
International Journal of Computer Applications (0975 – 8887)

International Conference in Distributed Computing & Internet Technology (ICDCIT-2014)

25

Odia Characters Recognition by Training Tesseract OCR
Engine

Mamata Nayak
Department of CA

I.T.E.R., S'O'A University
Bhubaneswar, India

 Ajit Kumar Nayak
 Department of CS & IT

 I.T.E.R., S'O'A University,
Bhubaneswar, India

ABSTRACT

Development of Optical Character Recognition (OCR) for an

Indian script is an active area of research today. The presence

of a large number of letters in the alphabet set, their

sophisticated combinations and the complicated grapheme's

they formed is a great challenge to an OCR designer. There

are many application areas where, OCR can be used like,

preserving old documents in electronics format, helping

visually impaired persons to know the content of a document

by transforming into speech, saving document images within

limited space, making a electronic dictionary of words,

preserving the ancient characters those are not included in the

current set of characters of a language and many more.

Currently, Tesseract, an open source OCR engine is

considered as one of the most accurate FOSS OCR engines.

Tesseract has already been designed to recognizing English,

Italian, French, German, Spanish and Dutch and many more

[11], as well as for few Indian languages such as Bengali,

Tamil, Telugu, Malayalam. Similarly, Tesseract can be made

to recognize other scripts if the engine can be trained with the

requisite data. The objective of this work is to develop a

training process for Tesseract OCR engine such that the

engine will be capable of recognizing printed documents of

Odia language used in the state of Odisha (formerly known as

Orissa), India.

Keywords

Tesseract, OCR, UTF-8,UNLV, Odia.

1. INTRODUCTION (Overview of the

Tesseract OCR engine)
Optical Character Recognition (OCR) system decreases the

barrier of the keyboard interface between man and machine to

a great extent. And it also help in office automation with huge

saving of time and human effort. Overall, it performs

automatic extraction of text from an image, exist in a variety

of fonts, and be distorted in all sort of ways. Tesseract OCR,

originally developed at Hewlett Packard from 1984 to 1994, is

an open source (under Apache License 2.0) off-line optical

character recognition engine[4,5]. Bristol, first started

developing Tesseract as a PhD research project in HPLabs[6].

In the year 1995 it was sent to University of Navada, Les

Vegas (UNLV), at there it proved its worth against the

commercial engines of the time. In the year 2005 it was

released by Hewlett Packard and University of Nevada, Las

Vegas and presently it is partially funded and maintained by

Google [7, 13]. However, output formatting, document layout

analysis and graphical user interface is not support by the

current version of it. We have used Tesseract version 3.01,

which is released in Oct 2011, in the current work.

 The Tesseract OCR engine was designed from the beginning

to be language-independent, but the rest of the engine was

developed for English. Its original design goal was that it

should recognize white-on-black text. It follows a step-by-step

pipeline procedure.

At the first stage, outlines of the text are gathered by nesting,

into Blobs. These blobs are organized into text lines and are

broken into words differently according to the kind of

character spacing. After that the lines and regions are

analyzed for fixed pitch or proportional text. Fixed pitch text

is chopped immediately by character cells, however the

proportional text is broken into words using definite spaces

and fuzzy spaces. Then the recognition proceeds as a two-pass

process. In the first pass, it attempt recognize each word in

turn passed to an adaptive classifier as training data. The

adaptive classifier then gets a chance to more accurately

recognize text. Thereafter the second pass is run over the page

for the words those were not recognized well enough in the

first pass. At last a final phase resolves fuzzy spaces, and

checks alternative hypotheses for the x-height to locate small

cap text. We follow this architecture of Tesseract OCR engine

to recognize the Odia characters.

This is the first report attempt to train Tesseract for Odia

script recognition, as of our knowledge. Content of this paper

is organized as follows: In section 2, the properties of Odia

script is presented, section 3 presents the training procedure in

detail, followed by analysis of the result in section 4 and then

conclusion in section 5.

