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ABSTRACT 

Now a day’s replication is an effective approach to improve 

the efficacy of distributed system, where large amount of data 

(terabytes or peta-bytes) is handled. An efficient replica 

technique is more effective than a shared distributed system 

(network attached storage, object based storage and storage 

area network) and common access point. In a distributed 

system, data access time depends on unreliable network 

bandwidth especially in desktop grid. The data transfer is a 

major bottleneck in data intensive distributed grid 

environment due to high latency and low and unreliable 

bandwidth. In such an environment, an effective scheduling 

and effective replica technique can reduce the amount of data 

transfer across the internet by dispatching a job to a node 

where the required data are present for its operation. As the 

computing scale and the amount of data involved in grid 

applications is increasing exponentially, which causes grid 

resources to wait for long time period for data transfer when 

the involved data is saved in the remote nodes. This degrades 

the overall system performance. Using the file sharing 

mechanism in a distributed file system with a replica 

technique or by using a nature inspired meta-heuristic 

optimization technique system performance can be improved. 

In case of file sharing mechanism with replication techniques 

data can be processed in parallel. In this paper we proposed a 

novel combined model for data replication and job scheduling 

for the desktop grid environment. A reliability based replica 

management technique is proposed for the distributed grid 

environment in such way that overall data transfer is 

minimized. An adaptive technique is proposed for job 

scheduling which considers the parameters like node 

efficiency value, past execution history from execution log 

and node locality value (is a weighted parameter, depending 

upon the availability of replica).   

General Terms 

Distributed System, Data Placement, Big Data, Grid. 

Keywords 

Heuristics, data replication, adaptive, desktop grid, distributed 

systems, reliability. 

1. INTRODUCTION 
In data grids [1, 2], most of distributed applications normally 

require access to a large amount of data (terabytes or peta-

bytes). Managing the huge amount of data at central point is 

ineffective due to extensive access latency and load on the 

grid server. Hence, such huge dataset must be separated and 

stored in different physical locations. In a grid communication 

environment, the efficiency of accessing a huge amount of 

distributed data depends on the availability of bandwidth of 

the network. Slow data access inhibits the performance of 

data-intensive applications running on distributed systems, 

even more in desktop grids. Figure 1 presents the proposed 

simple hierarchical distributed model. The entire model is 

framed with the help of different programming labs, where all 

nodes of each lab are treated as a cluster of nodes with a 

cluster head. There are two kinds of communication between 

sites in a cluster grid Intra-communication and 

Intercommunication. Intra-communication is the 

communication between nodes belonging to the same cluster 

group. In Intercommunication the communication is between 

nodes across clusters. Within a cluster, network bandwidth 

between nodes will be better than across clusters. Thus, to 

reduce network latency and to avoid low bandwidth 

bottleneck in a cluster grid, it is imperative to reduce the 

number of intercommunications. To solve this problem, we 

consider two important aspects of intercommunication: 

effective job scheduling and replication mechanism. Consider 

a case where many authorized users to submit jobs to solve a 

data-intensive problem. For faster execution, scheduling of 

jobs to suitable nodes is necessary because data transfer 

between different nodes within the system is time consuming 

and other some factors. The factors that improve the 

efficiency of the distributed system need to 

be considered during the scheduling, these are available heap 

memory and available CPU load, location of data, 

network bandwidth and node reliability is the prime 

importance. If a job is submitted to a grid node and the 

required data is residing on the same node (local node), the 

job can process data without any delay for getting data from a 

remote node. Data replication is another novel technique for 

data-intensive systems by replicating data in geographically 

distributed nodes. When the user submitted jobs need to 

access huge amounts of data from remote nodes, the dynamic 

replica - optimizer in the site tries to store replicas on local 

storage for any possible future use. If data reside on the local 

node, the regularity of remote data access decreases. This 

diminishes the job execution time. Hence, in this way, Inter-

cluster communications can also be avoided.  

