
International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Current Trends in Advanced Computing (ICCTAC)

10

Advanced Cryptographic Techniques for Secured Cloud

Computing

Nilotpal Chakraborty

M.Tech Student, School of Future Studies and Planning
Devi Ahilya University, Indore, India

G K Patra
Principal Scientist, CSIR- Fourth Paradigm Institute

Council of Scientific and Industrial Research
NAL Belur Campus, Bangalore, India

ABSTRACT

The past decade of computing has witnessed a number of new

computational models and the most prominent among them is

Cloud Computing. Cloud Computing is a paradigm shift that

helps a user with internet based computing services that can

be accessed from anywhere on any platform. But despite of its

advantages, it is yet to gain total trust from users, the primary

reason being its security issues. Though some standard

organizations have developed a number of security

compliance guidelines that need to be followed to ensure

security and quality of services in the cloud, security

assurance in real terms remains to be undercover. This paper

discusses about the two most promising cryptographic

techniques, that are, if implemented correctly can effectively

mitigate the security threats and can help in an increased uses

of cloud computing.

General Terms

Security, Cryptography

Keywords

Cloud Computing, Fully Homomorphic Encryption,

Functional Encryption

1. INTRODUCTION
Cloud computing has been one of the buzz word during the

last couple of years in the field of computing. It is a

computing model that delivers IT resources to its users via

Internet and therefore, sometimes called as Internet

Computing. The formal definition of cloud computing is

described in [1] as—

“It is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing

resources that can be rapidly provisioned and released with

minimal management effort or service provider interaction”.

Cloud computing offers various services such as data,

applications, storage, servers etc to the users with the help of

its service models viz. Software-as-a-service, Platform-as-a-

service, Infrastructure-as-a-service. It offers a ubiquitous,

scalable, multi tenant IT services to the users over the internet.

Users can have all their data stored in the cloud which they

can access from anywhere from an internet enabled device.

The services are generally provided by some vendors, known

as Cloud Service Providers (CSP) and they charge for them

based the usage. Thus users do not need to install the system

on their premises and can use the same as provided by the

CSPs. This frees them from maintaining the system on their

own and can still have the same computational power.

But as with the traditional mode of computing, security issues

bother the cloud computing model also and which is the

primary reason that hinders the wide spread use of it. The data

and information stored on the cloud can be highly valuable to

individuals with malicious intents. Due to the flexibility and

convenient services cloud provides, a lot of personal

information and potentially secure data is now being

transferred to the cloud. This makes it critical to understand

the security measures that the CSPs has in place, and it is also

very important to ensure personal precautions and proper

measurement to assess the security of the data [2]. There are

numerous security issues for cloud computing as it

encompasses many technologies including computer

networks, databases, data analytical tools, virtualization,

resource sharing and scheduling, transaction management,

load balancing, concurrency control and memory management

[3]. Thus, security challenges and concerns for many of these

systems and technologies are applicable to cloud computing.

The best way to address the security issues is to encrypt all the

data and then store it into the cloud. But with traditional

encryption schemes, once the data is encrypted, it is

completely meaningless unless decrypted. Moreover,

traditional ciphers encrypt All-or-Nothing which creates a

problem in leveraging the total power of cloud computing

services. Thus it is need to devise some advanced mode of

encryption techniques that can provide encryption of data in

one hand, and should also provide the capability to manipulate

those data over the cloud. Two of such advanced

cryptographic schemes are Fully Homomorphic Encryption

and Functional Encryption, which are going to be discussed

primarily in this paper.

The outline of the paper is organized as follows— Section 2

discusses about fully homomorphic encryption, section 3 talks

about functional encryption. Section 4 talks about the

implementation of fully homomorphic encryption and

functional encryption on cloud computing. Section 5 and

section 6 respectively discusses about our contribution

towards the field of functional and homomorphic encryption

and its related works.

2. FULLY HOMOMORPHIC

ENCRYPTION
Fully Homomorphic encryption (FHE) has been an intense

area of research for the past three decades, was originally

introduced by Rivest, Adleman and Dertouzos in 1978

[4], soon after the development of RSA encryption scheme.

Rivest et.al named it Privacy Homomorphism and showed

that the Basic RSA [5] is a multiplicatively homomorphic

encryption scheme -i.e, given a RSA public key pk= (N,e)

and cipher texts Ci= Mi
e mod N, one can efficiently

compute ΠiCi=(ΠiMi)
e mod N, which is eventually a cipher

text that encrypts the product of the original plaintexts.