2. Properties of Oriya Script
In the Odia script, there are 11 independent vowels shown in

Fig. 1(a), 36 consonant characters shown in Fig. 1(b) and 10

digits shown in Fig. 1(c), these are called as basic characters.

(a) Vowels

International Journal of Computer Applications (0975 – 8887)

International Conference in Distributed Computing & Internet Technology (ICDCIT-2014)

26

Properties of the Odia script that are useful for building the

recognition system [9, 10], briefly describe here. The Odia

script is derived through various transformations from the

ancient Brahmi script. The basic character names are identical

to the names for corresponding characters in other scripts like

Devanagari and Bengali. As like other Indian scripts also in

Odia language, the concept of upper/lower case is absent.

Among all these 11 independent vowels, 10 vowels have

dependent forms (i.e. excluding first vowel). If the first

character of any word is a vowel, then it persists in its

independent form as shown in Fig. 2(a). Generally, a vowel

takes a dependent form whenever it followed by a consonant,

and the dependent form of the vowel is called as vowel

modifier or allographs. Those are placed at the left or right or

bottom or top or a combination, of the consonant as shown in

Fig. 2(b). Similarly, a consonant modifier is placed when a

consonant preceded or followed by another consonant as

shown in Fig. 2(c).

A variable-width encoding, UCS Transformation Format—8-

bit (UTF-8), is used to represent every character in the

Unicode character set. A Latin glyph in Unicode is

represented as one character where as one glyph of Odia

character set may contain string of Unicode characters, as

shown in Fig. 3.

3. TRAINING PROCEDURE
A process used to Training Tesseract for recognizing a new

language is known as training[1]. The training process is

consists of several steps and each step gives us many

information about how the language works. To prepare the

training data a guideline is nicely written in [7], by following

which we prepare our training data. For a language eight

numbers of data files are required in tessdata sub directory in

the training process[8]. These files are given as follows:

tessdata/xxx.inttemp

tessdata/xxx.normproto

tessdata/xxx.pffmtable

tessdata/xxx.unicharset

tessdata/xxx.freq-dawg

tessdata/xxx.word-dawg

tessdata/xxx.user-words

tessdata/xxx.DangAmbigs

where xxx refers to the three letter text, representing the

language codes by following the ISO 639-3 standard[11].

As we pass through the steps of training process to train Odia

language, each step is explain below. But while training we

should make a trade-off between the speed of Tesseract’s

recognition versus its accuracy.

3.1 Prepare training data image
For the current experiment to collect the dataset it needs to

determine the full character set to be used. At first prepare a

text or word processor file containing all characters [1,3]. We

consider a minimum of five numbers of samples for each

character. Then to get the training data image, print the

sample document out and scan it with 300DPI TIF B/W

image, save the scanned file with .tif extension few lines of

the image file is shown in Fig. 4.

Also it needs to save the training text as a UTF-8 text file for

use in the next step, at where we have to insert the codes into

another file.

3.2 Prepare box file
We need to prepare the box file for the above training image

to generate the training files, using the following command:

 $tesseract <image file> <box file> batch.nochop makebox

Example:

(b) Consonants

(c) Digits

Fig. 1. Basic Characters of the Odia Script

(a) Independent form

of Vowels

(b) Dependent form of

Vowels

(c) Consonant modifier

Fig. 2. Vowel and Consonant modifiers

Fig. 3. String of Unicode characters for a single character

Fig. 4. Few lines of scanned training data image (odia.exp0.tif.)

International Journal of Computer Applications (0975 – 8887)

International Conference in Distributed Computing & Internet Technology (ICDCIT-2014)

27

$tesseract <odia.exp0.tif> <odia.exp0> batch.nochop

makebox

It generates a file named as odia.exp0.box, and if the training

image consists of multiple pages then the box files need to be

generated for each page. The box file is a text file consists of

6 columns. It includes the UTF-8 codes characters in the

training image, one character per line (i.e. 1st column), along

with the coordinates of the bounding box around the image

(i.e. next 4 columns) and page number of the character in the

image file (i.e. 6th column) as shown in the Fig. 5.

a 385 3194 413 3231 0

m 438 3193 477 3230 0

a 507 3191 540 3228 0

a 568 3190 601 3227 0

a 629 3189 661 3225 0

The generated character set naturally have different to its

current training, as shown in the Fig. 5. Because the box file is

generated by considering the nature of English character so it

fails to correctly generate box information for Odia character.

