
International Journal of Computer Applications (0975 – 8887)

International Conference in Distributed Computing & Internet Technology (ICDCIT-2014)

19

A Combined Replication-Adaptive Scheduling Model for

Desktop Grid Environment

Shailaja Pandey

National Institute Of Science
and Technology, Berhampur,

Ashu A

Assistant Professor
National Institute Of Science
and Technology, Berhampur,

K.Hemant K Reddy

Assistant Professor
National Institute of Science
and Technology, Berhampur,

ABSTRACT

Now a day’s replication is an effective approach to improve

the efficacy of distributed system, where large amount of data

(terabytes or peta-bytes) is handled. An efficient replica

technique is more effective than a shared distributed system

(network attached storage, object based storage and storage

area network) and common access point. In a distributed

system, data access time depends on unreliable network

bandwidth especially in desktop grid. The data transfer is a

major bottleneck in data intensive distributed grid

environment due to high latency and low and unreliable

bandwidth. In such an environment, an effective scheduling

and effective replica technique can reduce the amount of data

transfer across the internet by dispatching a job to a node

where the required data are present for its operation. As the

computing scale and the amount of data involved in grid

applications is increasing exponentially, which causes grid

resources to wait for long time period for data transfer when

the involved data is saved in the remote nodes. This degrades

the overall system performance. Using the file sharing

mechanism in a distributed file system with a replica

technique or by using a nature inspired meta-heuristic

optimization technique system performance can be improved.

In case of file sharing mechanism with replication techniques

data can be processed in parallel. In this paper we proposed a

novel combined model for data replication and job scheduling

for the desktop grid environment. A reliability based replica

management technique is proposed for the distributed grid

environment in such way that overall data transfer is

minimized. An adaptive technique is proposed for job

scheduling which considers the parameters like node

efficiency value, past execution history from execution log

and node locality value (is a weighted parameter, depending

upon the availability of replica).

General Terms

Distributed System, Data Placement, Big Data, Grid.

Keywords

Heuristics, data replication, adaptive, desktop grid, distributed

systems, reliability.

1. INTRODUCTION
In data grids [1, 2], most of distributed applications normally

require access to a large amount of data (terabytes or peta-

bytes). Managing the huge amount of data at central point is

ineffective due to extensive access latency and load on the

grid server. Hence, such huge dataset must be separated and

stored in different physical locations. In a grid communication

environment, the efficiency of accessing a huge amount of

distributed data depends on the availability of bandwidth of

the network. Slow data access inhibits the performance of

data-intensive applications running on distributed systems,

even more in desktop grids. Figure 1 presents the proposed

simple hierarchical distributed model. The entire model is

framed with the help of different programming labs, where all

nodes of each lab are treated as a cluster of nodes with a

cluster head. There are two kinds of communication between

sites in a cluster grid Intra-communication and

Intercommunication. Intra-communication is the

communication between nodes belonging to the same cluster

group. In Intercommunication the communication is between

nodes across clusters. Within a cluster, network bandwidth

between nodes will be better than across clusters. Thus, to

reduce network latency and to avoid low bandwidth

bottleneck in a cluster grid, it is imperative to reduce the

number of intercommunications. To solve this problem, we

consider two important aspects of intercommunication:

effective job scheduling and replication mechanism. Consider

a case where many authorized users to submit jobs to solve a

data-intensive problem. For faster execution, scheduling of

jobs to suitable nodes is necessary because data transfer

between different nodes within the system is time consuming

and other some factors. The factors that improve the

efficiency of the distributed system need to

be considered during the scheduling, these are available heap

memory and available CPU load, location of data,

network bandwidth and node reliability is the prime

importance. If a job is submitted to a grid node and the

required data is residing on the same node (local node), the

job can process data without any delay for getting data from a

remote node. Data replication is another novel technique for

data-intensive systems by replicating data in geographically

distributed nodes. When the user submitted jobs need to

access huge amounts of data from remote nodes, the dynamic

replica - optimizer in the site tries to store replicas on local

storage for any possible future use. If data reside on the local

node, the regularity of remote data access decreases. This

diminishes the job execution time. Hence, in this way, Inter-

cluster communications can also be avoided.

