
International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Current Trends in Advanced Computing (ICCTAC)

14

Situation based Load Balancer for Distributed

Computing Systems

P Beaulah Soundarabai
Dept. Of Computer Science

Christ University

Hosur Main Road

Thriveni J,
 K R Venugopal,

University Visvesvaraya
College of Engineering,
Bangalore University,

Bangalore

L M Patnaik
Honorary Professor,

 Indian Institute of Science,
Bangalore.

ABSTRACT

In this paper, one of the major objectives of distributed

systems is performance. Load balancing is a concept used in

computer networks to distribute the workload across the

replicated system resources. Load balancing is the key driving

factor to enhance the performance of the system. The requests

of various clients are redirected to the available servers

considering its existing workload. The main aim of the load

balancing algorithms is to equally distribute the load the

available servers. The algorithms also need to consider the

processing power of each server. There are many load

balancing algorithms available. Dynamism is also used in

these algorithms to throw the task to the next eligible server.

Simple load balancers use random choice and round robin

algorithms. But the system use only one algorithm for the load

balancing such as round robin or weighted or priority etc. But

each algorithm would be efficient in one aspect and might be

inefficient otherwise. In our paper, we try to use few

algorithms and invoke them during a particular situation when

they are efficient. Simulation results show that our load

balancer significantly improves the average and total response

time of client tasks and thus increases the performance of the

overall system.

Keywords

Load Balancing, FCFS, Round Robin, Optimized weight,

Server Process Reporter, File Load Controller, Thinker, and

Distributed Systems..

1. INTRODUCTION
A distributed system is a connection of many individual

machines which together form a single system image. The

software is tightly coupled to make the virtual unique system.

Distributed systems aims at bringing in all the system

resources such as memory, processing power, special devices,

network etc., together and allow the independent machines to

share them and use them effectively through which the overall

system gets the better performance. The system also achieves

a fault-tolerance by replication of the resources and the

system variants.

A distributed system can also be envisioned as a collection of

computing and communication systems and resources that are

shared by many users in parallel. Because of the replicated

resources especially like the file servers and the processors,

there may be queues to utilize them in one copy of the

resource and at the very same time, many more copies of the

same resource are idle. The overall performance of the system

goes down when the demand for the processing power goes

up.

Motivation: Load Balancing is driving force of distributed

computing systems which brings in the advantages of sharing

of resources. The key factor here is, all the copies of the

resources should be utilized equally without leaving few free

and few overloaded. The system should keep a watch on the

servers’ load. There are many load balancing algorithms

available with their own advantages. We have tried to

collaborate the algorithms making the system get all their

advantages .

Contribution: In this paper we have proposed a situation-

based-load balancer which works along with thinker module.

Our load balancer invokes the thinker to decide which among

the existing load balancing algorithms would be the best in

that particular time, and makes that algorithm to execute. The

thinker module keeps deciding the load balancing algorithm at

every time interval, trying to yield the best performance while

balancing the load.

Organization: The remainder of the paper is organized as

follows: Literature review is available in Section II; System

model is given in Section III; Section IV discusses the

Problem Definition and the Algorithm for Situation Based

Load Balancer; Performance Evaluation details are available

in Section V and the conclusions are present in Section VI.

2. LITERATURE SURVEY
Considerable amount of research is done on load balancing

with various factors of the system. The authors have focused

their load balancing on P2P systems with high concentration

on middleware-level based load balancing strategies over a

large dynamic peer-peer network. The studies have been done

on both structured and unstructured P2P systems [1-3]. The

load balancing algorithm based on the network utilization has

been developed by Saito et al., [4] which controls the traffic

flow in the network and hence minimizes the over utilized and

underutilized network links. The various system level

resources like the memory, processor power and the system

files have been considered for the operating system level load

balancing by Stoica et al., [5] for P2P network. The load

balancing taxonomy focuses on various factors such as

centralized and decentralized, client oriented and server

oriented, heuristic, deterministic and non-deterministic

algorithms which have been explained in detail by Karthik [6-

7]. The algorithms that are based on hash tables with the

homogenous objects, virtual servers with heterogeneous

objects are also discussed and a comparison has been carried

out [8]. Triantafillou et al. [9] have developed load balancing

algorithms for P2P systems which distributes global meta-

data contents over over a two-level hierarchy unstructured

system.