Editing of the box file needs an editor that understands UTF-8

code to make the process lot easier. HTML, Notepad++, gedit

are the editors that understands UTF-8. We use the editor

gedit to edit the box file. If any particular character of the

trained image is broken into two lines in the box file then it

needs to manually merge the lines. As an example, few lines

of the unedited box file is shown in Fig. 6(a) and as we can

see the first two lines need to be combined to represent a

single character as shown in Fig.6(b).

3.3 This Training the box file
Run Tesseract in training mode, for each of the training image

and boxfile pairs by using the following command:

$tesseract <image file> <box file> nobatch box.train

Example:

$tesseract odia.exp0.tif odia.exp0 nobatch box.train

This will generate two files named odia.exp0.tr which

contains the features of each character of the training page and

another text file odia.exp0.txt. The odia.exp0.tr file contains

the information about every character in the box file as

follows:

UnknownFont <utf8 code(s)> 2

mf <number of features>

x y length dir 0 0

... (there are a set of these determined by <number of

features>above)

cn 1

ypos length x2ndmoment y2ndmoment

The mf features are polygon segments of the outline

normalized to the 1st and 2nd moments.

x= x position [-0.5.0.5]

y = y position [-0.25, 0.75]

length is the length of the polygon segment [0,1.0]

dir is the direction of the segment [0,1.0]

The cn feature is to correct for the moment normalization to

distinguish position and size (eg c vs C and , vs ').

It is not required to edit the content of the odia.exp0.tr file and

also the odia.exp0.txt contain a single newline with no text.

3.4 Compute the character set file
A program called unicharset_extractor is used to create the

character set file. The box files are given as input, and it is

invoked using the following command:

 $unicharset_extractor <box file>

Example: $unicharset_extractor odia.exp0.box

It generates a data file named as unicharset, few lines of this

file is given in Fig. 7.

.

Each line of this file corresponds to one character in UTF-8

format. The character is preceded by a hexadecimal number

representing a binary mask encoding its properties.

3.5 Prepare font_properties file
This file provides the information about the font family and

the character properties such as isalpha, isdigit, isupper,

islower. Create a text file that contains name of the font

family and these properties with the value 0 or 1 (default

value is 0) as given below:

 <[0][1]> <[0][1]> <[0][1]> <[0][1]>

<[0][1]>

Because Oriya characters do not have lowercase and

uppercase variance, the content of the file is written as:

LohitOriya 1 0 0 0 0

and save the file with the name font_properties. To proceed

for the remaining stages it is necessary to rename the

Fig. 5. Few lines of the box file generated for the image in Fig. 4.

(a) Before

(b) After

(b) After

Fig. 6(a)(b). Few lines of the box file before & after manual modification

Fig. 7. Few lines of the unicharset file

International Journal of Computer Applications (0975 – 8887)

International Conference in Distributed Computing & Internet Technology (ICDCIT-2014)

28

odia.exp0.tr file as the first word of the font_properties file i.e.

LohitOriya.tr.

3.6 Clustering
Clustering is necessary to create prototypes. This clustering is

performed using the character shape features. We do this

using two different programs called mftraining and cntraining.

Then invoke the mftraining program using the following

command:

 $mftraining <filename.tr> -F font_properties -U

unicharset

Example:

 $mftraining LohitOriya.tr -F font_properties -U

unicharset

The -F is used to include the font_properties file. And the -U

option is used to include the unicharset file generated by

unicharset_extractor. This will output two data files:

pffmtable and inttemp. A third file is also created by this

program, that will not be used further, called Microfeat . The

file inttemp contain the shape prototype, but it cannot be open.

The number of anticipated features for each character is

shown as the content of the pffmtable file, a part of which is

shown in Fig. 8.