2. RELATED WORK
In data intensive distributed system, scheduling performance

depends on effective computation and efficient data

management technique. The replication of data sets is a

technique which has been prevalent since very long time and

is now adopted in data-intensive grid computing to make the

grid job execution more effective. It is not a new technique,

but taking decision on replica position is crucial. Several

replication policies and strategies which make

decisions on positioning of replicas have already been

proposed. Most of the proposed strategies relies on certain

assumptions along with different guarantees to clients.

Solutions of these replication policies and strategies can be

classified into on-line and batch modes [1].

International Journal of Computer Applications (0975 – 8887)

International Conference in Distributed Computing & Internet Technology (ICDCIT-2014)

20

Figure 1 Hierarchical Cluster Grid Structure Figure 2 Logical Designed cluster Structure for

Replication

In the online mode, the jobs are assumed to arrive one-by-one,

generally a predetermined distribution is considered and it is

the responsibility of the grid schedulers to dispatch these jobs

as soon as it receives them. In the batch mode (also known as

batch-of-jobs or bulk), the jobs are assumed to get selected in

a bulk and the grid scheduler assigns this set of jobs to the

nodes at the same time. Results in [1] show that the online

mode is a fair representation of small grids and massive

systems always process their jobs in the batch module. Most

of the approaches usually use either on-line mode or batch

mode, but both (on-line & batch) modes are used in very few

approaches. Achieving optimality in performance scheduling

is a major bottleneck in distributed systems. Effective data

communication and data management are major issues

involved in data intensive grid systems.

Workload management is a major task of grid job scheduling

mostly in case of batch mode processing. A resource broker is

created in European Data Grid (EDG) project for the

workload management. The EDG project is an extended

version of the Condor project [2]. In the latest version

of gLite from EGEE project, shared sandbox approach was

proposed to solve the batch mode grid job scheduling problem

[3]. In deadline based scheduling strategy, data transfer time

is taken into consideration in case of data intensive

applications [4]. These proposed strategies consider either of

the priority or policy control mechanisms instead of

considering the whole co-allocation and co-scheduling issues

present in data intensive grid job scheduling.

Six replica strategies: No replication strategy, Best Client

strategy, Cascading Replication strategy, Plain Caching

strategy, Cascading plus Cascading Replication and Fast

Spread were proposed by Ranganathan and Foster [5,6] .

These strategies are evaluated with three different data

patterns strategies. They are (i) Random access (no locality in

the patterns of access), (ii) Recently accessed file are most

likely to be accessed again (temporal locality) and (iii) files

recently accessed by a site are likely to be accessed by a

nearby site (geographical and temporal locality). The

simulation result of these strategies indicates that each data

access pattern needs a different replica strategy. It was

observed that of all, Cascading and Fast Spread strategies

performed the best in the simulations as compared to

traditional strategies. Ranganathan and Foster [7] proposed

Job scheduling algorithms such as JobLeastLoaded,

JobLocally, JobDataPresent and JobRandom to assign jobs in

grid environment. These job scheduling algorithms are

combined with three different replication strategies:

DataLeastLoad, DataRandom and DataDoNothing to replicate

data across nodes in data-intensive grid. In [9], a cost effective

model is proposed to examine whether it is wrathful to create

replicas or not. The efficacy of this model is in reducing

average job execution time with replication than the normal

case without replication. Close to files (CF), a job scheduling

algorithm was proposed, which looks for the processors with

least load near a node where data is present [10]. In this

algorithm, it is assumed that the a single input data file is the

requirement of the job. The simulation results show that the

efficacy with respect to performance of Close-to-Files (CF)

job scheduling algorithm is better than other job placement

algorithm which places jobs on the nodes which has the

largest number of idle processors.

Data intensive jobs are automatically queued, scheduled,

monitored and managed among the nodes of the grid in Stork

project [4]. In this project data intensive jobs give equal

importance as computational intensive jobs. The motivation

for this project is to efficiently utilize the computational

resources with input data required for execution. The

classes [4] method of Stork project is used to indicate a job as

well as data requirements. This method is combined with a

task scheduler method of the Condor project like DAGMan

(Directed Acyclic Graph Manager) [16] that deals with the

Integrated Replication and Scheduling Strategy (IRS) which

integrates the scheduling and replication strategies. It

separates jobs scheduling from data scheduling. This approach

of combining Condor and Stork project covers the objectives

of the computationally intensive and data-intensive jobs [13],

but does not handle the batch mode processing. The Class Ad

framework was used to express the relationships among

different stakeholders in I/O communities where

computational jobs and data files are linked together by

binding Compute Nodes (CNs) and Storage Nodes (SNs) [4].

