
International Journal of Computer Applications (0975 – 8887)

International Conference on Computer Technology (ICCT 2015)

31

High Speed Architecture Implementation of AES using

FPGA

Nilima D. Parmar
P.G. Student

Department of EXTC
DJ Sanghvi College of

Engineering

Poonam Kadam
Assistant Professor,

Department of EXTC,
DJ Sanghvi College of

Engineering

ABSTRACT

FPGA implementation of Advanced Encryption Algorithm for

128 bits is presented in this paper for high speed applications.

It explores pipelining and sub-pipelining to gain speed

optimization without increasing area considerably. It

concentrates on placement of the pipelining registers rather

than just increasing its number to gain speed. An encryptor

with 8 stages of sub-pipelining for each round unit using the

proposed architecture gives a throughput of 24.33 Gbps on

Xilinx XCV1000 e-8 bg560 device and that of 29.99 Gbps on

XC3S4000-5fg676 device.

Keywords

Rijndael, AES, pipelining, sub-pipelining, S-box.

1. INTRODUCTION
Rijndael was selected as the Advanced Encryption Standard

(AES) algorithm by The National Institute of Standards and

Technology (NIST) in 2001 [1]. AES is used extensively in

cryptography from security point of view. It finds its

application in various fields ranging from wireless phones,

internet servers, smart cards etc.The AES uses a single key for

both encryption and decryption, i.e it is a symmetric-key

cipher. There are three variations in AES depending on the

length of the cryptographic key, viz “AES-128”, “AES-192”

and “AES-256, where 128, 192 and 256 represents the key

length. The AES encrypt/decrypt 128 bits of data accepted as

input in the form of 4x4 array also known as State. The size of

each array element of State is 8 bits. The general process for

AES encryption and decryption is as shown in figure 1. There

are three transformations namely, SubByte

(SBox)/InvSubByte, ShiftRow/InvShiftRow,

MixColumn/InvMixcolumn and a Key Expansion and

Addition unit. FIPS defines these standard transformations for

AES. These transformations are standard and are defined by

FIPS for AES. The three transformations and key addition

forms one AES round unit, the rounds units are repeated Nr

number of times depending on the key length [1].In the works

reported previously on AES, a traditional approach of using

look-up tables (LUT) is used to implement the SubByte and

InvSubByte transformation, as done in [2]-[6]. These LUTs

occupy more area and also introduces unbreakable delay. To

overcome this drawback, [7] and [8] introduces combinational

logic only implementation of SubByte and InvSubByte using

composite field arithmetic which was further exploited in [9]

to obtain high-speed optimization. Compared to software

implementations, hardware implementations of the AES

algorithm provide more physical security as well as higher

speed [9]. Hence pipelining and multiple stage sub-pipelining

were introduced in AES implementation as in [9]-[12].

Fig 1: (a) Encryption; (b) Decryption.

The work proposed in this paper exploits sub-pipelining

further to gain speed without significant increase in area. The

previous fastest FPGA implementation by [9] employed sub-

pipelining of 7 sub-stages in each round unit for the encryptor.

The reported throughput achieved for the same on Xilinx

XCV1000 e-8 bg560 device is 21.56 Gbps. In the work

presented in this paper, the design for sub-pipelined encryptor

consist of 8 sub-stages in each round unit and can achieve a

throughput of 24.33 Gbps on the same FPGA architecture.

Hence it can be deduced that the architecture proposed in this

paper is more efficient than those proposed previously. This

gain in speed and throughput is the result of proper placement

of sub-pipelining registers rather than just increasing its

number.

2. AES ARCHITECTURE
AES consists of encryption as well as decryption algorithm as

shown in figure 1. In this paper only the encryptor design is

implemented. Figure 2 below shows the architecture in detail

along with the placement of sub-pipelining registers for one

round unit.

2.1 SubByte
The SubByte transformation consist of isomorphic mapping

() followed by multiplicative inversion module, inverse

isomorphic mapping (-1) and affine transformation (AT). The

International Journal of Computer Applications (0975 – 8887)

International Conference on Computer Technology (ICCT 2015)

32

Fig 2: Hardware implementation of sub-pipelined Encryptor.

Fig 3: Hardware implementation of individual blocks: (a) multiplier in GF(24)[9]; (b) multiplier in GF(22)[9]; (c) constant

multiplier (×λ)[9]; (d) squarer in GF(24)[9]; (e) constant multiplier (×φ)[9]

detailed hardware implementation about it as shown in figure

3. This transformation was traditionally implemented as

LUTs. However it introduced unbreakable latency in the

design and occupied ROM space. Hence they were replaced

by combinational logic design which produced the values for

SubByte and its inverse dynamically in real time.

2.2 ShiftRow and MixColumn
In ShiftRow, each row within State array is shifted cyclically

by a specific value. The first row remains same without any

shift. The second row shifts to left by one byte, whereas the

third and fourth rows are shifted two and three bytes to the left

respectively.