With this invent, they asked a basic question: What can

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Current Trends in Advanced Computing (ICCTAC)

11

one do with a scheme that is fully homomorphic. The

answer to this question is that one can compute arbitrary

number of computations on the encrypted data without the

need to decrypt it anywhere. The following figures depicts the

functioning of FHE—

For the past three decades, Scientists and Researchers

tried immensely to develop an encryption scheme that

supports arbitrary number of computations on the cipher

texts, thus enabling fully homomorphic encryption. Despite

of their hard work and efforts, most of the cryptographic

schemes are turned out to be partial homomorphic, such as

RSA scheme, El-Gamal cryptosystem [6], Paillier

cryptosystem [7] etc. supporting either multiplication or

addition of cipher texts. But in 2009, IBM researcher

Craig Gentry in his breakthrough work showed the first

plausible fully homomorphic encryption scheme based on

the ideal lattices [8].

Any public-key encryption scheme has basic three algorithms.

KeyGen: Generates a key/ a pair of keys, Encrypt: Takes the

plain text and the key and produces a cipher text,

Decrypt: Takes the secret key and the cipher text to produce

the original plain text. For a scheme to be Homomorphic,

there is another algorithm called Eval. The Eval takes the set

of cipher texts and set of public keys to perform some specific

operations on them.

The construction of Gentry’s Fully Homomorphic Encryption

scheme [9] is as follows:

 KeyGen(λ): The secret key is an odd η-bit integer:

p (2Z + 1) ∩ [2η−1, 2η).

For the public key, sample xi= pqi+ri, for i = 0, . . . , τ .

Reconstruct so that x0 is the largest. Restart unless x0 is odd.

The public key is pk = x0, x1, . . . , xτ.

 Encrypt (pk, m∈ {0, 1}): Choose a random subset S

⊆ {1, 2, . ., τ} and a random integer r in (−2ρ , 2ρ),

and output c=(m + 2r + 2 xi)mod x0.

 Evaluate (pk, C, ci): Given the binary circuit C with

t inputs, and t cipher texts c, apply the addition

and multiplication operations of C to the cipher

texts, performing all the operations over the

integers, and return the resulting integer.

 Decrypt (sk, c): Output m=(c mod p) mod 2.

The above scheme to work correctly, r needs to be sufficiently

small as compared to the primary number p. But as the

operations are carried out on the cipher texts, the noise

associated with the cipher texts grows and after a certain

threshold value, it becomes impossible to decrypt it to its

original plain texts. This particular noise problem reduces the

number of allowable homomorphic operations that can be

performed.

3. FUNCTIONAL ENCRYPTION
Functional encryption is quite a new in cryptography and is an

asymmetric key algorithm that allows the secret key to

decrypt only some specific functions of the original texts,

without revealing any other information. This type of

encryption scheme posses a great implication as with the

increase of distributed computing and cloud computing.

Functional encryption was introduced in 2005 by Amit

Sahai and Brent Waters [10] which supported the

evaluation of some specific functionality. By 2012, several

researchers around the world have developed Functional

Encryption schemes that support arbitrary functions.

The notion of functional encryption has been developed from

the existing cryptographic techniques like Fully

Homomorphic Encryption, Yao’s Garbled circuit, Identity

based encryption (IBE) and Attribute based encryption

(ABE). Eventually, IBE and ABE can be termed as special

cases of functional encryption that support

encryption/decryption of cipher data based on some identity

and attribute respectively. Thus functional encryption is an

advanced encryption scheme that supports restricted

permission based encryption and decryption. The pictorial

representation of functional encryption can be depicted as

follows—

The construction of functional encryption consists of the

following algorithms:

 (pk, msk) SetUp(1λ): creates a public key pk and

a master secret key msk.

 sk KeyGen(msk,k): uses the master secret key

to generate a new secret key sk for value k.

 C Encrypt (pk,m): uses the public key pk to

encrypt a message m.

 F(k,m) Dec(sk,c): uses secret key sk to

calculate a function of the value C encrypts.

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Current Trends in Advanced Computing (ICCTAC)

12

4. FHE AND FUNCTIONAL

ENCRYPTION ON CLOUD

COMPUTING
Fully homomorphic encryption (FHE) is the sole way to

achieve computability in an encrypted domain. With the

help of this, any user can encrypt his/ her data before

storing it to the remote server and then perform valuable

computations on the encrypted data without the need to

decipher it anywhere [11]. This concept, if implemented

efficiently, can address the security issues and concerns of

Cloud Service providers and also will help in building trust

among the Cloud service users. As their data is completely

encrypted under a secret key, only known to them, it is

ensured that the cloud does not learn anything from their data.

Moreover, with the homomorphism, the cloud can compute on

the data without the need to decrypt it. FHE can help in

building trust among the cloud users with the fact that only

the owner of the data and application can actually decrypt it

and none else gain anything from it.

Functional encryption, on another hand, supports the group

secrecy mechanism by only allowing a portion of the

functionality of the cipher text to be revealed. The secret key

of the scheme can only reveals specific functionality that

restricts the user to learn anything beyond their privilege. For

example, suppose for a medical study, students need to

conduct a survey about how many patients were infected by

swine flu during the period of April, 2012 to March 2013.