The following command is used to invoke the cntraining

program: $cntraining <filename.tr>

Example: $cntraining LohitOriya.tr

This command produce the normproto data file, that perform

the character normalization training for Tesseract, few lines of

it is shown in Fig. 9.

The following command will be used in case of multiple

training data:

$mftraining -F font_properties -U unicharset

<file1.tr> <file2.tr> ...

$cntraining <file1.tr> <file2.tr>

3.7 Prepare Dictionary
Tesseract usages few dictionary files for each language. We

have used three files (frequent_word_list, words_list,

user_char). Out of the three files, one file is a plain UTF-8

text file, and the other two files are coded as a Directed

Acyclic Word Graph (DAWG). To make DAWG files first we

need to create a word_list of Odia language that is formatted

as a UTF-8 text file with one word per line. To get two UTF-8

text files, split the word list into two sets named as

frequent_word_list and words_list. Few lines of these files

shown in Fig. 10(a)&(b).

These two files are converted into corresponding DAWG file

using the command respectively as follows:

$wordlist2dawg <dictionaryfile> <dawg file>

Example: $wordlist2dawg words_list word-dawg

We put all the characters in the third dictionary file, called

user-words as shown in Fig. 11.

3.8 The last step
By this time the training procedure is finished. The remaining

work is to combine different generated files in different steps

given in previous sections as follows. At first the required

files are renamed by attaching a three letter prefix to each file

name [12]. For Odia we used lang=“ori”. Thus, it is essential

to rename the necessary files prefixed by lang+'.' provided

within the two-column table (Table-1).

Fig. 8. Few lines of the pffmtable file

Fig. 9. Few lines of the pffmtable file

(a) frequent_words_list
(b) words_list

Fig. 10(a)(b). Few lines of UTF-8 dictonary files

Fig. 11. Few lines of UTF-8 dictionary files

International Journal of Computer Applications (0975 – 8887)

International Conference in Distributed Computing & Internet Technology (ICDCIT-2014)

29

Existing file names Modified file names

unicharset ori.unicharset

inttemp ori.inttemp

pffmtable ori.pffmtable

normproto ori.normproto

freq-dawg ori.freq-dawg

word-dawg ori.word-dawg

user-word ori.user-word

Now combine the files using the following command:

$combine_tessdata <3 letter language code>.

Example: $combine_tessdata ori.

It is necessary to give dot (.) at the end. This command results

an output file lang.traineddata (i.e. ori.traineddata in this case)

and then the generated combined file needs to be copied to the

tessdata directory (usually: /usr/local/share/tessdata) . After

this step the training process is finished and it is expected that

Tesseract will be able to recognize any image file containing

basic characters of odia script.

Now to test Tesseract, we need to give an input to Tesseract,

an image file and a name for the file to be generated with the

help of the following command:

$tesseract <image file> <text file> -l <lang>

Example:

 $tesseract test.tif test -l ori

A part of the input image file and its transferred text file is as

shown in the Fig. 12(a&b).

4. Result Analysis
We determined the performance of Tesseract OCR for Odia

language in recognizing the different Odia image documents.

At first, we test a single page image file of isolated characters

for the fonts having size 12pt, then increase the font size of

the same page to 16pt, in both the cases we get 100%

accuracy. Next we continue the testing of an Odia document

image having multiple pages with mixed character sizes (10pt,

12pt and 16pt), we get 100% accuracy. However the font

type of previously test documents are “Lohit Oriya”, so then

we test for the font type “utkal” and find few errors. Summary

of our testing results is shown in the table given bellow:

Image type Font Size Accuracy

Characters Same (12pt) 100%

Characters Increase (16pt) 100%

More than

one page

Different size

(10pt,12pt, 16pt)

100%

More than

one page

Font type - utkal 98%

5. CONCLUSION
The biggest advantage of Tesseract OCR is its availability as

open code. Thus anybody having the interest to study the

working procedure, and skill to improve it can able to train it

for a new language. In this paper, we present the step by step

procedure to train Tesseract engine for Odia printed text

document. At first we train the Tesseract for a particular font

type of English language that has not been supported earlier

by performing a series of test. We then train Tesseract to

recognize the Odia character set, and observed the results. As

we find editing the box file manually is a cumber-sum task

(this language has a large character set), we try to generate the

box file automatically [2]. Also we could be able to detect the

vowels and consonants of Odia character set, however still we

need to train Tesseract for dependent modifiers and other

characters that exist in the Odia documents, in future.

