
International Conference in Distributed Computing & Internet Technology (ICDCIT-2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

12

Deadlock Prevention in Process Control Computer

System

Manisha Mohanty
Gandhi Institute For Education & Technology

Baniatangi, BBSR, 752060

ABSTRACT

Deadlock can occur wherever multiple processes interact.

System deadlock is a serious problem in a

multiprogramming environment. The approaches to this

problem can be divided into three categories: (1) prevention,

(2) detection and recovery, and (3) avoidance. This paper

proposes a variation of the first approach, partially applying

ideas developed in the second and third approaches. This is

an approach that is especially effective in process control

computer systems, in which the application programs are

usually fixed once designed. Using four predetermined

application program parameters obtained in the program

development stage, a directed graph model and a

„restriction‟ matrix model are introduced representing the

usage of common resources. Conditions sufficient for

system deadlock prevention are presented along with

algorithms for checking to see that the models meet these

conditions. By using this approach, if a deadlock possibility

is detected the causes can also be detected. The deadlock

can thus be prevented during the program development

stage. As the algorithms are not used in the real-time mode,

there is no negative effect on the responsiveness of the

system. A higher utilization rate of common resources is

also ensured because the usage of resources is restricted

only when the possibility of a deadlock is detected.

Keywords
 Deadlock, prevention, recovery, detection, avoidance.

1. INTRODUCTION
 In the non-distributed case, all the information on resource

usage lives on one system and the graph may be constructed

on that system. In the distributed case, the individual

subgraphs have to be propagated to a central coordinator. A

message can be sent each time an arc is added or deleted. If

optimization is needed, a list of added or deleted arcs can be

sent periodically to reduce the overall number of messages

sent.

What is Deadlock: A deadlock is a state where a set of

processes request resources that are held by other processes

Prerna Kumara
Gandhi Institute For Education & Technology

Baniatangi, BBSR, 752060

in the set. A deadlock is a condition in a system where a

process cannot proceed because it needs to obtain a resource

held by another process but it itself is holding a resource

that the other process needs.

A computer system which allows more than one process to

be simultaneously active, holding and requesting resources,

may encounter the phenomenon of deadlock (sometimes

called deadly embrace).“Deadlock occurs so infrequently

that it is not worthwhile to degrade system performance by

executing prevention algorithms.”When deadlock situation

arise in an online computer system, the system cannot

respond within an acceptable period of time. This is

particularly true in process control applications, where a

very quick response is required of computer systems.

According to Coffman approaches to this problem can be

classified in three categories.(1)prevention (2)detection and

recovery and (3)avoidance.

Prevention approach: The uses of resources are restricted so

that system deadlock will never occur .However this is a

disadvantages of degrading system performance, because of

severe constraints in resources usage.

Deadlock avoidance: Pre-claim strategy used in operating

system. And not effecting in database environment.

Deadlock detection: If transaction is blocked is blocked

due to another transaction make sure that transaction is not

blocked on the first transaction, either directly or indirectly

via another transaction. Using four predetermined

application program parameters obtained in the program

development stage, a directed graph model and a restriction

matrix model are introduced representing the usage of

common resources.

2. ASSUMPTIONS AND DEFINATION

2.1 Assumptions
Four predetermined parameter relating to the application

program must be given in the development stage

a) Mode of usage for resource in each task.

Information must be given as to whether each task request

common resource in shared usage or exclusive usage.

b) Sequence of common resources usage in each task.

c) Non-concurrent task.

In multiprogramming environment, a number of task are

activated and run simultaneously.

However there are pair o task which are never activated

concurrently with one another

International Conference in Distributed Computing & Internet Technology (ICDCIT-2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

13

d) Type and number of common resourses.

In process control computer system it is not difficult to

obtain these parameters in the development stage of

application program.

2.2 DEFINATION - 1:

Exclusive usage and Shared usage

i) Exclusive Usage:

A resource is said to be exclusive usage state, when being

used for only one task.

ii) Shared usage:

A resource is said to be shared usage state when being used

in more than one task.

2.3 DEFINATION - 2:

System deadlock

When a task request a resource ,the system is used to be in a

deadlock state if the following two conditions.

1. Either one of the two following situation is encountered.

a) A task request exclusive usage of a resource but

the resource is already being used for exclusive or

shared usage by one or more other tasks. The

request is then suspended.

b) A task requests shared usage of resources, but

resource already being used for exclusive usage

by another task .The request then suspended.

2. The request for the resource can’t be accepted unless the

requesting task release at least one of the resources

which the task is holding.