2. RELATED WORK 
In data intensive distributed system, scheduling performance 

depends on effective computation and efficient data 

management technique. The replication of data sets is a 

technique which has been prevalent since very long time and 

is now adopted in data-intensive grid computing to make the 

grid job execution more effective. It is not a new technique, 

but taking decision on replica position is crucial. Several 

replication policies and strategies which make 

decisions on positioning of replicas have already been 

proposed. Most of the proposed strategies relies on certain 

assumptions along with different guarantees to clients. 

Solutions of these replication policies and strategies can be 

classified into on-line and batch modes [1]. 
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Figure 1 Hierarchical Cluster Grid Structure             Figure 2 Logical Designed cluster Structure for 

Replication   

In the online mode, the jobs are assumed to arrive one-by-one, 

generally a predetermined distribution is considered and it is 

the responsibility of the grid schedulers to dispatch these jobs 

as soon as it receives them. In the batch mode (also known as 

batch-of-jobs or bulk), the jobs are assumed to get selected in 

a bulk and the grid scheduler assigns this set of jobs to the 

nodes at the same time. Results in [1] show that the online 

mode is a fair representation of small grids and massive 

systems always process their jobs in the batch module. Most 

of the approaches usually use either on-line mode or batch 

mode, but both (on-line & batch) modes are used in very few 

approaches.  Achieving optimality in performance scheduling 

is a major bottleneck in distributed systems. Effective data 

communication and data management are major issues 

involved in data intensive grid systems. 

Workload management is a major task of grid job scheduling 

mostly in case of batch mode processing. A resource broker is 

created in European Data Grid (EDG) project for the 

workload management. The EDG project is an extended 

version of the Condor project [2]. In the latest version 

of gLite from EGEE project, shared sandbox approach was 

proposed to solve the batch mode grid job scheduling problem 

[3]. In deadline based scheduling strategy, data transfer time 

is taken into consideration in case of data intensive 

applications [4]. These proposed strategies consider either of 

the priority or policy control mechanisms instead of 

considering the whole co-allocation and co-scheduling issues 

present in data intensive grid job scheduling. 

Six replica strategies: No replication strategy, Best Client 

strategy, Cascading Replication strategy, Plain Caching 

strategy, Cascading plus Cascading Replication and Fast 

Spread were proposed by Ranganathan and Foster [5,6] . 

These strategies are evaluated with three different data 

patterns strategies. They are (i) Random access ( no locality in 

the patterns of access), (ii) Recently accessed file are most 

likely to be accessed again (temporal locality) and (iii) files 

recently accessed by a site are likely to be accessed by a 

nearby site (geographical and temporal locality). The 

simulation result of these strategies indicates that each data 

access pattern needs a different replica strategy.  It was 

observed that of all, Cascading and Fast Spread strategies 

performed the best in the simulations as compared to 

traditional strategies. Ranganathan and Foster [7] proposed 

Job scheduling algorithms such as JobLeastLoaded, 

JobLocally, JobDataPresent and JobRandom to assign jobs in 

grid environment. These job scheduling algorithms are 

combined with three different replication strategies: 

DataLeastLoad, DataRandom and DataDoNothing to replicate 

data across nodes in data-intensive grid. In [9], a cost effective 

model is proposed to examine whether it is wrathful to create 

replicas or not. The efficacy of this model is in reducing 

average job execution time with replication than the normal 

case without replication. Close to files (CF), a job scheduling 

algorithm was proposed, which looks for the processors with 

least load near a node where data is present [10]. In this 

algorithm, it is assumed that the a single input data file is the 

requirement of the job.  The simulation results show that the 

efficacy with respect to performance of Close-to-Files (CF) 

job scheduling algorithm is better than other job placement 

algorithm which places jobs on the nodes which has the 

largest number of idle processors. 

