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ABSTRACT 

The modern distributed systems have not only functional 

requirements (i.e. absence of deadlock, livelock etc.) but also 

have non-functional requirements (i.e. security, reliability, 

performance, Quality of Service(QoS) etc.). The methods for 

checking their correctness and analyze their performance is at 

very primitive stage. In the last few decades, formal 

verification techniques such as process algebras offer a 

powerful and rigorous approach for establishing the 

correctness of computer systems. Routing calculi (a such 

process algebra which is an elaboration of asynchronous 

distributed Pi calculus ) which models a distributed networks 

with router as an active component in determining the path 

between communicating processes. This algebra also take into 

account various types of routing tables updates upon creation 

of new nodes. The semantics of routing calculi has been 

defined to incorporate the cost of communicating processes 

after taking into consideration the number of routers 

crossings. In this paper, we survey to extend the routing 

calculi. This is done with an intention to aggregate the number 

of states in the state space of calculus. We propose this 

extension along the lines of PEPA nets. A brief sketch of the 

proposed extension is also given in this paper as future 

direction of our research.  
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1. INTRODUCTION 
Interactive systems (i.e. ATM, online-shopping , social sites,  

e-governance etc.) are permeating our everyday life now-a-

days. They are increasing in size as well as in complexity 

every hour. There may be failures which are very expensive in 

terms of money, face value, time etc. Formal methods [41] 

can be adopted for checking the correctness and analyze the 

performance of modern distributed systems. Formal methods 

are an analytical approach relying on mathematical models.  

The process algebra [37] is one of them which is an algebraic 

language for describing system behaviour. There are so many 

process algebras that have been proposed in the literature in 

order to model and analyze these distributed systems which 

are inherently concurrent. The classical process algebras such 

as [38, 34, 15, 48] were concerned with the functional aspects 

of the concurrent systems. One of the most popular process 

algebra is  -calculus[37]. Hundreds of its variants and 

extensions considering the qualitative aspects of various 

distributed systems are developed. Some of them are [23, 26, 

24, 28, 22, 27, 21, 36, 25, 43].For example,  -calculus[37] is 

a model of computation for concurrent systems in which 

processes are defined as: 

 

stopPPPnnewPxcvcP |||)(|)?(|!::=   

Where the simplest possible process, which does nothing, is 

represented by the term stop. The term vc!  represents the 

next simplest process, which can transmit the value v  along 

the channel c . Input from a channel c is represented by the 

term Pxc )?( , where x is a variable which may be used to 

receive the incoming value. PP |  represents two processes 

running in parallel; they may exchange values using 

input/output on channels. Pnnew )(  is a scoping 

mechanism for names. 

Asynchronous   -Calculus  [28] is one of the variations of 

 -calculus. This is a calculus describing the evolution and 

behaviour of asynchronous communication system. In this 

language values can be exchanged between concurrent 

processes via communication channels. Communication 

channels can be used to model resources. The syntax allows 

them to be declared as private, for the exclusive shared use of 

specific processes. The names of these channels/resources can 

also be transmitted between processes. 

Asynchronous  -calculus [28] is further extended in [23, 24, 

26, 12] to model a distributed network with routers acting as 

an active component in determining the quality of service [18] 

of the network. The two routing calculi, DR


  and DR  [23, 

12], are developed with the intention of modelling a 

distributed network to demonstrate the cost of communication 

between the communicating processes. The cost of 

communication is the number of hops (router) a value 

propagating message crosses before delivering it to the 

destination in a network of routers. In fact the value 

propagating messages used in these models closely resemble 

the IP packet in TCP/IP model of networks [45]. However , 

the names (addresses) of source and destination nodes and 

data in messages are used unlike real IP packets where lots of 

other information are contained in it. 

The syntax of the DR


  is given in  Table 1. The processes in 

the DR


  are  -calculus processes. The syntax of nodes is 

adopted from the asynchronous distributed Pi calculus [28]. 

The new syntactic category in the DR


  is the system. A 

system is represented by MR , where R is a router and M is 

another syntactic category named as nodes. The nodes in M 

are directly connected to the router R. Two parallel systems 

are represented by S |  T and [R]M
k

sg (n,m,v@c) is a message 

at router R. This message is used to propagate the value v 

from one router to another router during communication 

between some process at source node n to another process at 

destination node m. The value propagated by the message is 

represented by v@c to deliver value v to the specified channel 

c of the destination process. The integer k indicates the 

number of hops (routers) the message has already travelled 
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across the path towards its destination. (new d)S is a scoping 

mechanism for names.  

