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ABSTRACT
In this paper, we introduce a new framework for interpreting
the existing theoretical stability results of sparse signal recov-
ery algorithms in practical terms. Our framework is built on
the theory of constrained minimal singular values of Gaussian
sensing matrices. Adopting our framework, we study the sta-
bility of two algorithms, namely LASSO and Dantzig selec-
tor. We demonstrate that for a given stability parameter (noise
sensitivity), there exits a minimum undersampling ratio above
which the recovery algorithms are guaranteed to be stable.
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1. INTRODUCTION
Recovery algorithms in compressed sensing (CS) aim to recon-
struct aK-sparse signal x ∈ RN from its measurement z of length
M , where M < N . The stability of a recovery algorithm indicates
the resistance of the algorithm to noise. The noisy system model in
CS is [3]

z = Ax + w . (1)

In (1), A ∈ RM×N is an M × N sensing matrix, which can be
deterministic or random [3]. The vector w ∈ RM denotes the zero-
mean Gaussian noise. The signal x is K-sparse, i.e., it has exactly
K non-zero values. Let Ψ denote the set of all K-sparse signals,
and Ki, i = 1, · · · ,

(
N
K

)
, stands for the i-th support set of a signal

x ∈ Ψ. Let δ = M
N

denote the undersampling ratio and ρ = K
M

represent a sparsity measure.
The stability of various algorithms are investigated theoretically us-
ing the restricted isometry constant (RIC) [3] and the l1-constrained
minimal singular value (l1-CMSV) [10] of a sensing matrix. How-
ever, till date, no framework has been proposed to interpret these
theoretical stability guarantees in practical terms, because the com-
putation of the constants are intractable. While the computation of

the RIC is NP-hard, till date only the lower bounds of the l1-CMSV
are computable [10, Section IV.B]. The l1-CMSV is simpler to cal-
culate than the RIC; also, it is as tight as that of the RIC as demon-
strated in [10, Fig. 4]. Thus, in this letter, we use the l1-CMSV for
analysing the stability of the algorithms. The l1-CMSV is defined
as follows

DEFINITION 1. l1-CMSV [10]: For any K ∈ [1, N ] and for a
sensing matrix A ∈ RM×N , the l1-CMSV of A is defined as

αK = min
x6=0,x∈SK

‖Ax‖2
‖x‖2

, (2)

where the l1-sparsity set SK =
{
x ∈ RN :

‖x‖21
‖x‖22

≤ K
}

.

The l1-sparsity set contains both the exactly sparse and the approx-
imately sparse signals [12]. In this letter, we focus on the exactly
sparse signal set Ψ, in which case the l1-CMSV can be computed
by considering the set Ψ ⊆ SK .
The central goal in CS is to recover x from z givenA. Two popular
convex relaxation algorithms for achieving this goal are the LASSO
and the Dantzig selector (DS) and they are given for the model (1)
as

LASSO : min
x∈RN

1
2
‖z −Ax‖22 + λσ‖x‖1 , (3)

DS : min
x∈RN

‖x‖1 s.t.‖AT (z −Ax)‖∞ ≤ λσ . (4)

Here λ is a tuning parameter and σ is a measure of noise level.
Stability analysis aims to derive bounds on the recovery error in
terms of the noise level σ and the constants of the sensing matrix
such as the RIC [2] or the l1-CMSV [10, p. 5737]. The recovery
error bounds for the LASSO and the DS in terms of the l1-CMSV
are given below.

LEMMA 2. Let αK be the l1-CMSV in (2) and x ∈ Ψ be a K-
sparse signal. If the noise w in the LASSO (3) obeys ‖ATw‖∞ ≤
κλσ for some κ ∈ (0, 1), then the solution x̂ to (3) obeys

‖x̂− x‖2 ≤ 1+κ
1−κ

2
√
Kλσ

α2
4K

(1−κ)2

. (5)
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Similarly, if the noise w in the DS (4) obeys ‖ATw‖∞ ≤ λσ, then
the solution to (4) satisfies

‖x̂− x‖2 ≤ 4
√
Kλσ
α2
4K

. (6)