3.’wait’ relation between resources :

If task T request resource Rj while holding resources Ri

(i!=j) it is said that resources Ri is waiting for resource Rj in

task T . This situation is denoted by Ri-> Rj. This relation is

referred as „wait‟ relation between resource.

4. Propagation of wait relation:

Let T1 and T2 are two task. If the following two wait

relation .Ri
𝑇1
 Rj and Rj

𝑇2
 Rk are true and the usage of

resource Rj by T1 and T2 is in an exclusive usage state, it is

said that resource Ri is waiting for resource Rk via resource

Rj. This situation is denoted by Ri
𝑇1
 Rj

𝑇2
 Rk. This is

known as propagation of wait relation.

3. DEADLOCK WITH REUSABLE AND

CONSUMABLE RESOURCES:
Secondary storage, I/O devices, or processors, and software

components, such as data files, tables, or semaphores, are all

considered reusable resource

classes. Consumable resources are produced and consumed

dynamically, and have the following properties:

1. The number of units within a class varies at runtime; it

may be zero and is potentially unbounded.

2. A process may increase the number of units of a resource

class by releasing one or more units into that class; i.e.,
processes create new resources at runtime without acquiring

them first from the class.

3. A process may decrease the number of units of a resource

class by requesting and acquiring one or more units of that

class.

Many types of data generated by either hardware or

software have the above characteristics of consumable

resources.

4. DIRECTED GRAPH FOR WAIT

RELATION AND RESTRICTION

MATRIX:

4.1 Directed Graph

Directed graph Ti(i=1,2,….N) represents the ith task and

Rj(j=1,2,..M) the jth common resource

After developing the application programs,

A Gantt chart is drawn representing the sequence and the

mode of resource usage For resource in each task as shown

in fig1.

Next, a directed graph representing the wait relations

described in definition 3is constructed from Gantt Chart in

the following manner.

Fig 1: E=Exclusive usage, S=Shared usage,

t1,t2....t8 = time point resourse requests

The non propagation matrix is defined as Q where (l,m) are

elements of Q :

 1:If arc a1 is incident into vertex vk,arc am is

 Incident out of vertex vk and a1. a1 is an ES

qlm=

 Or SS arc am is an SE or ss arc.

 0: If otherwise.

The non propagation matrix defined above have the same

properties that they describe the condition for non-

propagation of wait relations in graph G. Thus a restriction

matrix

R=(rlm) is obtained as follows:

R= P+Q, rlm=Plm V qlm

International Conference in Distributed Computing & Internet Technology (ICDCIT-2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

14

Fig 2: Directed graph representation of wait

relations between resources in a task.

4.2 Resource-Allocation Graph Algorithm

Claim edge Pi → Rj indicated that process Pj may request

resource Rj; represented by a dashed line.

Claim edge converts to request edge when a process

requests a resource.

When a resource is released by a process, assignment edge

reconverts to a claim edge.

Resources must be claimed a priori in the system.

4.3 Methods for Handling Deadlocks

 Ensure that the system will never enter a deadlock

state.

 Allow the system to enter a deadlock state and

then recover.

 Ignore the problem and pretend that deadlocks

never occur in the system; used by most

operating systems, including UNIX.

4.4 Deadlock Prevention
Mutual Exclusion – not required for sharable resources;

must hold for non-sharable resources.

Hold and Wait – must guarantee that whenever a process

requests a resource, it does not hold any other resources.

Require process to request and be allocated all its sources

before it begins execution, or allow process to request

resources only when the process has none. Low resource

utilization; starvation possible. Restrain the ways request

can be made.

No Preemption – If a process that is holding some resources

requests another resource that cannot be immediately

allocated to it, then all resources currently being held are

released.

Preempted resources are added to the list of resources for

which the process is waiting.

4.4.1 Safe State
When a process requests an available resource, system must

decide if immediate allocation leaves the system in a safe

state.

System is in safe state if there exists a safe sequence of all

processes.

Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources

that Pi can still request can be satisfied by currently

available resources + resources held by all the Pj, with j<I.

 1. If Pi resource needs are not immediately available,

then Pi can wait until all Pj have finished.

 2. When Pj is finished, Pi can obtain needed resources,

execute, return allocated resources, and terminate.

 3. When Pi terminates, Pi+1 can obtain its needed

resources, and so on.

Properties of Safe States:

• A safe state is not a deadlock state

• An unsafe state may lead to deadlock

• It is possible to go from a safe state to an unsafe state

• Example: A system with 12 units of a resource

 – Three processes

• P1: max need = 10, current need = 5

• P2: max need = 4, current need = 2

• P3: max need = 9, current need = 2

 – This is a safe state, since a safe sequence <P2, P1,

P3> exists

 – P3 requests an additional unit. Should this request be

granted?