This framework does not consider policy issues in its

optimization procedure, so it cannot deal with batch mode

processing of grid jobs. The execution of this framework is

similar to Stork project, where CPUs and data resources in the

grid are linked to access a specific datasets and batch mode

processing of grid job scheduling is not covered.

Node
Rvalue

AvlHeap

Mem

Node Replication

Value

Node

Eff.

Value

Locality

Value

Max

{pastExeTime}

1...i Nnode 

Expected Exe Time

Min


(a) Data Replication model (b) Scheduling Model

International Journal of Computer Applications (0975 – 8887)

International Conference in Distributed Computing & Internet Technology (ICDCIT-2014)

21

One of the complete scheduling approaches for simultaneous

job and data file scheduling with the help of replication is

Data Intensive and Network Aware (DIANA) [11, 12]

scheduling is based on real GILDA [13] and CMS [14]. In this

scheduling technique, jobs are classified based on their

execution. In case of applications which are data intensive,

jobs are moved to the best available CN with minimum

download time of the required data files. In case of

computationally intensive jobs, data files are replicated to the

best available SN with a minimum upload time of the given

dependent jobs. The decision is made in both cases based on:

storage capacity of SN, the processing speed along with total

CPUs available in the CN and network links connecting SNs

and CNs. An alternative mechanism to DIANA is Best Map

[15] which uses two mechanisms to iteratively minimize

scheduling of jobs, and minimize delivery time of all data

files through replication. Among BestMap and DIANA,

the BestMap technique does not differentiate between jobs for

scheduling or replication, rather always tries to to determine

the best CN or SN to schedule/replicate a job or its dependent

data files at each stage when compared to DIANA. The

researchers in [17] applied machine learning approaches into

their decision making process to detect data types (physical,

biology, chemistry, etc.) and group them for better

replications. An advanced metric is used which takes into

consideration the number of times a data file is requested as

well as its size, to identify hot data files. A notation of

positive or negative distance between SNs to distribute data

files was also invented in this approach. This distance

calculated can be used to replicate data files and to achieve

maximum distance among data files of different types and

minimum distance of data files of the similar type. In the

framework proposed by researchers in [20] a heterogeneous

data file is assumed with only five distinct job types. In this

framework the jobs are scheduled to reduce the amount of

data transferred.

A variety of meta-heuristics approaches have been suggested

to improve the jobs scheduling in distributed environments

such as grids. Dynamic and Static heuristics [18] are the two

different types of categories. These categories are

differentiated based on number of tasks considered at every

scheduling step or based on the objective tasks set. The grid

job scheduling can be characterized as an NP problem [19]. It

has been proved that nature inspired meta-heuristics

approaches such as Genetic Algorithms, Particle Swarm

Optimization and Firefly Algorithms provide a better solution

in case of NP problems [19]. The authors in [19] applied GA

for the scheduling jobs in grid environment. It was also

proved that GAs as one of the best options for the evolution of

fuzzy knowledge, as it is the case of Pittsburgh and Michigan

approaches. After making a close look at

the aforementioned techniques, we have realized that most of

these systems are usually designed either by minimizing

the timespan of execution all jobs or by reducing the time to

transfer the data files in a system and very few techniques

consider both the approaches. Mostly, this algorithm does not

have the flexibility to be extended to other systems and in

most of the situations they lack the facility to generalize. We

can also observe that the algorithms which are designed for

the on-line mode cannot be extended to the batch mode and

vice versa. Therefore, in our work, we tried to model a generic

approach with the help of a heuristic technique (adaptive)

with any real system which includes a combination of both

data-intensive and computational intensive job oriented

systems. We have taken into consideration the general case of

job to data file dependency.