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Current Trends in Advanced Computing (ICCTAC)

15

Barazamdej et al., [10] develped two methods for the load

balancing in the distributed systems which were based upon

hierarchical structure. They have develped the algorithms

dynamically to which work on the current load weight. They

also have improved the round robin algorithm by having the

high priority for the servers which has lesser load state. Since

the centralised approach is used, the algorithms suffer the

traditional problems of single source of failure and the bottle

neck delays. Yang Jiao et al., [11][12] have presented the

problems pertaining to the load balancing algorithms. They

have mainly focused on unscientific and inaccurate algorithm,

imperfect and impractical load-balancing system design. They

also have proposed and implemented web server load

balancing algorithm. Grosuand D et al., [13] have designed a

load balancing algorithm which is very much dynamic

wherein the users and the systems are eligible to manipulate it

according to their interest. Their study was based on the

techniques from mechanism design theory. They have also
proposed a fair load balancing protocol.

State-of-the-art core routers provide terabit and petabit

switching capacity with the help of multipath switching

techniques. Lei Shi et al., [14] discussed the limitation of flow

based hashing algorithms and proposed flow slice algorithm

that cuts off every flow into slices through which balancing

the load with fine granularity. Using trace driven prototype

simulation, they have proved their theoretical claim.

3. MODEL

A. Network Model

In this work, the aithors have considered well connected

distributed computing network N with n number of nodes.

The network can be represented as N = (c,s), where c is the

numbr of client nodes and s is the number of server nodes.

Along with these we have few software components working

very close with these clients and servers under the leadership

of “Situation-Based Load Balancer”. Fig. 1. Depicts the

system model of our Situation Based Load Balancer and

Table I describes the various notations used in our algorithm.

Fig 1: System Model of Situation-Based Load Balancer

B. Situation-Based Load Balancer

The description of all these components is as follows:

File Load Controller (FLC)

As soon as the client job(s) arrives, the role of FLC is to

collect all these jobs from various nodes and load them into

our Load Balancer. Whenever any client job arrives, its flag

becomes true and FLC starts working.

Server Process Reporter (SPR)

SPR is another important module which works along with the

FLC. At every time interval, it checks for the number of

available servers, their processing power reports the same to

the load balancer.

Thinker (Th)

Thinker is the heart of our load balancer which examines the

number available processor and the processing power of them

and decides the LB algorithm best for the moment and

informs the load balancer.

File Lookup (FL)

File lookup component comes to action once after the

‘thinker’ and marks all the jobs that are to be serviced as

“ready”

Execution Workers(EW)

Each EW fetches the jobs which are ready from the SLB and

immediately sets them as “in Progress” before servicing them.

This is mainly done to ensure that the same job should not

fetched by some other EW.

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Current Trends in Advanced Computing (ICCTAC)

16

Situation-Based Load Balancer:

This is the centralized component which includes all the

above described components and work very close with them

to keep on loading the client jobs for execution and invokes

the best algorithm for the situation by which the response time

of the job is minimized. It decides from the existing three

algorithms namely RR, FCFS and OW.

Table 1. Notations used

Symbols Defintion

LB Load Balance

RR Round Robin

FCFS First Come First Served

OR Optimized Weight

SLB Situation-BasedLoad Balancer

FLC File Load Controller

SPR Server Process Reported

EW Exection Workers

Th Thinker

T Clock Interval

N(client) Number of Client Jobs

N(server) Number of Available Servers

The various situation for them to show their best performance

are as follows:

FCFS:

The FCFS works well when there is only one server available

at present. The thinker decides to choose FCFS when there is

only one server and all the other servers are down. All the

“ready” jobs are kept in a single queue as there is only one

server available.