 – No, because this would put the system in an unsafe

state

• P1, P2, P3 will then hold 5, 2, and 3 resources (2 units are

available)

• P2‟s future needs can be satisfied, but no way to satisfy

P1‟s and P3‟s needs

• Avoidance algorithms prevent the system from entering an

unsafe state.

G1= (Vi, Ai, Si)

Vi = {v1, v2, v3,

 V4, v5, v6}

A= {a1, a2, a3,

a4,

 a5, a6, a7, a8,

 a9,a10, a11,

 a12}

International Conference in Distributed Computing & Internet Technology (ICDCIT-2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

15

5. BASICS OF PETRI NETS
Petri nets are a graphical and mathematical modelling tool

applicable to many systems. It is a promising tool for

describing and studying information processing systems that

are characterized as being concurrent, asynchronous,

distributed, parallel, nondeterministic, and/or stochastic.

The main definitions related to Petri net models are

introduced in a very compact way.

A Petri net is a 3-tuple N=(P, T, F) where P and T are finite,

nonempty, and disjoint sets. P is the set of places and T is

the set of transitions. F∁(P×T)∪(T×P) is called the flow

relation. The preset of a node xPT is defined as

x={y∈P∪T|(y, x) ∈F}. The postset of a node x∈P∪T is

defined as x={y ∈P∪T|(x, y)∈F}.

ELEMENTARY SIPHONS
We distinguish the strict minimal siphons (SMS) in a Petri

net by elementary and dependent ones. In the sequel, Π is

used to denote the set of strict minimal siphons, while ΠE

and ΠD the sets of elementary and dependent ones,

respectively. Unless otherwise stated, we refer to a strict

minimal one when mentioning a siphon.

6. SUFFICIENT CONDITIONS FOR

SYSTEM DEADLOCK PREVENTION:

In this section, sufficient conditions for systems deadlock

prevention are discussed for two cases. First, where there is

only one resource of each type. Second , where there is

more than one resource of each type.

Sufficient conditions for system deadlock

prevention where there is only one resource of

each type.

Let C= (Cij) directed be a circuit matrix in graph G= (V,

A,S).

The given theorem below holds true where only one

resource of each type is.

Theorem 1:

Given graph G=(V,A,S) and restriction matrix R, sufficient

conditions for system deadlock prevention are:

a) No directed circuit exists in graph G.

b) If directed circuits exists, C×R×CK
T ≠0 for each vector

ck of directed circuit matrix C (CT
K: column vector of

Ck).

Sufficient conditions for system deadlock

prevention where there is more than one

resource of each type:

Let us consider

E=(e(1),e(2),…e(m)) showing the number of resource available

in the system;

e (m)= number of type of m resources (m=1,2,……M) .

Theorem 2:

When graph G, restriction matrix R, number of resources

of each type E , uij ,rij are given, the sufficient conditions for

system deadlock prevention are: (1)G and R meet the

conditions in Theorem 1 or 2 if G and R do not meet the

conditions in Theorem 1 for directed circuits

c1,c2,…,ck…ck ,there is a full sequence α(k) where

Ǝ 0 < rk
(m)≤ e(m)-u(m)

α(k)
(l)

 k=1,2,3…..
m

Where

 U(l)
α(k)= ∑

 𝑖𝑗𝑥 𝑛 ≤𝑥 𝑙 𝐴𝑖𝑗 ⊓ 𝑤 𝑛 ≠ ∅ u
ij

 =(,1
𝛼 𝑘 , .𝑙

𝛼(𝑘) … . . (𝑚)𝛼(𝑘) ,)

 𝛾k= ∑

 {ij|Aij∩ 𝑤 k=∅}vij

=(γk
(l),γk

(2),….γk
(m))

ɷ k={al|clk=1}

When the total number of resources allocated to the task in

the circuit is

 𝑖𝑗/𝐴ij 𝑊𝑘 ≠ ∅Σ𝑘
𝑖=1 U

ij

Situation when 'wait' relations in circuit occur

simultaneously

Theorem 3
Where a full sequence α(k) which meets the conditions in

theorem 2 does not exist, the sufficient conditions for

system deadlock prevention are as follow . There exists a

full sequence α(l)(k) which meets the following conditions

for each subset C(l)€C such that

C(l)×p×C(l) T=0

Ǝ 0 < rk
(m)≤ e(m)-u(m)

α(k)
(l)

 k=1,2,3…..
m

Where

 U(l)
α(k)= ∑

 𝑖𝑗𝑥 𝑛 ≤𝑥 𝑙 𝐴𝑖𝑗 ⊓ 𝑤 𝑛 ≠ ∅ u
ij

International Conference in Distributed Computing & Internet Technology (ICDCIT-2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

16

 =(,1
𝛼 𝑘 , .𝑙

𝛼(𝑘) … . . (𝑚)𝛼(𝑘) ,)

 𝛾k= ∑

 {ij | Aij∩ 𝑤 k=∅} vij

=(γk
(l), γk

(2),….γk
(m))

ɷ k= {al | clk =1}

And the subscripts of each element in C(1) are reassigned as:

C(l)={𝐶 1
(l),𝐶 2(l)} and Wn

(l) is a

set of arcs which make up 𝐶 n
(l).