6. ACKNOWLEDGMENTS
The authors would like to thanks Tom Nartker and John Burns

for developing Tesseract as well as the ISRI group at UNLV

and the google group for maintaining Tesseract OCR as open

source.

7. REFERENCES
[1] Md.Abul Hasnat, Muttakinur Rsahman Chowdhury,

Mumit Khan, "Integrating Bangla Script recognition

support in Tesseract OCR", Proceeding of the

Conference on Language & Technology, pp-108-112,

2009

[2] Nick White, " Training Tesseract for Ancient Greek

OCR", October 2012 Available:

www.eutypon.gr/eutypon/pdf/e2012-29/e29-a01.pdf

[3] Md.Abul Hasnat, Muttakinur Rsahman Chowdhury,

Mumit Khan, "An open source Tesseract based Optical

Character Recognizer for Bangla script", 10th Internal

Conference on Document Analysis and Recognition

(ICDAR), pp.671-679, ICDAR, 2009. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&atnumbe

r=5277476

[4] Ray Smith, "An Overview of the Tesseract OCR

Enigine", Proc. of ICDAR2007, Curitiba, Parana, Brazil,

2007. Available:

TABLE 1. Renaming of

files

କଟକ ନଗର ଧବଳ ଟଗର

ବଗର ପର ଧବଳ ଫରଫର

ପଇଡ ଏକ ଗଛର ଫଳ

Fig. 12(a). Input image file test.tif

Fig. 12(b). Generated test.txt file

TABLE. 2 Result obtained

International Journal of Computer Applications (0975 – 8887)

International Conference in Distributed Computing & Internet Technology (ICDCIT-2014)

30

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?atnumber=4

376991

[5] Jane Horgan , " Critical review of Tesseract", 4th April

2010 Available:

https://muelli.cryptobitch.de/paper/2009-Tesseract-

Review.pdf

[6] Sandip rakshit, Subhadip basu, "Development of a multi-

user handwriting recognition system using tesseract open

source engine", Proceeding International conference on

C#IT, pp 240-247,2009.

[7] http://code.google.com/p/Tesseract-ocr/

[8] Md. Abdul Hasnat, " How to train Bangla and

Devanagari script for tesseract engine", pp.1-4, 2008.

Available:

www.ias.ac.in/sadhana/Pdf2002Feb/pe990.pdf

crblpocr.blogspot.com/.../how-to-train-bangla-

devanagari.html

[9] B.B.Chaudhuri, U.Pal, M. Mitra, "Automatic

Recognition of Printed Oriya Script", pp. 23-34,

Sadhana, Vol.27, part 1,2002. Available:

[10] Sanghamitra Mohanty, Hemanta Kumar Behra, "A

complete OCR Development System For Oriya Script",

Proceeding of SIMPLE, Vol.4, 2004.

[11] Ray Smith, Daria Antonova, Dar-Shyang Lee, “Adapting

the Tesseract Open Source OCR Engine for Multilingual

OCR”, Proceedings of the International Workshop on

Multilingual OCR 2009, Barcelona, Spain July 25, 2009.

Available: http://doi.acm.org/10/1145/1577802.1577804

[12] http://tesseract-ocr.googlecode.com/svn-history/r719/

trunk/doc/tesseract.1.html

[13] http://en.wikipedia.org/wiki/List_of_ISO_639-2_codes

[14] George Nagy, “At the Frontiers of OCR”, Proceeding of

the IEEE, Vol 80, No. 7, pp. 1093-1100

http://www.ias.ac.in/sadhana/Pdf2002Feb/pe990.pdf

