output

Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Electronic Design and Signal Processing (ICEDSP) 2012

16

Fig 1: Flow of encoding and decoding processes for

data compression

Transmission considers all the different entropy-coding

methods, and their possible applications in compression

applications, arithmetic coding stands out in terms of

elegance, effectiveness and versatility, since it is able to work

most efficiently in the largest number of circumstances and

purposes. These are most desirable features.

 The compression of each symbol is provably optimal,

when applied to independent and identically

distributed sources.

 The same arithmetic coding implementation can

effectively code all the diverse data created by the

different processes as shown in Figure 2, such as

modeling parameters, transform coefficients,

signaling, etc. It is effective in a wide range of

situations and compression ratios.

 It simplifies automatic modeling of complex sources,

yielding near-optimal or significantly improved

compression for sources that are not independent and

identical.

Its main process is arithmetic, which is supported with ever-

increasing efficiency by all general-purpose or digital signal

processors (CPUs, DSPs). It is suited for use as a compression

black-box. Compression applications employ a wide variety

of techniques, have quite different degrees of complexity, but

share some common processes. Figure 2 shows a diagram

with typical processes used for data compression. These

processes depend on the data type. As mentioned the input

data is divided in to sub groups and that group of data is

numerically processed. Where numerically processing like

predictive coding and linear transforms, is normally used for

waveform signals, like images and audio. The output data is

logically processed, where Logical processing consists of

changing the data to a form more suited for compression, like

run-lengths, zero-trees, set-partitioning information, and

dictionary entries. The next stage, source modeling, is used to

account for variations in the statistical properties of the data.

It is responsible for gathering Statistics and identifying data

contexts that make the source models more accurate and

reliable. Final process is entropy coding, which is the process

of representing information in the most compact form. It may

be responsible for doing most of the compression work, or it

may just complement that has been accomplished by previous

stages.

In arithmetic coding, a message is encoded as a real number in

an interval from one to zero. Arithmetic coding typically has

a better compression ratio than Huffman coding, as it

produces a single symbol rather than several separate code

words. The idea behind arithmetic coding is to have a

probability line, (0-1), and assigned to every symbol a range

in this line based on its probability, the higher range which

assigns to it. Once we have defined the range and the

probability line, start to encode symbols, every symbol

defines where the output floating point number lands here is

the arithmetic coding algorithm, with an example to aid
understanding.

Start with an interval [0, 1), divided into subintervals of all

possible symbols to appear within a message. Make the size

of each subinterval proportional to the frequency at which it

appears in the message.

Symbol Probability Interval

A 0.2 [0.0, 0.2)

E 0.3 [0.2, 0.5)

I 0.1 [0.5, 0.6)

O 0.2 [0.6, 0.8)

U 0.2 [0.8,1.0)

When encoding a symbol, "zoom" into the current interval,

and divide it into subintervals like in step one with the new

range. Example: suppose we want to encode "AIU". We

"zoom" into the interval corresponding to "A", and divide up

that interval into smaller subintervals like before. We now

use this new interval as the basis of the next symbol encoding

step.

Repeat the process until the maximum precision of the

machine is reached, or all symbols are encoded. To

encode the next character "I", we use the "a" interval

created before, and zoom into the subinterval "I", and use
that for the next step. This produces

Symbol New "a" Interval

A [0.0, 0.04)

E [0.04, 0.1)

I [0.1, 0.12)

O [0.12, 0.16)

U [0.16,0.2)

Numerical

operation

Source

modelling

Logical

operation

Entropy

encoding

Entropy

decoding

Logical

operation

Source

remodelling

Numerical

operation

Compressed

data

input

output

Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Electronic Design and Signal Processing (ICEDSP) 2012

17

Symbol New "U" Interval

A [0.10, 0.102)

E [0.102, 0.11)

I [0.11, 0.112)

O [0.112, 0.116)

U [0.116, 0.12)

And lastly for the final result repeat the process. The "I"

interval created before, to encode the next character "U"
This produces

Symbol New "U" Interval

A [0.116, 0.1168)

E [0.1168, 0.118)

I [0.118, 0.1184)

O [0.118432, 0.1192)

U [0.1192, 0.12)

Transmit some number within the latest interval to send the

codeword. The number of symbols encoded will be stated in

the protocol of the image format, so any number within

[0.1192, 0.12) will be acceptable. The process of

encoding/decoding can be done by taking percentage of each
interval with same range or by using the algorithms

At the receiving end the user have the same probability matrix

showed in table 1. The decoding process will be, suppose if

0.1194 is transmitted. Check the value 0.1194 where, it

comes in the range “A” which is first letter. Next the A range

is divided in to table 2 and see for the value 0.1194 and its in

“I”, so second letter is “I”. Now I range is divided in to sub

interval as table 3 then 0.1194 is in range “U”, so U is
selected the same is shown in the decoding algorithm.