7. DEADLOCK AVOIDANCE
• Main idea:

 – request additional information about how resources

are to be requested

 – before allocating request, verify that system will not

enter a deadlock state

 (resources currently available,

 resources currently allocated,

 future requests and releases)

• if no: grant the request

• if yes: block the process

• Algorithms differ in amount and type of information

 – simplest (also most useful) model: maximum number

of resources

 – other choices

• sequence of requests and releases

• alternate request paths

7.1 Limitations of Deadlock Avoidance
• Deadlock avoidance vs. deadlock prevention

 – Prevention schemes work with local information.

• What does this process already have, what is it asking

 – Avoidance schemes work with global information.

• Therefore, are less conservative.

• However, avoidance schemes require specification of

future needs.

 – not generally known for OS processes

 – more applicable to specialized situations

• programming language constructs (e.g., transaction-

based systems)

• known OS components (e.g., Unix “exec”)

APPLICATION
The algorithm for checking deadlock possibility was

developing by introducing three theorems mentioned above.

8. CONCLUSION AND FUTURE

SCOPE:
In computer science, deadlock refers to a specific condition

when two or more processes are each waiting for the other

to release a resource, or more than two processes are

waiting for resources in a circular chain. Deadlock is a

common problem in multiprocessing where many processes

share a specific type of mutually exclusive resource known

as a software lock or soft lock. The future work includes

developing some effective and efficient deadlock prevention

policies based on elementary siphons in a Petri net. The

problem of deadlock detection in distributed systems has

undergone extensive study. In this paper we have tried to

get rid of on distributed deadlock by studying the

performance representative algorithms. Using four

predetermined application program parameters, a directed

graph model representing the usage of common resources

by tasks and a restriction matrix model were presented

Sufficient conditions for system deadlock prevention were

mentioned. The methods in this paper is useful in process

control computer systems because the algorithms introduced

do have to be executed in real time mode, and the

restrictions on the usage of common resources are applied

when deadlock possibility is found. Thus additional side

effects on the responsiveness of the system will not arise

and the proper and higher utilization rate of common

resources is guaranteed.

9. ACKNOWLEDGEMENT
The authors would like to acknowledge valuable discussions

with Prof. Binayak Sahu, Prof. Amarnath Singh, Prof.

Tanushree Mohapatra and Prof. Neelamani Samal for their

effort and cooperation in making this paper successful. This

work was supported by Gandhi Institute for Education and

Technology (GIET), Bhubaneswar.

10 REFRENCES
[1] E.G. Coffman, M.J. Elphick . System deadlock and

computing surveys.

[2] Operating system concepts ,Greg Gagne, Peter B.

Galvin.

[3] J.W. Murphy, Resource allocation with interlock

detection in a multitasking system.

[4] Dijkstra N.W, and Scholten C.S., Termination

detection for diffusing computations, Inf. Process.

Lett., 11(1), 1-4 (1980)

[5] Goldman B., Deadlock detection in computer

networks. Tech. Rep. MIT-LCS-TR185, Massachusetts

Institute of Technology, Cambridge, Mass., (1977)

[6] Gray J.N., Notes on database operating systems. In

Operating Systems: An Advanced Course, Lecture

Notes in Computer Science, Springer-Verlag, New

York, 60, 393-481 (1978), Science Dept., Univ. of

Texas at Austin, July (1981).

[7] HOARE, C.A.R. Communicating sequential processes

Commun. ACM21, 8, 666-677 (1978)

[8] B. Abdallah and H. A. ElMaraghy, “Deadlock

Prevention and Avoidance in FMS: a Petri net based

approach”, Int. J Manuf. Tech.,

[9] Li, Z. W., Uzam, M., and Zhou, M. C., “Comments on

„Deadlock prevention policy based on Petri nets and

siphons‟ ”, Int. J. Prod. Res., Vol. 42, No. 24, 2004,

pp. 5253–5254.

[10] Murata, T., “Petri nets: properties, analysis, and

applications”.