We note that in both (5) and (6), the term α2
(.) denotes the square

of the l1-CMSV (SCV). Thus, we consider the SCV than the l1-
CMSV. In this letter, we aim to address the two questions: 1. How
to precisely compute the SCV for the widely-used Gaussian sens-
ing matrices? 2. Using the SCV, how to interpret the theoretical
stability results in (5) and (6) in practical terms? We first bring to
forefront that for the Gaussian sensing matrices, the SCV is a ran-
dom variable. Using the extreme value theory (EVT), we show that
the SCV is Weibull distributed. Thus, by determining the probabil-
ity distributions of the SCV, we precisely characterize the l1-CMSV
rather than using its lower bounds as in [10]. We demonstrate the
benefit of these distributions for analysing the stability of the algo-
rithms in terms of the minimum undersampling ratio.

2. THE SCV FOR GAUSSIAN ENSEMBLE
In this section, we characterize the SCV for Gaussian sensing ma-
trices and in the next section we discuss how to use the SCV for
stability analysis. The SCV is a constant for deterministic sensing
matrices and it is a random variable for random sensing matrices.
Before we describe the SCV, we consider the ratio in (7) and study
its squared value for the Gaussian sensing matrices. For every K-
sparse signal with the fixed support set K, the squared ratio

RK =
‖Ax‖22
‖x‖22

(7)

is a random variable, which is described in Lemma 3.

LEMMA 3. Let A be a Gaussian sensing matrix whose ele-
ments are i.i.d. Gaussian random variables each with zero mean
and variance σ2 = 1

M
. For every x ∈ Ψ, RK in (7) is a central

Chi-square random variable with M degrees of freedom.

PROOF. Let y = Ax and c = 1
‖x‖22

. The ith entry yi of y is a

Gaussian random variable with mean 0 and variance σ2‖x‖22. The
random variables {yi}, i = 1, 2, · · · ,M , are independent. Now,
y2
i is a central Chi-square random variable with 1-degree of free-

dom. Then, ‖y‖22 = ‖Ax‖22 is a central Chi-square distribution
with M -degrees of freedom with mean Mσ2

c
and variance 2Mσ4

c2
.

Since RK = c‖Ax‖22, it is also a Chi-square random variable with
mean Mσ2 and variance 2Mσ4.

We note that the statistics of RK is identical for all support sets and
it is independent of x. Since RK is a central Chi-square random
variable, it is completely characterized by its degrees of freedom,
M . We bring to the notice of the reader that a Lemma similar to
Lemma 3 has been derived in [8] for the general case when the
“entries of A are not necessarily independent.” We now define the
SCV for Gaussian sensing matrices via RK as follows.

LEMMA 4. SCV for Gaussian sensing matrix: Let A ∈ RM×N
be a Gaussian sensing matrix. Let NS =

(
N
K

)
and for any integer

K ∈ [1, N ] and for any K-sparse signal x ∈ SK , the SCV for A
is defined as

α2
K = min

x6=0,x∈SK

‖Ax‖22
‖x‖22

= min
i=1,2,··· ,NS

RKi (8)

The second line in (8) is due to the fact that for everyK-sparse sig-
nal x ∈ SK , the ratio RK is a Chi-square random variable. There-
fore, the minimization in (8) is over the total number of support
sets. Thus, we define α2

K as the minimum of NS number of i.i.d.
Chi-square random variables. We note that the Lemma 8 is for the
Gaussian ensemble. For non-Gaussian matrices, works need to be
done in order to define the ratio in (7) and the SCV in (8).
We note that the SCV is defined in (8) with the assumption that the
random variables RKi and RKj , i 6= j are i.i.d. These random vari-
ables, of course, are correlated, because, most of the support sets
share common support elements. This correlation structure can be
exploited to further improve the values predicted by the SCV. How
far can we improve is still remains as an open problem. However,
i.i.d. assumption is sufficient for the stability analysis considered in
this paper. The proof for the sufficiency of the i.i.d. assumption for
the stability analysis is beyond the scope of this paper.
In the next section, we derive the cumulative distribution function
(CDF) and the probability distribution function (PDF) of the SCV
in (8). While for small values of NS the distributions can be ob-
tained straightforwardly by using the minimum order statistics of
NS i.i.d. Chi-square random variables. For large values of NS , the
distributions are obtained utilizing the tools from the extreme value
theory.