3. SYSTEM MODEL
As no single replication strategy is suitable for all types of

grid model and all types of applications. Number of

replication strategies and grid logical structures are discussed

for different data intensive applications in section 2. In this

paper we propose a combined grid model, where grid nodes

are classified into clusters. These clustered nodes are

physically and logically grouped into clusters. An

adaptive heuristic algorithm is proposed for job scheduling

and an efficient data replication technique is proposed for data

replication. This adaptive scheduling algorithm is employed

for scheduling the jobs to resources on node efficiency value,

locality value along with a past execution history of the node.

As replication decision is very crucial for performance of the

data grid, we consider these parameters in proposed combined

model. Figure 2 presents the logical model of desktop data

intensive grid model, where nodes are grouped into clusters

on various parameters.

4. COMBINED MODEL
The proposed combined model uses two major parameters

like, node reliability value and localization value. Replica

management is an important technique in data intensive grids

and even more in case of desktop grids. In our proposed

model; reliability value is calculated on the basis of

availability of node in comparison to the nodes that available

in the cluster group and localization value depending on the

point of job and data submission and scheduling point where

the job is assigned for execution.

A combined model is proposed for effective replica

management and a heuristic technique for job scheduling.

Effective replica management is to minimize the

communication overhead during data access from local and

remote nodes of different clusters. Adaptive scheduling

framework [22] is proposed to minimize the overall execution

time user submitted jobs. In case of replica management, we

proposed a replication policy by considering the parameter

that puts an impact on data intensive job scheduling. The

parameters used to frame the replication policy are

NodeRvalue: node reliability value and TotHeapvalue(Nodei):

total heap memory of the node is considered for deciding the

place of replica. In scheduling policy, current node status,

previous execution history of the node and Locvalue: locality

value is considered.

The proposed combined model considers the three major

factors like node reliability value, resources current status,

previous execution time and node locality value.

CombinedModel=NodeReliablityValue+CurrentStatus+

PrevExeTime+LocalityValue

Pr

(1)

value value

value

CModel NodeR NodeEf evExeTime

Loc

   



Combined model is framed for replication policy and

scheduling policy

 RepPolicy SchPolicyCModel  

RepPolicy ()value mem iNodeR TotHeap Node 

International Journal of Computer Applications (0975 – 8887)

International Conference in Distributed Computing & Internet Technology (ICDCIT-2014)

22

 

1...

RepVal max ()

(2)

inode value mem i

i N

NodeR TotHeap Node

node 

 

 

Prvalue valueSchPolicy NodeEf evExeTime Loc  

    

1..

max min Pr

(3)

value value

i N

ExpExeTime NodeEf Loc evExeTime

node


  

  

Adaptive scheduling is based on the expected execution time

and is calculated in equation (3).

Initial all nodes NodeRvalue is set to 1 (one), on execution of

jobs on distributed system the node reliability value will

change depending on the performance of the node and

availability of node with respect to another node in the cluster.

NodeRvalue will increase if the availability of the node is more

than the other node in the cluster otherwise Rvalue will decrease

as represent in equation (4).

{1... . }

1
(4)

(

value value

i no of cluster

NodeR NodeR

AvlNodes Cluster

 

 
  

  

As reliability of any node lies in between zero to one, min and

max function are used to keep the NodeRvalue within the range

as shown in equations (5) and (6).

{1... . }

1
min 1, (5)

(
value value

i no of cluster

NodeR NodeR
AvlNodes Cluster

  
    
    

Node reliability value NodeRvalue of a node is incremented

based on the group in which it belongs and availability of the

node with respect to the group members, as presented in

Equation 5, similarly for node reliability value is decremented

based on Equation 6.

{1... . }

1
m 0, (6)

(
value value

i no of cluster

NodeR ax NodeR
AvlNodes Cluster

  
    
    

Current computational and memory status of a node

NodeEFvalue is calculated with set of parameters like

AvlHeapvalue(Nodei), AvlHeapvalue(Nodei) and No.of

PJobs(Nodei) is formulated in equation (7).

() * 1

() * 2 # () (7)

value load i

mem i i

NodeEf AvlCPU Node c

AvlHeap Node c pJobs Node

 

  

c1 and c2 are two constant weights associated with available

CPU load and available heap memory with different weights

in equation (7) for different types of jobs.