Data intensive jobs are automatically queued, scheduled, 

monitored and managed among the nodes of the grid in Stork 

project [4]. In this project data intensive jobs give equal 

importance as computational intensive jobs. The motivation 

for this project is to efficiently utilize the computational 

resources with input data required for execution. The 

classes [4] method of Stork project is used to indicate a job as 

well as data requirements. This method is combined with a 

task scheduler method of the Condor project like DAGMan 

(Directed Acyclic Graph Manager) [16] that deals with the 

Integrated Replication and Scheduling Strategy (IRS) which 

integrates the scheduling and replication strategies. It 

separates jobs scheduling from data scheduling. This approach 

of combining Condor and Stork project covers the objectives 

of the computationally intensive and data-intensive jobs [13], 

but does not handle the batch mode processing. The Class Ad 

framework was used to express the relationships among 

different stakeholders in I/O communities where 

computational jobs and data files are linked together by 

binding Compute Nodes (CNs) and Storage Nodes (SNs) [4]. 

This framework does not consider policy issues in its 

optimization procedure, so it cannot deal with batch mode 

processing of grid jobs. The execution of this framework is 

similar to Stork project, where CPUs and data resources in the 

grid are linked to access a specific datasets and batch mode 

processing of grid job scheduling is not covered. 
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One of the complete scheduling approaches for simultaneous 

job and data file scheduling with the help of replication is 

Data Intensive and Network Aware (DIANA) [11, 12] 

scheduling is based on real GILDA [13] and CMS [14]. In this 

scheduling technique, jobs are classified based on their 

execution. In case of applications which are data intensive, 

jobs are moved to the best available CN with minimum 

download time of the required data files. In case of 

computationally intensive jobs, data files are replicated to the 

best available SN with a minimum upload time of the given 

dependent jobs. The decision is made in both cases based on: 

storage capacity of SN, the processing speed along with total 

CPUs available in the CN and network links connecting SNs 

and CNs. An alternative mechanism to DIANA is Best Map 

[15] which uses two mechanisms to iteratively minimize 

scheduling of jobs, and minimize delivery time of all data 

files through replication. Among BestMap and DIANA, 

the BestMap technique does not differentiate between jobs for 

scheduling or replication, rather always tries to to determine 

the best CN or SN to schedule/replicate a job or its dependent 

data files at each stage when compared to DIANA. The 

researchers in [17] applied machine learning approaches into 

their decision making process to detect data types (physical, 

biology, chemistry, etc.) and group them for better 

replications. An advanced metric is used which takes into 

consideration the number of times a data file is requested as 

well as its size, to identify hot data files. A notation of 

positive or negative distance between SNs to distribute data 

files was also invented in this approach. This distance 

calculated can be used to replicate data files and to achieve 

maximum distance among data files of different types and 

minimum distance of data files of the similar type. In the 

framework proposed by researchers in [20] a heterogeneous 

data file is assumed with only five distinct job types. In this 

framework the jobs are scheduled to reduce the amount of 

data transferred. 

A variety of meta-heuristics approaches have been suggested 

to improve the jobs scheduling in distributed environments 

such as grids. Dynamic and Static heuristics [18] are the two 

different types of categories. These categories are 

differentiated based on number of tasks considered at every 

scheduling step or based on the objective tasks set. The grid 

job scheduling can be characterized as an NP problem [19]. It 

has been proved that nature inspired meta-heuristics 

approaches such as Genetic Algorithms, Particle Swarm 

Optimization and Firefly Algorithms provide a better solution 

in case of NP problems [19]. The authors in [19] applied GA 

for the scheduling jobs in grid environment. It was also 

proved that GAs as one of the best options for the evolution of 

fuzzy knowledge, as it is the case of Pittsburgh and Michigan 

approaches. After making a close look at 

the aforementioned techniques, we have realized that most of 

these systems are usually designed either by minimizing 

the timespan of execution all jobs or by reducing the time to 

transfer the data files in a system and very few techniques 

consider both the approaches. Mostly, this algorithm does not 

have the flexibility to be extended to other systems and in 

most of the situations they lack the facility to generalize. We 

can also observe that the algorithms which are designed for 

the on-line mode cannot be extended to the batch mode and 

vice versa. Therefore, in our work, we tried to model a generic 

approach with the help of a heuristic technique (adaptive) 

with any real system which includes a combination of both 

data-intensive and computational intensive job oriented 

systems. We have taken into consideration the general case of 

job to data file dependency. 