3. DISTRIBUTIONS OF SCV
In this section, we derive the CDF and the PDF of the SCV for
two scenarios, namely, non-asymptotic and asymptotic. The cri-
terion that differentiates between the two scenarios is the con-
vergence of the minimum of i.i.d. random variables in (8). It is
well-known in EVT that the CDF of the minimum of n i.i.d. Chi-
square random variables converges (in distribution) to the Weibull
CDF [4, Table 9.5]. The rate of this convergence [5, Theorem
3.2] is O((logNS)−2). Therefore, we refer to the scenarios where
(logNS)−2 > ε as non-asymptotic and (logNS)−2 < ε as asymp-
totic scenarios for a small number ε > 0.

3.1 Non-asymptotic scenario
THEOREM 5. Let Ω denote an ensemble of Gaussian encoders

and α2
K be the SCV defined in (8). The non-asymptotic CDF of the

SCV is given by

Fα(u) = 1−

[
1−

γ
(
M
2
, Mu

2

)
Γ
(
M
2

) ](NK)

, 0 ≤ u ≤ 1 (9)

and its corresponding PDF is given by

pα(u) =

(
M
2

)M
2
(
N
K

)
Γ
(
M
2

) [
1−

γ(M
2
, Mu

2
)

Γ
(
M
2

) ](NK)−1

u
M
2 −1e−

Mu
2

(10)

where γ(w,µz) = µw
∫ z

0
xw−1e−µxdx is the lower incomplete

gamma integral [7, eq. 3.381.1] and Γ(x) is the value of the gamma
function at x.

PROOF. The CDF, FX(x) of the minimum of n i.i.d. ran-
dom variables with the common CDF F (x) is [1, eq. 2.2.11]
FX(x) = 1 − [1 − F (x)]n. Thus, we write the CDF of α2

K , as
Fα(u) = 1 − [1 − FC(u)]NS . The PDF of α2

K is then given by
pα(u) = dFα(u)

du
= NS [1 − FC(u)]NS−1pC(u). By substituting

FC(u) and pC(u) from Appendix A into Fα(u) and pα(u), we
obtain the desired results stated in Theorem 5.
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The distributions in Theorem 5 are, as expected, functions ofK,M
and N . While their dependence on M arrives solely from the ratio
random variable, their dependence on N and K comes from the
total number of support sets.
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Fig. 1. PDF of SCV in (10) for N = 512, K = 6 and for various M .

In Fig. 1, we plot the PDF of the SCV for N = 512, K = 6 and
for various M . We note from Fig. 1 that on increasing M (for a
fixed K) the PDF moves towards one (better signal recovery). This
confirms the results in [10, Section VI. B] that the values of the
l1-CMSV move towards one when increasing M . This observation
also aligns with the fact that increasing the number of measure-
ments results in better sparse signal recovery.
Next, we are interested in finding the asymptotic distributions of
the SCV for practical systems where NS is sufficiently large. For
example, in a typical Gaussian matrix-based CS systems such as
the turbid lens imaging [9], the problem sizes areN = 2×104 and
K = 147, in which case NS is very large. It is well-known in EVT
that for sufficiently large values of n, the CDF of the minimum
of n i.i.d. Chi-square random variables converges (in distribution)
to the Weibull CDF [4, Table 9.5]. We adopt this result from the
EVT and tailored it for the SCV when NS is sufficiently large. The
asymptotic distribution of the SCV is defined in the next theorem.

3.2 Asymptotic scenario: Weibull
The distributions for this scenario are described below.

THEOREM 6. Let Ω denote an ensemble of Gaussian encoders
and α2

K is the SCV defined in (8). The asymptotic CDF of the SCV
follows the Weibull distribution:

F∞α (u) = 1− exp−(
u
q )
β

, 0 ≤ u ≤ 1 (11)

where q = 6
M

exp
(

2
M

[
log M

2
+ log Γ

(
M
2

)
− log

(
N
K

)])
is the

scaling constant and β = M
2

is the shape parameter. The corre-
sponding asymptotic PDF of the SCV is given by

p∞α (u) =

(
β

q

)(
u

q

)β−1

exp−(
u
q )
β

(12)

PROOF. Please see Appendix B.