Now here if we consider that the medical data of the

patients are encrypted, then according to the needs of the

study, only the number of the patients should be

revealed, without deciphering any other information such

as patient name, address or phone number. Thus

Functional encryption helps in a number of ways where a set

of cipher text, though can be seen by everyone, but only a

specific portion of it can be decrypted.

5. PERFORMANCE ANALYSIS AND

ENHANCEMENT
The inefficiency of Gentry’s FHE scheme is the fundamental

reason why FHE is yet to be implemented in real life

applications. As it works on message space bits, it takes quite

a bit of time to actually encrypt or decrypt a long message.

Moreover to maintain semantic security of the scheme, it is

recommended to use large prime numbers which results in

long keys. The initial implementation of the scheme resulted

in a key of 2.3 GB and 36 hours to evaluate AES algorithm.

Our primary focus towards this field is to reduce this

inefficient complexity behind the implementation of FHE and

to optimize it for the real life applications, especially on

cloud. As part of this study, the authors have analyzed the

mathematical background of fully homomorphic encryption

and have worked on to understand the reason behind its

functionality and inefficiency. Authors have implemented a

variant of Gentry’s scheme as proposed by VanDijk et. al [12]

which is based on approximate GCD based problem. The

approximate GCD problem states that given a multiple of any

prime number, plus some random number, it is difficult to

obtain the original prime number. Having implemented that,

the homomorphic property of cipher texts has been observed.

Authors have also performed multiplication and addition of

cipher texts and then decrypted them so as to obtain the result

as if the operation was originally performed on plain texts.

The authors have also implemented the FHE scheme proposed

by ZHANG-Tong et.al. [13] in which FHE can be

implemented on real numbers. The scheme supports addition,

multiplication, subtraction and division of cipher texts. The

primary drawback that was observed in this scheme was that,

all the operations have to be known before actually

performing them. That makes the scheme ineffective in terms

of real life scenario, where a user cannot be expected to know

in prior what operations he may later perform on his data.

Nevertheless, this paper helps us in developing a FHE scheme

that can support not only ring operations, but also field

operations. If the cipher text space can be represented by a

field, then it can be possible to apply all the numerical

operations to be performed directly on the user data. That

scheme would be much more efficient and effective in real

use.

The authors are also working on Functional encryption and

following the scheme proposed by Goldwasser et.al. [14] to

implement it. In functional encryption, there is a master key

that generates public keys and a corresponding secret key

based on the specified functionality. Based on the generated

secret key, the user can only decrypt that functionality for

which this secret key was generated. The security of

functional encryption solely depends on securing the master

secret key. The focus has been to implement functional

encryption to secure cloud computing infrastructure. With the

help of open source cloud development technologies, a private

cloud has been developed and currently work is being carried

out to secure encrypt/decrypt data with the help of functional

encryption for restricted data access mechanism.

All our implementations are being done on Linux based

computers in C programming language. For handling larger

data, GNU Multi Precision (GMP) Library is used. GMP is an

open source freely available C/C++ library that helps in

handling with larger numbers efficiently.

6. RELATED WORKS
Though Gentry’s scheme was not found to be efficient enough

to implement, it was undoubtedly a breakthrough in

cryptography. Following Gentry’s strategy, In 2010, Van

Dijk, Gentry, Halevi, and Vaikuntanathan came up with a

fully homomorphic scheme (known as DGHV scheme) over

the integers, with a reduced public key size of 10.3MB and a

cipher text refresh procedure of 11 minutes. Later on in 2011,

Brakerski, Gentry and Vaikuntanathan (BGV) devised a

scheme based on learning with error (LWE) or ring-LWE

(RLWE) problems [15]. It allows one to encrypt vectors of

plain text in a single cipher text and to perform any

permutation on the underlying plaintext vector while

manipulating only the cipher text. Smart and Verceuteren

presented a gully homomorphic scheme which has both

relatively small key and cipher text [16].

In recent times, Coron et. al [17] proposed a technique to

reduce the size of the key of the Van Dijk et. al scheme. In

April 2013, HElib (an open source library) was released, via

GitHub, that implements BGV scheme, along with many other

optimizations to make homomorphic evaluations running

faster and much more efficiently.

7. CONCLUSION
Cloud computing offers a great deal of computational benefits

to the users by providing multi tenant, ubiquitous, scalable

and reliable IT services. While the benefits of cloud

computing are clear, it imposes new security issues and

challenges since cloud operators are expected to manipulate

client data without necessarily being fully trusted.