3.  SYSTEM MODEL 
As no single replication strategy is suitable for all types of 

grid model and all types of applications. Number of 

replication strategies and grid logical structures are discussed 

for different data intensive applications in section 2. In this 

paper we propose a combined grid model, where grid nodes 

are classified into clusters. These clustered nodes are 

physically and logically grouped into clusters. An 

adaptive heuristic algorithm is proposed for job scheduling 

and an efficient data replication technique is proposed for data 

replication. This adaptive scheduling algorithm is employed 

for scheduling the jobs to resources on node efficiency value, 

locality value along with a past execution history of the node. 

As replication decision is very crucial for performance of the 

data grid, we consider these parameters in proposed combined 

model. Figure 2 presents the logical model of desktop data 

intensive grid model, where nodes are grouped into clusters 

on various parameters. 

4. COMBINED MODEL 
The proposed combined model uses two major parameters 

like, node reliability value and localization value. Replica 

management is an important technique in data intensive grids 

and even more in case of desktop grids. In our proposed 

model; reliability value is calculated on the basis of 

availability of node in comparison to the nodes that available 

in the cluster group and localization value depending on the 

point of job and data submission and scheduling point where 

the job is assigned for execution. 

A combined model is proposed for effective replica 

management and a heuristic technique for job scheduling. 

Effective replica management is to minimize the 

communication overhead during data access from local and 

remote nodes of different clusters. Adaptive scheduling 

framework [22] is proposed to minimize the overall execution 

time user submitted jobs. In case of replica management, we 

proposed a replication policy by considering the parameter 

that puts an impact on data intensive job scheduling.  The 

parameters used to frame the replication policy are 

NodeRvalue: node reliability value and TotHeapvalue(Nodei): 

total heap memory of the node is considered for deciding the 

place of replica. In scheduling policy, current node status, 

previous execution history of the node and Locvalue: locality 

value is considered. 

The proposed combined model considers the three major 

factors like node reliability value, resources current status, 

previous execution time and node locality value. 

CombinedModel=NodeReliablityValue+CurrentStatus+

PrevExeTime+LocalityValue

Pr

(1)

value value

value

CModel NodeR NodeEf evExeTime

Loc

   



Combined model is framed for replication policy and 

scheduling policy  

 RepPolicy SchPolicyCModel    

RepPolicy ( )value mem iNodeR TotHeap Node   
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 

1...

RepVal max ( )

(2)

inode value mem i

i N

NodeR TotHeap Node

node 

 

 

 

Prvalue valueSchPolicy NodeEf evExeTime Loc  

 

    

1..

max min Pr

(3)

value value

i N

ExpExeTime NodeEf Loc evExeTime

node


  

  

 

Adaptive scheduling is based on the expected execution time 

and is calculated in equation (3). 

Initial all nodes NodeRvalue  is set to 1 (one), on execution of 

jobs on distributed system the node reliability value will 

change depending on the performance of the node and 

availability of node with respect to another node in the cluster. 

NodeRvalue will increase if the availability of the node is more 

than the other node in the cluster otherwise Rvalue will decrease 

as represent in equation (4). 

 

{1... . }

1
(4)

# (

value value

i no of cluster

NodeR NodeR

AvlNodes Cluster

 

 
  

  

 

As reliability of any node lies in between zero to one, min and 

max function are used to keep the NodeRvalue within the range 

as shown in equations (5) and (6). 

{1... . }

1
min 1, (5)

# (
value value

i no of cluster

NodeR NodeR
AvlNodes Cluster

  
    
      

Node reliability value NodeRvalue of a node is incremented 

based on the group in which it belongs and availability of the 

node with respect to the group members, as presented in 

Equation 5, similarly for node reliability value is decremented 

based on Equation 6. 