0.7,
1

0.3,

for ComputationalJobs
c

for Data Intensive Jobs

 
  
 

0.3,
2

0.7,

for ComputationalJobs
c

for Data Intensive Jobs

 
  
 

To minimize the communication overhead for data access

from a node, locality value is considered as a major parameter

in scheduling. It is a weighted parameter; weights are assigned

based on the presence of data replica for the specified node

and weights are presented in equation (8).

0.7,
(8)

0.3,
value

if job scheduled on samemachine
Loc

if job scheduled on different machine

 
  
 

prevExeTime is calculated depending the job size and amount

of data access involved from the past execution history.

4.1 Adaptive Algorithm
In this section a heuristic approach (adaptive algorithm) has

been presented, in addition to dynamic information, this

approach keeps track of previous job execution history to

predict the completion time of future jobs in the

aforementioned grid environment adaptively. The algorithm

takes into account the processing capacity of the nodes,

communication cost during the load balancing operation, heap

memory requirement, pending jobs and locality value. The

category of the problem we address here is a computational

and data-intensive. The jobs are totally independent with no

communication between them. Figure 3 describes the flow

control of the proposed framework.

4.2 Problem Formulation
In order to capture important characteristics of job scheduling

in desktop grid systems, we considered the use of test-bed

model. To formulate the problem under real test-bed model,

an estimation of the required computational load of each job,

the computing capacity of each resource, job migration cost

due to unreliable network bandwidth, locality value and an

estimation of the prior load of each one of the resources are

considered to model the Expected Execution Time (EET).

In this paper, we consider the classical CompletionTime for

scheduling problem. If ‘M’ machines are available for

scheduling of ‘N’ submitted user jobs, where job Jj takes

Exei,j units of time if scheduled on machine Mi. The following

sections describe the formulation of job scheduling for N jobs

on M machines using an adaptive approach.

International Journal of Computer Applications (0975 – 8887)

International Conference in Distributed Computing & Internet Technology (ICDCIT-2014)

23

 [Re ()] Re

& ()

e
[] ()

()

status

LogHistory

j

sourceSelection Schedular

RDiscovery JobDecompositon RCollection Ordering Adaptive f x

R source
ExeLog ExpExeTime Job

Discovery

 

  

   

 

 
    

 

Figure 3 Framework Control Flow

Algorithm: Adaptive Scheduling

1. Begin:

2. Grid g;

3. GridNodes=g.grid.totalLocalnodes()+g.grid.totalRemotenodes(
);

4. Resource collection:

for(i=0; i < GridNodes; i=i+1){NodeId[i]=g.getNodeId();

AvlCpuLoad[i]=g.getAvailableCPUload();

AvlHeapMemory[i]=g.getAvailableHeapMemory();

 pendJobs[i]=g.getPendingJobs();

 g.nextnode();

 EfValue[i]= AvlCpuLoad[i]*c1+ AvlHeapMemory[i]*c2+

pendJobs[i];}

5. Reliability value Calculation:

for(i=0; i < GridNodes; i=i+1) {

 NodeRvalue[i]= NodeRvalue[i]+(1/ GridNodes);

 RepValue[i]= NodeRvalue[i]+

 g.getTotalHeapMemory();

 g.nextnode(); }
6. Job Decomposition:

TotTasks=Decompsiton(job);

 //-----discussed in reference [21]

7. LocVal calculation:

for(i=0; i < GridNodes; i=i+1){

LocVal[i]=isReplicaPresent(nodeId);} //------is a function
with return value of 0.7 or 0.3 according nodeId

8. Expected Execution Time calculation:

for(i=0; i < GridNodes; i=i+1)

 EET[i]=

max(EfValue[i]+LocValue[i])+min(prevExeTimeFun(job,nodeI

d));

9. Resource Ordering and Allocation:

NodeId[i]=doOrdering(NodeId,EET);

for(i=0; i <TotTask; i=i+1)

 g.execute(NodeId[i],task[i]);

10. End

4.3 Fitness Function
An adaptive approach is used for calculating the Expected

Execution Time (EET) for submitting jobs. The proposed

model can be used to model the scheduling of jobs to

resources with a multi-objective general formulation. The

basic objective is that of minimizing the completion time that

is, the time when the last job finishes its execution.

To minimize the completion of tasks that submitted a locality

value is used to prioritize the node in which replica of the

requested data is present.