Further, asynchronous  -calculus [28] is also extended to 

cost [24, 23]. Where, the cost [24, 23] incorporates the cost 

of a  -calculus computation in some cost framework. This 

framework is based on the type setting of typed asynchronous 

 -calculus [27]. The syntax of cost  is given in Table 2. It is 

a minor extension of the  -calculus and self explanatory. 

In all these algebras time is abstracted away as they are 

developed for qualitative analysis rather than quantitative. 

Stochastic extensions of process algebras [33,2] are developed 

to add quantification to process algebra models. This has been 

done by the use of a random variable which has some 

probability distribution. For example, PEPA (Performance 

Evaluation Process Algebra) [33] is developed to investigate 

how the compositional features of the process algebra might 

impact upon the practice of performance modelling. It extends 

the classical process algebra [37, 38] by associating a random 

variable with every action for representing duration. These 

random variables are assumed to be exponentially distributed 

[47]. This leads to a clear relationship between the process 

algebra model and a Continuous Time Markov Chains 

(CTMC) [47]. Continuous Time Markov Chains (CTMC) are 

used to obtain performance measures with standard numerical 

techniques. PEPA has following syntax:

ALPP
L

PQPPaP |/|||).,(::=   

where Pa ).,(   denotes a component which may perform an 

activity ),( a  of action type a  with activity rate  . The 

duration of each PEPA activity is determined by an associated 

exponential probability distribution function[47]. The 

probability distribution function is parameterized by the 

activity rate. QP   indicates that a component may behave 

as P or Q. Q
L

P  is the synchronization operator of PEPA. 

The components P and Q are required to synchronize over the 

action types in the set L and all the other actions are 

performed autonomously. LP/  is used as a hiding operator. 

A  is a constant label used to model cyclic behaviour.  

Table  1:  Syntax for DR


  

S,T::= Systems 

MR  Router 

S |  T Concurrency 

[R]M
k

sg

(n,m,v@c) 

Messages 

(new d)M New Name 

  Identity 

M,N::= Nodes 

n[T] Named Processes 

M |  N Concurrency 

(new d)M New Name 

0 Identity 

T,U::= Process Terms 

c?(x)T Input 

 cvm @!  Output 

if u = v then T else U Matching 

(new b)T Channel Name creation 

newnode m with P in Q New Node creation 

T |  U Concurrency 

*T Repetition 

stop Identity 

Further, PEPA [33] is extended to PEPA nets [10,11] to 

model mobility in modern distributed systems. PEPA nets 

[10,11] uses the PEPA  [33] as the inscription language for 

labelled stochastic Petri nets [1,50]. 

The existing process algebras for routing [23, 26, 24, 12] are 

either model the network with respect to the specific protocol 

or they are focused on cost effectiveness of the computations 

where the cost of communication is the number of hops 

(router) a value propagating message crosses before 

delivering it to the destination in a network of routers. None 

of these have discussed to address the state space explosion 

problem [49, 5] by aggregation technique [32]. A extensive 

survey regarding state space explosion problem can be found 

in [8]. 

Table  2:  Syntax for cost  

P,Q::= Process Terms 

u?(x).P Provide resource u 

u!  cv@ .P Use resource u 

if u = v then P else Q Matching 

subscribe(o,u,c).P Subscribe to resource u 

(new a:R)P Resource creation 

P |  Q Concurrency 
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*P Repetition 

stop Termination 

del(a,v) Asynchronous message delivery 

The rest of the paper is organised as follows. In Section 2 we 

give problem statement. Section 3 describes the brief sketch 

of the solution. Section 4 is the conclusion. 

2. PROBLEM STATEMENT 
We propose an extension of routing calculi to model a 

distributed network of routers along the lines of PEPA nets 

[33]. A simple distributed network of routers shown in  Figure 

2, where router as an active component. The topology of the 

routers is fixed but choice of path is probabilistic. The 

processes reside in a located site called nodes. Nodes are 

directly connected to some specific router. Any two processes 

at nodes can communicate via the routers. The routers specify 

the paths, with some probability, across the network between 

the communicating processes. The processes communicate 

along these paths.  

A typical system is described as, ][PnR  , in [23, 26, 12]. 