{1... . }

1
m 0, (6)

# (
value value

i no of cluster

NodeR ax NodeR
AvlNodes Cluster

  
    
    

Current computational and memory status of a node 

NodeEFvalue is calculated with set of parameters like 

AvlHeapvalue(Nodei), AvlHeapvalue(Nodei) and No.of 

PJobs(Nodei) is formulated in equation (7). 

( ) * 1

( ) * 2 # ( ) (7)

value load i

mem i i

NodeEf AvlCPU Node c

AvlHeap Node c pJobs Node

 

  
 

c1 and c2 are two constant weights associated with available 

CPU load and available heap memory with different weights 

in equation (7) for different types of jobs. 

0.7,
1

0.3,

for ComputationalJobs
c

for Data Intensive Jobs

 
  
 

0.3,
2

0.7,

for ComputationalJobs
c

for Data Intensive Jobs

 
  
 

 

To minimize the communication overhead for data access 

from a node, locality value is considered as a major parameter 

in scheduling. It is a weighted parameter; weights are assigned 

based on the presence of data replica for the specified node 

and weights are presented in equation (8). 

 

0.7,
(8)

0.3,
value

if job scheduled on samemachine
Loc

if job scheduled on different machine

 
  
 

 

prevExeTime is calculated depending the job size and amount 

of data access involved from the past execution history. 

4.1 Adaptive Algorithm 
In this section a heuristic approach (adaptive algorithm) has 

been presented, in addition to dynamic information, this 

approach keeps track of previous job execution history to 

predict the completion time of future jobs in the 

aforementioned grid environment adaptively. The algorithm 

takes into account the processing capacity of the nodes, 

communication cost during the load balancing operation, heap 

memory requirement, pending jobs and locality value. The 

category of the problem we address here is a computational 

and data-intensive. The jobs are totally independent with no 

communication between them. Figure 3 describes the flow 

control of the proposed framework. 

4.2 Problem Formulation 
In order to capture important characteristics of job scheduling 

in desktop grid systems, we considered the use of test-bed 

model. To formulate the problem under real test-bed model, 

an estimation of the required computational load of each job, 

the computing capacity of each resource, job migration cost 

due to unreliable network bandwidth, locality value and an 

estimation of the prior load of each one of the resources are 

considered to model the Expected Execution Time (EET).  

In this paper, we consider the classical CompletionTime for 

scheduling problem. If ‘M’ machines are available for 

scheduling of ‘N’ submitted user jobs, where job Jj takes 

Exei,j units of time if scheduled on machine Mi. The following 

sections describe the formulation of job scheduling for N jobs 

on M machines using an adaptive approach. 
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Figure 3 Framework Control Flow

------------------------------------------------------------------- 

Algorithm: Adaptive Scheduling 

------------------------------------------------------------------- 
1. Begin: 

2. Grid g; 

3. GridNodes=g.grid.totalLocalnodes()+g.grid.totalRemotenodes(
); 

4. Resource collection: 

for(i=0; i < GridNodes; i=i+1){NodeId[i]=g.getNodeId(); 

AvlCpuLoad[i]=g.getAvailableCPUload(); 

AvlHeapMemory[i]=g.getAvailableHeapMemory(); 

   pendJobs[i]=g.getPendingJobs(); 

  g.nextnode(); 

 EfValue[i]= AvlCpuLoad[i]*c1+    AvlHeapMemory[i]*c2+  

pendJobs[i];} 

5. Reliability value Calculation: 

for(i=0; i < GridNodes; i=i+1)   { 

       NodeRvalue[i]= NodeRvalue[i]+(1/ GridNodes); 

     RepValue[i]= NodeRvalue[i]+ 

                           g.getTotalHeapMemory(); 

            g.nextnode(); } 
6. Job Decomposition: 

TotTasks=Decompsiton(job);    

 //-----discussed in reference [21] 

7. LocVal calculation: 

for(i=0; i < GridNodes; i=i+1){ 

LocVal[i]=isReplicaPresent(nodeId);}  //------is a function 
with return value of 0.7 or 0.3 according nodeId 

8. Expected Execution Time calculation: 

for(i=0; i < GridNodes; i=i+1) 