Cryptography provides complete data security by encrypting

all the data which is meaningless without its decryption. But if

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Current Trends in Advanced Computing (ICCTAC)

13

traditional ciphers are used in securing cloud infrastructure,

the primary benefits of it cannot be leveraged. For this, we

need advanced encrypting techniques that despite of the data

being encrypted, helps in performing operations on it. Two of

the most advanced cryptographic schemes introduced in this

paper are Fully Homomorphic Encryption and Functional

Encryption. Fully homomorphic encryption supports

manipulating the cipher texts and thus allows operations to be

performed on them without losing its original meaning.

Functional encryption on the other hand supports specific

criteria based encryption/decryption process that helps in

secured sharing information, for computing platforms such as

the cloud.

ACKNOWLEDGEMENT
Nilotpal is thankful to the SPARK program of CSIR- Fourth

Paradigm Institute, Bangalore for giving him the opportunity

to carry out his major research project in the organization. The

work is partially supported by the project ARiEES (CySeRO

work package), funded by CSIR, India, under the 12th Five

Year Plan.

REFERENCES
[1] Peter Mell, Timothy Grance; The NIST Definition of

Cloud Computing; NIST Special Publication 800-145,

2011

[2] D S Bhilare, Nilotpal Chakraborty; Enhanced Security in

Cloud Computing Environment, International Journal of

Advanced Research in Computer Science and Software

Engineering, Vol 3 Issue 9, September 2013.

[3] K Hamlen, Security Issues for Cloud Computing,

Available online at: http://www.igi-

global.com/chapter/security-issues-cloud-computing/

[4] R. Rivest, L. Adleman, and M. Dertouzos. On data banks

and privacy homomorphisms. In Foundations of Secure

Computation, pages 169-177. Academic Press, 1978

[5] R. Rivest, A. Shamir and L. Adleman. A Method for

Obtaining Digital Signatures and Public-Key

Cryptosystems, Communications of the ACM 21 (2):

120-126, 1978.

[6] T. ElGamal. A public key cryptosystem and a signature

scheme based on discrete alogarithms. In Advances in

Cryptology—CRYPTO '84, volume 196 of Lecture

Notes in Computer Science, pages 10-18. Springer-

Verlag, 1985.

[7] Paillier, Pascal. "Public-Key Cryptosystems Based on

Composite Degree Residuosity Classes". EUROCRYPT.

Springer. pp. 223–238, 1999, doi:10.1007/3-540-48910-

X_16.

[8] C. Gentry. Fully homomorphic encryption using ideal

lattices. In STOC '09, pages 169-178, ACM, 2009.

[9] C. Gentry. A fully homomorphic encryption scheme. PhD

thesis, Stanford University, 2009.

http://crypto.stanford.edu/craig.

[10] Amit Sahai, Brent Waters; “Fuzzy Identity Based

Encryption”, Proceedings of Eurocrypt, 2005

[11] G K Patra, Nilotpal Chakraborty; Securing Cloud

Computing Environment with the help of Fully

Homomorphic Encryption, Journal of Computer

Technology & Applications, ISSN: 2229-6964, Vol 4

Issue 3, December 2013.

[12] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod

Vaikuntanathan. Fully homomorphic encryption over the

integers. In Advances in Cryptology - EUROCRYPT'10,

volume 6110 of Lecture Notes in Computer Science,

pages 24-43. Springer, 2010. Full version available on-

line from http://eprint.iacr.org/2009/616

[13] ZHANG-Tong, WU-Qi, LIU-Wen, CHENLiang,

Homomorphism Encryption Algorithm for Elementary

Operations over Real Number Domain, International

Conference on Cyber-Enabled Distributed Computing

and Knowledge Discover, DOI

10.1109/CyberC.2012.35.

[14] S.Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod

Vaikuntanathan, Nickolai Zeldovich, Reusable Garbled

Circuit and Succinct Functional Encryption, STOC’13,

June 1–4, 2013, Palo Alto, California, USA.

[15] Zvika Brakerski, Craig Gentry, and Vinod

Vaikuntanathan. Fully homomorphic encryption without

bootstrapping. In Innovations in Theoretical Computer

Science (ITCS'12), 2012. Available at

http://eprint.iacr.org/2011/277

[16] N. P. Smart and F. Vercauteren. Fully homomorphic

encryption with relatively small key and ciphertext sizes.

In Public Key Cryptography - PKC'10, volume 6056 of

Lecture Notes in Computer Science, pages 420-443.

Springer, 2010.

[17] J. S. Coron, D. Naccache, M. Tibouchi; Public Key

Compression and Modulus Switching for Fully

Homomorphic Encryption over the integers”, Cryptology

ePrint Archive, Report 2011/440, 2011. Available at

http://eprint.iacr.org/

http://www.igi-global.com/chapter/security-issues-cloud-computing/
http://www.igi-global.com/chapter/security-issues-cloud-computing/
http://crypto.stanford.edu/craig
http://eprint.iacr.org/2009/616
http://eprint.iacr.org/2011/277
http://eprint.iacr.org/