In MixColumn, each byte of a column is replaced with a value

that is a function of all four bytes in the given column. Each

column of the State is considered as polynomial over GF(28)

and multiplied modulo with a fixed polynomial such

that it has an inverse[1]. The equation for each element of

MixColumn transformations are as given below;

ccccc sssss ,3,2,116.016,0)}03({)}02({' 

ccccc sssss ,3,0,216.116,1)}03({)}02({' 

ccccc sssss ,1,0,316.216,2)}03({)}02({' 

ccccc sssss ,1,2,016
).016,3)}03({}02({' 

(1)[1]

The above equation can be rearranged to simply the

complexity and hence reduce the constant multiplication value

to only {02} in hexadecimal.

ccc
c

cc

ccc
c

cc

ccc
c

cc

ccc
c

cc

ssssss

ssssss

ssssss

ssssss

,0),2,1
,0

.3
16

,3

,3),1,0
,3

.2
16

,2

,2),0,3
,2

.1
16

,1

,1),3,2
,1

.0
16

,0

()(}02{'

()(}02{'

()(}02{'

()(}02{'









 (2)[9]

2.3 Key Expansion
Roundkeys are used to encrypt the State array. These

roundkeys are generated by Key Expansion unit. They can be

either produced beforehand and stored as LUTs to use for

later purposes or can be generated on fly. The former

approach can only be used for fixed key input whereas the

latter can be used for variable key value. Also it enables

pipelining to take place unlike that in case of LUTs.

International Journal of Computer Applications (0975 – 8887)

International Conference on Computer Technology (ICCT 2015)

33

The design for the same is as given in figure 4.

Fig 4: Key Expansion [14]

SubWord is SubByte transformation on 32 bits word. The

function. RotWord rotates the 32 bits word left by 8 bits.

RCon is a round constant for every round [1]. It has a unique

value for every round. It can be either implemented as LUT or

on fly.The 128 bits input key is divided into four 32 bits

words. They are used to generate roundkey words for all the

ten rounds. W0, W1, W2 and W3 represent previous round

roundkey words which are used to generate the current round

roundkey words W_0, W_1, W_2 and W_3. These roundkeys

are used for encryption.

3. IMPLEMENTATION AND RESULTS
The sub-pipelined encryptor for AES-128 is implemented by

repeating the hardware for each round unit 10 times i.e

creating 10 copies of the round unit and one Key Expansion

unit. The design is implemented on two FPGA platforms

namely VirtexE and Spartan 3. The tool used for synthesis

and post implementation timing result is Xilinx ISE 9.2i. The

sub-pipelined architecture takes m x Nr +1 clock cycles to

produce a valid output initially, where m is the number of sub-

stages. After that it accepts and generates output at every

clock cycle. In this design m = 8. This architecture when

implemented on Xilinx XCV1000 e-8 bg560 device gives a

maximum operating frequency of 190.11 MHz and a

throughput of 24.33 Gbps. The same architecture when

implemented on Xilinx XC3S4000-5fg676 device operates at

a maximum frequency of 234.36 MHz and a throughput of

29.99 Gbps. The table 1 below shows the comparison between

the previously suggested FPGA implementations on the same

FPGA platform.From the below table 1 it can be seen that the

design proposed in this paper is the most efficient one as per

speed and also throughput per slice. The key contributor to

this increase in speed is the SubByte transformation unit and

its careful placement of sub-pipelining registers. The

minimum clock period i.e maximum operating frequency is

determined by the indivisible component with the longest

delay [9]. Hence dividing a code into arbitrary number of sub-

stages does not always increase the operating speed.

Therefore dividing the rest of the code into more sub-stages

with shorter delay does not reduce the minimum clock period

[9].Therefore, the overall speed does not improve despite

increased area caused by the additional registers [9]. It was

observed that the Galois multiplication block in SubByte

transformation produced the largest delay within the

component. Hence it was further divided by inserting a

pipeline register (shown in yellow colour figure 2 and 3)

within the Galois multiplication block. Thus this delay was

reduced considerably and led to speedup. Furthermore

resource sharing was done in Key Expansion unit by

employing the same SubByte transformation unit for the

SubWord unit.

Table 1. Comparison of the FPGA implementation of AES algorithm

Design Slices
Frequency

(MHz)

Throughput

(Gbps) Mbps/slice

Jarvinen [10]

XCV1000e-8
11719 129.2 16.500 1.408

Saggese [11]

XCV2000e-8

5810 + 100

BRAM
158 20.300 1.091

Standnert [12]

XCV3200e-8
15112 145 18.560 1.228

Xinmiao [9]

XCV1000e-8
11022 168.4 21.556 1.956

This work

XCV1000e-8
10964 190.11 24.22 2.219

This work

XCS4000-5
11057 234.36 29.99 2.2712

International Journal of Computer Applications (0975 – 8887)

International Conference on Computer Technology (ICCT 2015)

34

4. CONCLUSION
This paper presents the FPGA implementation of fully sub-

pipelined AES encryptor. The work proposed succeeds in

increasing the speed of operation without highly affecting area

consumption. This speedup is the result of combinational

logic implementation of SubByte and Key Expansion along

with resource sharing between them. Along with this, sub-

pipelining and its placement has played a key role in

achieving greater performance as compared to previous work

Compared to the previous fastest architecture[9], his design

has approximately 13% more throughput/slice and has an

increased clock frequency of 12.89%. On similar lines, a

decryptor can be constructed combined with encryptor. As

both encryptor ans decryptor have some common modules

such as SubByte and the Key Expansion unit with a little

modification for creating mixroundkeys, this can be addressed

in future work.