The following equations are used to formulate the EET

(Table-1) for test-bed, which is applied in formulating fitness

value.

    

1..

() max min Pr

(9)

value value

i N

f x NodeEf Loc evExeTime

node 

  

 

Equation (9) works for grid simulation, but in case of test-bed

desktop grid difficult to predict the execution time of a job. In

this paper, an adaptive predictive approach is used to predict

the expected execution time from execution log. To achieve

this, training test benchmark jobs are executed in desktop and

results stored in a log.

This log information updated in a table (Table-1) using offline

and table lookup approach is used to predict the expected

execution time of online submitted jobs. Multi

valued regression function is applied to predict the expected

execution time for a job with respect to assigned available

resource computational power. Table 2 gives the information

of the previous execution grid details.

Table 1: GridExeTab: that keeps previous grid execution

details

Job

Id

No. of

Tasks

Grid

Size
(nodes)

Tot

Avg
CPU

Load

TotAvg

Heap
Memory

Compl

etion
Time

Com

m
Cost

J1 65 56 40.654 7.87653

488E7

6544 323

J2 45 40 50.553 5.01431

24E8

4243 321

Table 2: GridExeTab: keeps grid execution Log details

Task

Id

Task

Type

Task

Size

Avg

CPU

Load

Avg

Heap

Mem

Exe

Time

Com

m

Cost

T1 0.654 8.7645634E7 547 432

T2 0.553 5.0143124E8 243 321

Tnew Xxx Xxxx xxxxx ? ?

GridGain 4.0 middleware provides necessary information

about the grid system namely, grid resource information and

run time task execution details. The following grid run time

features are extracted using GridGain, and can be used to

schedule tasks. Such information from GridGain is used for

performance tuning.

The basic objective is to minimize the completion time, i.e.

the time when the last job finishes its

execution. ExecutionTime of jobj in a Machine Mi is

formulated in equation (9).

5. CONCLUSION
In this paper, we proposed a combined model which is based

on scheduling policy and data replica policy. The nature of the

jobs we address here is a computational and data-intensive

International Journal of Computer Applications (0975 – 8887)

International Conference in Distributed Computing & Internet Technology (ICDCIT-2014)

24

and these jobs are independent of communication overhead

among them. The data replication policy is proposed by

considering the parameter such as the node reliability value

and total heap memory available for the node in the

distributed grid environment. In addition to this data

replication policy, an adaptive scheduling algorithm is

proposed for efficient scheduling of job in the distributed grid

environment. This adaptive scheduling algorithm keeps track

of previous job execution history, locality value and the

current status of the node. The proposed adaptive scheduling

algorithm is used to predict the completion time of the new

jobs that arrive in the future by considering above parameters.

6. FUTURE WORK
The combined model is proposed to implement in a desktop

grid environment with GridGain4.0 middle ware. Initially we

proposed the scheduling framework with adaptive scheduling

technique, but same model can be framed within meta-

heuristic approaches like nature inspired GA, PSO and Firefly

algorithm. The performance of these nature inspired algorithm

can be analyzed with respect to different grid and job size.

7. REFERENCES
[1] M. Tang, B.-S. Lee, X. Tang, C.-K. Yeo, The impact of

data replication on job scheduling performance in the

data grid, Future Generation Computer Systems 22

(2006) 254–268

[2] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke,

Condor-G: A computation Management agent for multi-

institutional grids, Cluster Computing 5 (2002) 237–246.

[3] P. Andreetto, S. Borgia, A. Dorigo, A. Gianelle, M.

Mordacchini, M. Sgaravatto, L. Zangr, S. Andreozzi, V.

Ciaschini, C. Di Giusto, F. Giacomini, V. Medici, E.

Ronchieri, V. Venturi, Practical approaches to grid

workload & resource management in the EGEE project,

in: Proceedings of the Conference on Computing in High

Energy and Nuclear Physics, CHEP’04, 2004, pp. 899–

902.

[4] H. Jin, X. Shi, W. Qiang, D. Zou, An adaptive meta-

scheduler for data-intensive

applications, International Journal of Grid and Utility

Computing 1 (2005) 32–37.