RR:

Round Robin algorithm works fine when all the servers are

available. The performance of the system goes up due to the

availability of all the servers and load is also evenly balanced

by this algorithm. If the all servers’ processing power are the

same and if few servers are down but n(s) >1 then also RR

gets selected for invocation.

Optimized Weight: Optimized Weight is a dynamic LB

algorithm, which works fine with servers of high processing

power. There may be a situation wherein there are few servers

down, and the available servers of high processing power. If a

server can take up 6 jobs at a time, in a normal situation it

would be given a maximum of 3 to 4 jobs instead of 6. This is

to make sure that the servers are not overloaded. But during

the failure of few servers, they can be overloaded so that the

performance of the system is the almost the same even during

the time of partial failure of the servers. The thinker decides to

choose this algorithm during partial failure of servers

provided the available server should be of high processing

power.

If we process 100000 processes in one second, then it should

be the same for ever even during the partial failures. There

would be micro seconds delay may be due to the critical

region usage. If we have four servers and even if three servers

fail, the last node should be able to take the load of other three

servers load by taking up 1.5 times of the existing load.

The big advantage of our model is that, it not only works with

the algorithms which are loaded presently. It also gives room

for the future algorithms which may be proved good for load

balancing. The only requirement would be that we need to

recode the thinker module. Any time the new LB algorithms

can be included and the old LB algorithms can also be

removed from the load balancer.

The present model has the centralized “situation load

balancer”, which if fails, the load balancing would be a

failure. It suffers the problem of single source of failure which

can be eliminated by distributing it into n number of

components.

4. PROBLEM DEFINITION AND

ALGORITHM
A. Problem Definition

Consider a distributed system with many clients and servers.

Gven a number of client jobs to be processed by one of the

available server from a pool of replicated servers. To decide

which server would be feasible, we have Situation Based

Load Balancer along with Thinker and its various components

then the main objectives of our proposed Load Balancer are as

follows:(i) The client jobs have to be serviced with minimum

response time.

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Current Trends in Advanced Computing (ICCTAC)

17

(ii) Server’s computing power has to be used efficiently.

(iii) Load of all the replicated server has to be balanced

evenly.

(iv) The overall performance of the system to be improved.

The algorithm of our Situation Based Load Balancer is

present in Table II.The main focus of our algorithm is to

choose the best LB algorithm at every time interval and

through that decreasing the response time of the client jobs

and increasing the performance of the overall system.

Thinker executes at every clock interval , decides which

algorithm is best, decision is informed to the load balancer

and goes back to sleep mode.

Table 2. Algorithm : Sitation Based Load Balancer

5. PERFORMANCE EVALUATION

In this section, the performance of our load balancer is

evaluated with the individual load balancing algorithms such

as FCFS, RR and Optimized Weight(thinker).Simulation set

up of our imple mentation is as follows:

File arrival duration 30 minutes

Files Lookup interval 1 minute

Files per Lookup 10 files

Times to process one file 15 Seconds

Total Number of servers 4 Servers

Think Time interval 15 secs

Scenario 1 server fails / 8 mins

We have made 10 files to arrive at every 10 seconds interval.

Fig. 2 Compares the processing time of individual set of jobs

at each interval. FCFS takes higher time as it has a single

queue. Our model (thinker) has the constant time because it

keeps deciding the best algorithm at every time interval. Fig. 3

and Fig. 4 describe the total and average processing time of

the three algorithms. Fig. 5 depicts the maximum response

time taken by each algorithm and our model has the better

response time.

Fig 2: Individual Processing Time Comparison

Variable: Client Job, Server, Load Balancing algorithms: Round Robin (RR), First Come First .