5. REFERENCES
[1] FIPS 197, “Advanced Encryption Standard (AES)”,

November26,2001

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[2] K. Gaj and P. Chodowiec, “Comparison of the hardware

performance of the AES candidates using reconfigurable

hardware”. Presented at Proc.3rd AES Conf. (AES3).

[3] J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An FPGA

implementation and performance evaluation of the AES

block cipher candidate algorithm finalist”, presented at

Proc. 3rd AES Conf. (AES3).

[4] H. Kuo and I. Verbauwhede, “Architectural optimization

for a 1.82 Gbits/sec VLSI implementation of the AES

Rijndael algorithm,” in Proc. CHES 2001, Paris, France,

May 2001, pp. 51–64.

[5] M. McLoone and J. V. McCanny, “Rijndael FPGA

implementation utilizing look-up tables,” in

IEEEWorkshop on Signal Processing Systems,Sept.

2001, pp. 349–360.

[6] V. Fischer and M. Drutarovsky, “Two methods of

Rijndael implementation in reconfigurable hardware,” in

Proc. CHES 2001, Paris, France, May 2001, pp. 77–92.

[7] Akashi Satoh, Sumio Morioka, Kohji Takano and Seiji

Munetoh, “A Compact Rijndael Hardware Architecture

with S-Box Optimization.”, Springer-Verlag Berlin

Heidelberg, 2001

[8] A.Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. R. Rao,

and P. Rohatgi,“Efficient implementation of Rijndael

encryption with composite field arithmetic,” in Proc.

CHES 2001, Paris, France, May 2001, pp. 171–184.

[9] Xinmiao Zhang and Keshab K. Parhi, “High-Speed VLSI

Architectures for the AES Algorithm,” IEEE

Transactions on Very Large Scale Integration(VLSI)

Systems, Vol.12, No. 9, Septemper 2004.

[10] K. U. Jarvinen, M. T. Tommiska, and J. O. Skytta, “A

fully pipelined memoryless 17.8 Gbps AES-128

encryptor,” in Proc. Int. Symp. Field-Programmable Gate

Arrays (FPGA 2003), Monterey, CA, Feb. 2003,pp. 207–

215.

[11] G. P. Saggese, A. Mazzeo, N. Mazocca, and A. G. M.

Strollo, “An FPGA based performance analysis of the

unrolling, tiling and pipelining of the AES algorithm,” in

Proc. FPL 2003, Portugal, Sept. 2003.

[12] F. Standaert, G. Rouvroy, J. Quisquater, and J. Legat,

“Efficient implementation of Rijndael encryption in

reconfigurable hardware: Improvements & design

tradeoffs,” in Proc. CHES 2003, Cologne, Germany,Sept.

2003.

[13] Naga M. Kosaraju, Murali Varanasi and Saraju P.

Mohanty “A High-Performance VLSI Architecture for

Advanced Encryption Standard (AES) Algorithm,” IEEE

Proceedings of the 19th International Conference on

VLSI Design (VLSID’06).

[14] Amruta Page, P. V. Sriniwas Shastry, “AES-128 Key

Expansion with LUT and OTF S-Box,” International

Journal of Computer Technology and Electronics

Engineering (IJCTEE) Volume 4, Issue 3, June 2014, An

ISO 9001: 2008 Certified Journal

[15] Edwin NC Mui, “Practical Implementation of Rijndael S-

Box Using Combinational Logic.”

[16] Marian Cretu1and Cristian-Gabriel Apostol “A Modified

Version of Rijndael Algorithm Implemented to Analyze

the Cyphertexts Correlation for Switched S-Boxes”IEEE

conference on Communication (COMM),

Bucharest,2012

[17] K. U. Jarvinen, M. T. Tommiska, and J. O. Skytta, “A

fully pipelined memoryless 17.8 Gbps AES-128

encryptor,” in Proc. Int. Symp. Field-Programmable Gate

Arrays (FPGA 2003), Monterey, CA, Feb. 2003,pp. 207–

215.

[18] Ion Sima, Adrian- viorel Diaconu and Marian Cretu.

“Analysis of Modified ShiftRows and MixColumns

Transformations in Rijndael Algorithm” IEEE

conference on Electronics, Computers and Artificial

Intelligence (ECAI), 2013.

[19] Poonam Kadam, Nilima Parmar, “Pipelined

Implementation of Dynamic Rijndael S-Box” in

International Journal of Computer Applications, Vol. 111

(19578-1384), Feb 2015.

IJCATM : www.ijcaonline.org