[5] I. Foster, K. Ranganathan, Design and evaluation of

dynamic replication strategies for high performance data

grids, in: Proceedings of International Conference on

Computing in High Energy and Nuclear Physics,

Beijing,China, September 2001.

[6] I. Foster, K. Ranganathan, Identifying dynamic

replication strategies for high performance data grids, in:

Proceedings of 3rd IEEE/ACM International Workshop

on Grid Computing, in: Lecture Notes on Computer

Science, vol. 2242, Denver, USA, 2002, pp. 75–86.

[7] I. Foster, K. Ranganathan, Decoupling computation and

data scheduling in distributed data-intensive applications,

in: Proceedings of the 11th IEEE International

Symposium on High Performance Distributed

Computing, HPDC-11, IEEE, CS Press, Edinburgh, UK,

2002, pp. 352–358.

[8] J. Basney, M. Livny, P. Mazzanti, Utilizing widely

distributed computational resources efficiently with

execution domains, Computer Physics Communications

140 (2001) 246–252.

[9] E. Deelman, H. Lamehamedi, B. Szymanski, S. Zujun,

Data replication strategies in grid environments, in:

Proceedings of 5th International Conference on

Algorithms and Architecture for Parallel Processing,

ICA3PP’2002, IEEE Computer Science Press, Bejing,

China, 2002, pp. 378–383.

[10] H.H. Mohamed, D.H.J. Epema, An evaluation of the

close-to-files processor and data co-allocation policy in

multiclusters, in: 2004 IEEE International Conference on

Cluster Computing, IEEE Society Press, San Diego,

California, USA, 2004, pp. 287–298

[11] A. Anjum, R. McClatchey, A. Ali, I. Willers, Bulk

scheduling with the DIANA scheduler, IEEE

Transactions on Nuclear Science 53 (2006) 3818–3829.

[12] R. McClatchey, A. Anjum, H. Stockinger, A. Ali, I.

Willers, M. Thomas, Data intensive and network aware

(DIANA) grid scheduling, Journal of Grid Computing 5

(2007) 43–64.

[13] GILDA, Visited 2011. https://gilda.ct.infn.it/.

[14] CERN, Visited 2011, Compact Muon Solenoid (CMS).

http://public.web.cern.ch/public/en/lhc/CMS-en.html.

[15] J. Taheri, Y.C. Lee, A.Y. Zomaya, Simultaneous job and

data allocation in grid environments, The University of

Sydney, Sydney, Australia, TR 6712011.

[16] E. Deelman, H. Lamehamedi, B. Szymanski, S. Zujun,

Data replication strategies in grid environments, in:

Proceedings of 5th International Conference on

Algorithms and Architecture for Parallel Processing,

ICA3PP’2002, IEEE Computer Science Press, Bejing,

China, 2002, pp. 378–383.

[17] N.N. Dang, S.B. Lim, Combination of replication and

scheduling in data grids, International Journal of

Computer Science and Network Security (IJCSNS) 7

(2007) 304–308.

[18] L. Tseng, Y. Chin, and S. Wang, “The anatomy study of

high performance task scheduling algorithm for grid

computing system,” Computer Standards and Interfaces,

vol. 31, no. 4, pp. 713 – 722, 2009.

[19] O. Cordon, F. Herrera, and P. Villar, “Generating the

knowledge base of a fuzzy rule-based system by the

genetic learning of the data base,” Fuzzy Systems, IEEE

Transactions on, vol. 9, no. 4, pp. 667–674, Aug 2001.

[20] S. Abdi, S. Mohamadi, Two level job scheduling and

data replication in data grid, International Journal of Grid

Computing & Applications (IJGCA) 1 (2010) 23–37.

[21] Reddy, Hemant Kumar, Manas Patra, and Diptendu

Sinha Roy. "Adaptive execution and performance tuning

of parallel jobs in computational desktop grid using

GridGain." Parallel Distributed and Grid Computing

(PDGC), 2012 2nd IEEE International Conference on.

IEEE, 2012.

[22] Reddy, K. Hemant K., et al. "An Adaptive Scheduling

Mechanism for Computational Desktop Grid Using

GridGain." Procedia Technology 4 (2012): 573-578.

https://gilda.ct.infn.it/
http://public.web.cern.ch/public/en/lhc/CMS-en.html