Where a process P  is a PEPA [33] component. A process 

resides at a named node n  which in turn is connected to 

router R . Each router, R , maintain a routing table 

represented by R . Routing table, R , determines the path 

between routers with some probability. This probability is 

based on different network properties (i.e. congestion, 

bandwidth, throughput delay, etc.). The reductions [23, 26, 

12] are done on configuration, NRc   , where c  is the 

network of routers connectivity. We assume that the routers 

connectivity, c , is fixed. We assume that the router 

connectivity is bidirectional and each pair of routers is 

connected via some path. Essentially the router connectivity is 

a connected undirected graph ( but not a clique of a graph ). 

So, there may exist more than one path between the same pair 

of routers. The routing table at each router determines which 

path be used for the communication between processes. The 

path with high probability will be chosen for communication 

between routers. 

 

 

 

 

 

 

 

 

Figure 1: Example: A simple distributed network with 

routers 

For example, in  Figure 1, there are  two paths between router 

1R  and 3R . One path is direct and other is via router 4R . 

Let direct path has low probability then the path via router 

4R . So the routing table  1R  has two entries for the paths 

between router 1R  and router 3R  with their respective 

probability. Here router 1R  will choose the path for router 

3R  which has high probability i.e the path via router 4R .  

The syntax and semantics of our model will be developed 

along the line of PEPA nets [10]. We will aggregate the 

number of states in the state space of calculus along the lines 

of [13, 42, 8] to fight state space explosion problem. We 

intend to provide a formal proof based upon observational 

properties coinciding with bisimulation relation defined over a 

labelled transition system of the calculi. Thus making a 

language fully abstract. This method of proof is standard as 

described in [28, 37]. We will do qualitative as well as 

quantitative analysis of more realistic distributed network by 

the means of the proposed calculus. 

3. BRIEF SKETCH OF SOLUTION 
As we have proposed an extension of routing calculi, such as 

DR


  and DR  [23, 12], along the lines of PEPA nets [10]. 

In routing calculi we need mobility of processes and values 

among the nodes as described in [23, 24, 12]. In our proposed 

extension, the processes will be extended along the lines of 

PEPA [33]. The mobility of processes will be extended along 

the lines of PEPA nets [10]. 

Further, Routing calculi is proven to be fully abstracted. This 

is an extension of the distributed Pi calculus [28]. The 

distributed Pi calculus [28] is an extension of the 

asynchronous Pi calculus[28] . The stochastic process algebra, 

PEPA [33], is also an extension of classical process algebra 

[28, 37] by introducing probabilistic branching and timing of 

transitions. The stochastic process algebra, PEPA [33], is well 

proven for functional and performance analysis. PEPA nets 

[10] is also an extension of stochastic process algebra, PEPA 

[33], allowing a number of distinct PEPA models to be 

arranged into a net. We will further progress our proposed 

work along this line of research according to following steps: 

1. First we will extend the syntax and semantics of the 

routing calculi, DR


  and DR  [23, 12], along the 

lines of [10]. We will also give well-formed 

conditions. 

2. Further we will develop a formal proof based upon 

observational properties coinciding with bisimulation 

relation defined over a labelled transition system of 

the calculi. 

3. If we will get positive results from the extension done 

in step 1 and 2 then we will extend the work by 

considering the probabilistic choice of paths. 

4. We will also intend to provide an implementation 

with possibilities of plugging in it to PEPA Eclipse.  

There is the considerable amount of literature available along 

this line of research in [32, 7, 30, 8, 11, 14, 1, 39, 9, 20, 46, 

39, 19, 17, 16, 50, 29, 33, 31, 40, 35, 3, 44]. 

4. CONCLUSION 
In this paper we propose and briefly outlined the future 

progress of the extension of the routing calculi [23, 26, 12] 

along the lines of [10]. A theoretical formulation based on 

process algebraic framework is intended to be developed 

along the lines of PEPA net and routing calculi. 
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A comparison of two modelling formalisms ,stochastic 

process algebra and stochastic Petri nets, in [6] concludes that 

“ there is scope for future work incorporating the attractive 

characteristics of the formalisms, such as structural analysis or 

functional abstraction, from one paradigm into the other ”. 

There is strong intuition that our proposed extension of the 

routing calculi along the lines of [10] will give useful results 

for modelling more realistic distributed network. 
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