Served (FCFS), Optimized Weight (OW) Future Algorithms (FA)

Input:

1. Situation-Based Load Balancer

2. File Load Controller

3. Server Process Reporter

4. File Look up

5. Thinker

6. Execution Worker

7. Load Balancing Algorithms (RR, FCFS, OW, FA)

Output:

 Client jobs are serviced with minimum Response time

 The servers’ load is balanced evenly

 The best algorithm among the Load Balancing Algorithm executes at every time interval.

 if (client job)

set client to “true”

else

set client to “false”

endif
while (client) do

for (each client) do

FLC loads the job into SLB

SPR loads the n(client) and n(server) into SLB

 endfor

 for (every clock interval)

 if (client)

SLB wakesup Th

Th decides the Best LB for this clock interval

FL sets each client as “ready”

EW sets each client to “in progress”

SLB invokes the LB algorithm

 endif

endfor

endwhile

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Current Trends in Advanced Computing (ICCTAC)

18

Fig 3: Total Processing Time Comparison

Fig 4: Average Processing Time Comparison

Fig 5: Maximum Response Time of each algorithm

6. CONCLUSIONS
In this paper, we have presented our load balancing thinker

model which is a collaboration of all existing load balancing

algorithms. Each of these individual algorithms work well

only during certain situations and so our thinker decides

which algorithm to choose based in a particular situation and

invokes it to get the best efficiency. And it switches through

the algorithms at every time interval if the situation changes.

Our model also facilitates the inclusion of the newer load

balancing algorithms which would be developed by the future

researchers. We have used time-outs for the thinker for our

implementation. But it is better if the thinker gets invoked

whenever the situation changes instead of the fixed clock

intervals.

The centralized approach of thinker model might face the

problems of bottleneck situation and the single-source of

failure. In future, the thinker model can be implemented with

a distributed approach.

7. References
[1] H. Saito, Y. Miyao, and M. Yoshida, “Traffic engineering

using multiple multipoint-to-point LSPs,” in INFOCOM

(2), 2000, pp. 894–901.

[2] W. G. Krebs, “Queue load-balancing/distributed batch

processing and local rsh replacement system.”

[3] O. Othman and D. C. Schmidt, “Issues in the Design of

Adaptive Middleware Load Balancing,” Proceedings of

the 2001 ACM SIGPLAN workshop on Optimization of

middleware and distributed systems, pp. 205–213, 2001.

[4] R. Krahl, J. Nolte, and L. Bttner, “A load balancing

approach for the peace operating system.” 2004.

[5] A. R. Karthik, “Load balancing in structured p2p

systems,” Berkeley, CA, 2003.

[6] P. Triantafillou, C. Xiruhaki, M. Koubarakis, and N.

Ntarmos, “Towards high performance peer-to-peer

content and resource sharing systems,” 2003.

[7] Barazandeh I and Mortazavi S S, “Two Hierarchical

Dynamic Load Balancing Algorithms in Distributed

Systems,” ICCEE '09. Computer and Electrical

Engineering, pp. 516-521, 2009.

[8]O. Othman, C. O’Ryan, and D. C. Schmidt, “The Design of

an Adaptive CORBA Load Balancing Service,” IEEE

Distributed SystemsOnline, vol. 2, Apr. 2001.

[9] Yang Jiao Zhengzhou and Wei Wang, “Design and

Implementation of Load Balancing of Distributed-

system-based Web Server,” Electronic Commerce and

Security (ISECS), 2010.

[10] Grosuand D and Chronopoulos A T, “A truthful

mechanism for fair load balancing in distributed

systems,” Network Computing and Applications, NCA

2003, 2003.

[11] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M.

Gien, M. Guillemont, F. Herrmann, C. Kaiser, S.

Langlois, P. Leonard, and W. Neuhauser, “Overview of

the CHORUS Distributed Operating Systems,” Tech.

Rep. CS-TR-90-25, Chorus Systems, 1990.

[12] W. G. Krebs, “Queue Load Balancing / Distributed Batch

Processecing and Local RSH Replacement System.”

1998.

[13] Lei Shi, Bin Liu, Changhua Sun, Zhengyu Yin,Laxmi N.

Bhuyan, and H. Jonathan Chao, “Load-Balancing

Multipath Switching System with Flow Slice,” IEEE

Transactions On Computers, Vol. 61, No. 3, March 2012.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5379502
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5379502
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yang%20Jiao.QT.&searchWithin=p_Author_Ids:37533364200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wei%20Wang.QT.&searchWithin=p_Author_Ids:37538926200&newsearch=true