Thus, by finding the CDF and the PDF of the SCV, we precisely
characterize the SCV for the Gaussian matrices.

4. STABILITY ANALYSIS OF LASSO AND DS
Stability analysis addresses the issue of robustness of a recovery
algorithm to measurement noise. In this section, we aim to analyse
the stability of the LASSO and the DS by using the distributions of
the SCV in Lemma 6. In particular, we show the role of SCV for
interpreting the theoretical stability results in (5) and (6) in terms of
how aggressive aK-sparse signal can be undersampled in practice.
Let ξ := sup

σ>0

‖x̂−x‖2
σ

denote the sensitivity of a recovery algorithm

to noise and hence it is called the noise sensitivity. A recovery is
said to be robust if the noise sensitivity is finite [11]. First let us
focus on the LASSO.
From (5), the noise sensitivity of the LASSO is given in terms of the
SCV as ξL := 1+κ

1−κ
2
√
Kλ

α2
4K

(1−κ)2

, where λ =
√

2 logN for Gaussian

noise [10, p. 5737]. We observe that ξL is a random variable. We
now find, with noise sensitivity ξL stays finite (guaranteed stable
recovery), what is the minimum undersampling ratio δ possible. To
this end, we first give the minimum undersampling ratio for the
LASSO.

THEOREM 7. (Minimum undersampling for LASSO) Let α2
K

be the SCV (8) and consider its CDF Fα(u) in (11) with the pa-
rameters q and β. Let ξ̃L be the finite, desired noise sensitivity and
ε > 0 be a very small number. Then, the minimum undersampling
of LASSO is given by

δ∗L(ρ) = inf{δ : Pr(ξL ≤ ξ̃L)→ 1− ε} , (13)

Equation (13) tells us that δ∗L(ρ) is the minimum value of δ when
the noise sensitivity ξL stays less than ξ̃L with probability 1 − ε.
Thus, δ∗L(ρ) determines how aggressive a signal can be undersam-
pled along with a guaranteed stable recovery.
In order to find δ∗L(ρ), we first derive a general expression for the
upper bound ξ̃L as a function of ρ and δ, ξ̃L(ρ, δ), by setting the
probability (13) equal to 1 − ε. We call ξ̃L(ρ, δ) the noise sensi-
tivity upper bound. The minimum value of this upper bound, for a
fixed ρ, yields δ∗L(ρ). To find ξ̃L(ρ, δ), we set Pr(ξL ≤ ξ̃L) =

1 − ε. Using the definition of ξL, we write Pr(ξL ≤ ξ̃L) =

Pr

{
α2

4K
(1−κ)2

≥ 1+κ
1−κ

2
√
Kλ

ξ̃L

}
= 1 − Fα

(
1+κ
1−κ

2
√
Kλ

ξ̃L

)
. Now set-

ting the probability to 1−ε and solving for ξ̃L gives an expression in
terms of N , M and K. On substituting, K = ρM , λ =

√
2 logN

and M = δN , we obtain the noise sensitivity upper bound for the
LASSO as,

ξ̃L(ρ, δ) = 1+κ
1−κ

2
√
ρδN

√
2 logN

qL

[
ln

1
1−ε

] 2
δN

(14)

where qL is q in (11) with K replaced by 4K
(1−κ)2

.
In a similar manner, we now derive the minimum undersampling of
the DS. From (6), the noise sensitivity of the DS is ξD = 4

√
Kλ

α2
4K

.

With the finite noise sensitivity ξ̃D , the minimum undersampling
ratio of the DS is given in the following theorem.