 EET[i]= 

max(EfValue[i]+LocValue[i])+min(prevExeTimeFun(job,nodeI

d)); 

9. Resource Ordering and Allocation: 

NodeId[i]=doOrdering(NodeId,EET); 

for(i=0; i <TotTask; i=i+1) 

     g.execute(NodeId[i],task[i]); 

10. End 

------------------------------------------------------------------- 

4.3 Fitness Function 
An adaptive approach is used for calculating the Expected 

Execution Time (EET) for submitting jobs. The proposed 

model can be used to model the scheduling of jobs to 

resources with a multi-objective general formulation. The 

basic objective is that of minimizing the completion time that 

is, the time when the last job finishes its execution. 

To minimize the completion of tasks that submitted a locality 

value is used to prioritize the node in which replica of the 

requested data is present. 

The following equations are used to formulate the EET 

(Table-1) for test-bed, which is applied in formulating fitness 

value.  

    

1..

( ) max min Pr

(9)

value value

i N

f x NodeEf Loc evExeTime

node 

  

 

Equation (9) works for grid simulation, but in case of test-bed 

desktop grid difficult to predict the execution time of a job. In 

this paper, an adaptive predictive approach is used to predict 

the expected execution time from execution log. To achieve 

this, training test benchmark jobs are executed in desktop and 

results stored in a log. 

This log information updated in a table (Table-1) using offline 

and table lookup approach is used to predict the expected 

execution time of online submitted jobs. Multi 

valued regression function is applied to predict the expected 

execution time for a job with respect to assigned available 

resource computational power. Table 2 gives the information 

of the previous execution grid details. 

Table 1: GridExeTab: that keeps previous grid execution 

details 

Job

Id 

No. of 

Tasks 

Grid 

Size 
(nodes) 

Tot 

Avg  
CPU 

Load 

TotAvg 

Heap 
Memory 

Compl

etion 
Time 

Com

m 
Cost 

J1 65 56 40.654 7.87653 

488E7 

6544 323 

J2 45 40 50.553 5.01431 

24E8 

4243 321 

 

Table 2: GridExeTab: keeps grid execution Log details 

Task 

Id 

Task 

Type 

Task 

Size 

Avg 

CPU 

Load 

Avg 

Heap 

Mem 

Exe 

Time 

Com

m 

Cost 

T1  0.654 8.7645634E7 547 432  

T2  0.553 5.0143124E8 243 321  

Tnew Xxx Xxxx xxxxx ? ?  

 

GridGain 4.0 middleware provides necessary information 

about the grid system namely, grid resource information and 

run time task execution details. The following grid run time 

features are extracted using GridGain, and can be used to 

schedule tasks. Such information from GridGain is used for 

performance tuning.  

The basic objective is to minimize the completion time, i.e. 

the time when the last job finishes its 

execution. ExecutionTime of jobj in a Machine Mi is 

formulated in equation (9).  

5. CONCLUSION 
In this paper, we proposed a combined model which is based 

on scheduling policy and data replica policy. The nature of the 

jobs we address here is a computational and data-intensive 
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and these jobs are independent of communication overhead 

among them. The data replication policy is proposed by 

considering the parameter such as the node reliability value 

and total heap memory available for the node in the 

distributed grid environment. In addition to this data 

replication policy, an adaptive scheduling algorithm is 

proposed for efficient scheduling of job in the distributed grid 

environment. This adaptive scheduling algorithm keeps track 

of previous job execution history, locality value and the 

current status of the node. The proposed adaptive scheduling 

algorithm is used to predict the completion time of the new 

jobs that arrive in the future by considering above parameters. 

6. FUTURE WORK 
The combined model is proposed to implement in a desktop 

grid environment with GridGain4.0 middle ware. Initially we 

proposed the scheduling framework with adaptive scheduling 

technique, but same model can be framed within meta-

heuristic approaches like nature inspired GA, PSO and Firefly 

algorithm. The performance of these nature inspired algorithm 

can be analyzed with respect to different grid and job size. 
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