3.2 AES(Advanced Encryption Standard)

The arithmetically encoded data is encrypted or decrypted by

using AES algorithm. AES is based on substation and

permutation process. AES use symmetric key for encryption

and the reverse transformation or decryption. AES operates on

a 4×4 column-major order matrix of bytes. AES has a

fixed block size of 128 bits and a key size of 128, 192, or 256

bits. The AES cipher is specified as a number of repetitions of

transformation rounds that convert the input plaintext into the

final output of cipher text. The numbers of cycles of repetition

are as 10 cycles of repetition for 128 bit keys, 12 cycles of

repetition for 192 bit keys, 14 cycles of repetition for 256 bit

keys. There are several processing steps in each round which

depends on the encryption key. By using the same encryption

key, a set of reverse rounds are applied to transform cipher

text back into the original plaintext. It consists of a number of

rounds where each round makes a number of transformations

on a state, and uses a round key derived from the encryption

key. The number of rounds depends on the block and key size.

An encryption of a block starts with a transformation

AddRoundKey, this is followed by an odd number of regular

rounds, and ends with a special final round. The reason the

final round is different has nothing to do with security, but

was done to makes it possible to reuse encryption code to do

the decryption.

High-level description of the AES algorithm process

 Key Expansion takes place where round keys are

derived from the cipher key.

 In the Initial Round, add round key operation is done in

which each byte of the state is combined with the round

key using bitwise xor.

 In future Rounds certain operations like SubBytes, shift

rows, mixcoloumns, add round key. Where SubBytes is

a non-linear substitution step where each byte is

replaced with another according to a lookup table.

ShiftRows is the transposition step where each row of

the state is shifted cyclically a certain number of steps.

MixColumns are mixing operation which operates on

the columns of the state, combining the four bytes in

each column. As explained AddRoundKey in which

each byte of the state is combined with the round key

using bitwise xor.

 In Final Round no MixColumns but SubBytes,

ShiftRows, AddRoundKey.

SubBytes are substitution of each byte in the block

independent of the position in the state. This is an S-box. It is

a bijection on all possible byte values and therefore invertible.

This is the non-linear transformation. The S-box used is

proved to be optimal with regards to non-linearity. The S-box

is based on arithmetic in GF (28) (galois field). Galois field is

a group of polynomials in which some external operations are

done to the polynomial for encryption/decryption. Generally

for GF (2) polynomial is x2 +1, for GF (22) or GF (4)

polynomial is x3+x+1. Similarly GF (28) polynomial is x8 + x5

+ x3 + x2 + 1. The S-box used is derived from

the multiplicative inverse over GF (28), known to have good

non-linearity properties. In the SubBytes step, each byte in

the state matrix is replaced with a SubByte using an 8-

bit substitution box where this operation provides the non-

linearity in the cipher. The S-box is constructed by combining

the inverse function with an invertible affine transformation.

The S-box is also chosen to avoid any fixed points, and also

any opposite fixed points.

ShiftRows is a cyclic shift of the bytes in the rows in the state

and is clearly invertible.The ShiftRows is operation on the

rows of the state where cyclically shifts the bytes in each row

by a certain offset. For AES, the first row is left unchanged.

Each byte of the second row is shifted one to the left.

Similarly, the third and fourth rows are shifted by offsets of

two and three respectively. For blocks of sizes 128 bits and

192 bits, the shifting pattern is the same. Row n is shifted left

circular by n-1 bytes. In this way, each column of the output

state of the ShiftRows step is composed of bytes from each

column of the input state. For a 256-bit block, the first row is

unchanged and the shifting for the second, third and fourth

row is 1 byte, 3 bytes and 4 bytes respectively.

Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Electronic Design and Signal Processing (ICEDSP) 2012

18

In the MixColumns , four bytes of each column of the state

are combined using an invertible linear transformation. The

MixColumns function takes four bytes as input and outputs,

where each input byte affects all four output bytes, During

this operation, each column is multiplied by the known matrix

that for the 128 bit key. The multiplication operation is

defined as, multiplication by 1 means no change,

multiplication by 2 means shifting to the left, and

multiplication by 3 means shifting to the left and then

performing xor with the initial un-shifted value. In more

general sense, each column is treated as a polynomial over GF

(28) and is then multiplied modulo x4+1 with a fixed

polynomial c(x) = 0x03 · x3 + x2 + x + 0x02. The coefficients

are displayed in their hexadecimal equivalent of the binary

representation of bit polynomials from GF (2) [x].

The MixColumns step can also be viewed as a multiplication

by a particular MDS matrix in a finite field.

The AddRoundKey step where the subkey is combined with

the state. A subkey is derived from main key and each subkey

is the same size as the state for each round. The subkey is

added by combining each byte of the state with the

corresponding byte of the subkey using bitwise XOR. The

Roundkeys are made by expanding the encryption key into an

array holding the RoundKeys one after another. The

expansion works on words of four bytes. Mk is a constant

defined as the number of four bytes words in the key. The

encryption key is filled into the first Mk words and the rest of

the key material is defined recursively from proceeding

words. The word in position i, W[i], except the first word of a

RoundKey, is defined as the XOR between the proceeding

word, W[i−1], and W[i−Mk]. The first word of each

RoundKey, W[i] (where i mod Mk == 0), is defined as the

XOR of a transformation on the proceeding word, T(W[i − 1])

and W[i − Mk]. The transformation T on a word, w, is w

rotated to the left by one byte, XOR’ed by a round constant

and with each byte substituted by the S-box.

As the data encoded from arithmetic encoding is encrypted by

using AES algorithm and transmitted. At the receiving end by

using the same keys the data is decrypted and it’s decoded by

using arithmetic decoding process and data is retrieved.

4. RESULT

Fig 1: Output of MATLAB coding

Firstly a Random input sequence is generated which is shown

by the original sequence. After the original sequence is

generated, it is encoded arithmetically by some functions

which are shown as encoded sequence in the graph. Now AES

place vital role for encryption and decryption of the encoded

sequence. The decrypted code is decoded arithmetically to

produce original sequence which is shown as decoded

sequence in the graph.

5. CONCLUSION
The input data will be either 128 bits or 256 bits in AES. By

using MATLAB the sequence is encoded, encrypted,

decrypted and decoded sequentially. Before encryption

compression of data has been done by arithmetic coding in

MATLAB. Error detection and correction capabilities are

proved to be high. Given the paper with the final result, there

are many future improvements we would pursue having more

time. Much more efficient compressing techniques can be

used before encryption. For every protocol this can be

applicable

6. ACKNOWLEDGMENT
First and foremost we thank Almighty God whose grace was

there throughout the course of the paper. We would like to

thank our parents for their endless support. Finally like to

express our deep sense of gratitude to our colleagues, Dept. of

Electronics & Communication, Amity University for their

enduring support and encouragement.

7. REFERENCES
[1] M., Debray, S. K., and Peterson, L. L. 1993. Reasoning

about naming systems.

[2] Practical Implementations of Arithmetic Coding, Paul G.

Howard and Je_rey Scott Vitter, Brown University,

Department of Computer Science, Technical Report No.

92{18 Revised version, April 1992 (Formerly Technical

Report No. CS{91{45) James A. Storer, ed., Kluwer

Academic Publishers, Norwell, MA, 1992.

[3] Introduction to coding theory by J.H. VAN LINT, 3rd

edition, springer publications.

[4] Information theory by STEVES RAMEN, 1st edition,

springer publications.

[5] Cryptography and network security by William stalings,

4th edition.

[6] http://www.codemiles.com/java/advanced-encryption-

standard-aes-example-cipher-step1-t182.html

[7] http://www.zipworld.com.au/~isanta/uni/arithmetic.htm

[8] http://www.arturocampos.com/ac_arithmetic.html

[9] http://en.wikipedia.org/wiki/Arithmetic_coding

http://en.wikipedia.org/wiki/Xor