THEOREM 8. (Minimum undersampling for DS) Let α2
K be the

SCV (8) and consider its CDF Fα(u) in (11) with the parameters
q and β. Let ξ̃D be the finite, desired noise sensitivity and ε > 0
be a very small number. Then, the minimum undersampling of DS
is given by

δ∗D(ρ) = inf{δ : Pr(ξD ≤ ξ̃D)→ 1− ε} , (15)
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Fig. 2. Noise sensitivity upper bound of LASSO and DS for various ρ

Following the derivation steps for the LASSO, we find the noise
sensitivity upper bound for the DS as

ξ̃D(ρ, δ) = 4
√
ρδN

√
2 logN

qD

[
ln

1
1−ε

] 2
δN

(16)

where qD is q in (11) with K replaced by 4K.
In Fig. 2, we plot the noise sensitivity upper bounds of the LASSO
and the DS for various ρ. We note that for a given finite noise sensi-
tivity there exists a minimum undersampling ratio above which the
algorithms are guaranteed to be stable. For instance, for LASSO
with ρ = 0.2 and for the noise sensitivity upper bound of 1000,
the minimum undersampling ratio δ∗L(ρ) = 0.5. Thus, above the
undersampling ratio of 0.5, the noise sensitivities of the LASSO
are always bounded above by 1000. Comparing the LASSO and
the DS, we note that the LASSO requires smaller undersampling
ratios than the DS. For example, with ρ = 0.15 and for the noise
sensitivity upper bound of 1000, the minimum undersampling re-
quired by the LASSO is δ∗L(ρ) = 0.32, where as for the DS it
is δ∗D(ρ) = 0.67. We also note that for a fixed noise sensitivity,
as ρ increases the minimum undersampling ratio increases as well.
Thus, we illustrated that computing the precise values of the SCV
enables us to investigate the minimum undersampling ability of the
LASSO and the DS that were hidden in the existing theoretical sta-
bility results.

5. CONCLUSIONS
We analyzed the stability of two recovery algorithms in compressed
sensing, namely, the LASSO and the Dangling selector (DS). We
translated the existing theoretical stability results of the algorithms
in terms of the minimum undersampling ratio by using the prob-
ability distributions of the squared constrained minimal singular
values. We demonstrated that the LASSO requires smaller under-
sampling ratio than the DS for a given stability parameter.

APPENDIX

A. DISTRIBUTIONS OF CHI-SQUARE RANDOM
VARIABLE

The PDF of a central Chi-square random variable with M degrees
of freedom with σ2 = 1

M
is

pC(x) =

 (M2 )
M
2

Γ(M2 )
x
M
2 −1e−

Mx
2 x ≥ 0

0 otherwise
(17)

and its corresponding CDF is given by FC(x) =
γ(M2 ,

Mu
2 )

Γ(M2 )
.

B. PROOF OF THEOREM 6
As n→∞, the CDF of n i.i.d. Chi-square (special case of Gamma)
random variables converges to the Weibull [4, Table 9.5]. It re-
main to find the (location, scale and shape) of the distribution using
FC(u) in Appendix A.
Location constant, pn: For the Weibull pn = inf{u : FC(u) > 0}.
Since FC(u) is supported on [0,∞), pn = 0,∀n.
Scale constant, qn: For the Weibull, the scale constant is given by
qn = F−1

C ( 1
n

)−pn. We findF−1
C ( 1

n
) by expanding the CDFFC(u)

in Taylor series as

FC(u) =
γ
(
M
2
, Mu

2

)
Γ
(
M
2

) =
1

Γ
(
M
2

) ∞∑
i=0

(−1)i
(
Mu
2

)(i+M
2 )

i!
(
i+ M

2

) (18)

We need to find u such that FC(u) = 1
n

. Since 1
n

approaches a
very small value as n → ∞, the value of u must be very small as
well. So, we approximate FC(u) by using only the first term of the

series as FC(qn) = 1
n
≈ (Mqn2 )(

M
2 )

M
2 Γ(M2 )

from which we determine

qn = 2
M

[
M
2 Γ(M2 )

n

] 2
M

. We observed via Newton iterative method

that inclusion of more terms in the approximation scales qn up to a
factor of 3. Hence, we multiply qn by 3. With n = NS =

(
N
K

)
and

expressing qn in terms of logarithms we obtain the scale parameter.
Shape constant, β: The shape parameter is the positive exponent of
the result obtained by evaluating the following limit [6]:

lim
z→∞

FC
(
pn − 1

zu

)
FC
(
pn − 1

z

) . (19)

The limit evaluates to u−
M
2 and thus, β = M

2
.
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