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ABSTRACT 

FPGA implementation of Advanced Encryption Algorithm for 

128 bits is presented in this paper for high speed applications. 

It explores pipelining and sub-pipelining to gain speed 

optimization without increasing area considerably. It 

concentrates on placement of the pipelining registers rather 

than just increasing its number to gain speed.  An encryptor 

with 8 stages of sub-pipelining for each round unit using the 

proposed architecture gives a throughput of 24.33 Gbps on 

Xilinx XCV1000 e-8 bg560 device and that of 29.99 Gbps on 

XC3S4000-5fg676 device. 
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1. INTRODUCTION 
Rijndael was selected as the Advanced Encryption Standard 

(AES) algorithm by The National Institute of Standards and 

Technology (NIST) in 2001 [1]. AES is used extensively in 

cryptography from security point of view. It finds its 

application in various fields ranging from wireless phones, 

internet servers, smart cards etc.The AES uses a single key for 

both encryption and decryption, i.e it is a symmetric-key 

cipher. There are three variations in AES depending on the 

length of the cryptographic key, viz “AES-128”, “AES-192” 

and “AES-256, where 128, 192 and 256 represents the key 

length. The AES encrypt/decrypt 128 bits of data accepted as 

input in the form of 4x4 array also known as State. The size of 

each array element of State is 8 bits. The general process for 

AES encryption and decryption is as shown in figure 1. There 

are three transformations namely, SubByte 

(SBox)/InvSubByte, ShiftRow/InvShiftRow, 

MixColumn/InvMixcolumn and a Key Expansion and 

Addition unit. FIPS defines these standard transformations for 

AES. These transformations are standard and are defined by 

FIPS for AES. The three transformations and key addition 

forms one AES round unit, the rounds units are repeated Nr 

number of times depending on the key length [1].In the works 

reported previously on AES, a traditional approach of using 

look-up tables (LUT) is used to implement the SubByte and 

InvSubByte transformation, as done in [2]-[6]. These LUTs 

occupy more area and also introduces unbreakable delay. To 

overcome this drawback, [7] and [8] introduces combinational 

logic only implementation of SubByte and InvSubByte using 

composite field arithmetic which was further exploited in [9] 

to obtain high-speed optimization. Compared to software 

implementations, hardware implementations of the AES 

algorithm provide more physical security as well as higher 

speed [9]. Hence pipelining and multiple stage sub-pipelining 

were introduced in AES implementation as in [9]-[12].  

 

Fig 1: (a) Encryption; (b) Decryption. 

The work proposed in this paper exploits sub-pipelining 

further to gain speed without significant increase in area. The 

previous fastest FPGA implementation by [9] employed sub-

pipelining of 7 sub-stages in each round unit for the encryptor. 

The reported throughput achieved for the same on Xilinx 

XCV1000 e-8 bg560 device is 21.56 Gbps. In the work 

presented in this paper, the design for sub-pipelined encryptor 

consist  of 8 sub-stages in each round unit and can achieve a 

throughput of 24.33 Gbps on the same FPGA architecture. 

Hence it can be deduced that the architecture proposed in this 

paper is more efficient than those proposed previously. This 

gain in speed and throughput is the result of proper placement 

of sub-pipelining registers rather than just increasing its 

number. 

2. AES ARCHITECTURE 
AES consists of encryption as well as decryption algorithm as 

shown in figure 1. In this paper only the encryptor design is 

implemented. Figure 2 below shows the architecture in detail 

along with the placement of sub-pipelining registers for one 

round unit.  

2.1 SubByte 
The SubByte transformation consist of isomorphic mapping 

() followed by multiplicative inversion module, inverse 

isomorphic mapping (-1) and affine transformation (AT). The  
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Fig 2: Hardware implementation of sub-pipelined Encryptor. 

 

Fig 3:  Hardware implementation of individual blocks: (a) multiplier in GF(24)[9]; (b) multiplier in GF(22)[9]; (c) constant 

multiplier (×λ)[9]; (d) squarer in  GF(24)[9]; (e) constant multiplier (×φ)[9]

detailed hardware implementation about it as shown in figure 

3. This transformation was traditionally implemented as 

LUTs. However it introduced unbreakable latency in the 

design and occupied ROM space. Hence they were replaced 

by combinational logic design which produced the values for 

SubByte and its inverse dynamically in real time.   

2.2 ShiftRow and MixColumn 
In ShiftRow, each row within State array is shifted cyclically 

by a specific value. The first row remains same without any 

shift. The second row shifts to left by one byte, whereas the 

third and fourth rows are shifted two and three bytes to the left 

respectively. 

In MixColumn, each byte of a column is replaced with a value 

that is a function of all four bytes in the given column. Each 

column of the State is considered as polynomial over GF(28) 

and multiplied modulo with a fixed polynomial such 

that it has an inverse[1]. The equation for each element of 

MixColumn transformations are as given below; 

ccccc sssss ,3,2,116.016,0 )}03({)}02({' 

ccccc sssss ,3,0,216.116,1 )}03({)}02({' 

ccccc sssss ,1,0,316.216,2 )}03({)}02({' 
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(1)[1] 

The above equation can be rearranged to simply the 

complexity and hence reduce the constant multiplication value 

to only {02} in hexadecimal. 
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2.3 Key Expansion 
Roundkeys are used to encrypt the State array. These 

roundkeys are generated by Key Expansion unit. They can be 

either produced beforehand and stored as LUTs to use for 

later purposes or can be generated on fly. The former 

approach can only be used for fixed key input whereas the 

latter can be used for variable key value. Also it enables 

pipelining to take place unlike that in case of LUTs.  
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The design for the same is as given in figure 4. 

 

Fig 4: Key Expansion [14] 

SubWord is SubByte transformation on 32 bits word. The 

function. RotWord rotates the 32 bits word left by 8 bits. 

RCon is a round constant for every round [1]. It has a unique 

value for every round. It can be either implemented as LUT or 

on fly.The 128 bits input key is divided into four 32 bits 

words. They are used to generate roundkey words for all the 

ten rounds. W0, W1, W2 and W3 represent previous round 

roundkey words which are used to generate the current round  

roundkey words W_0, W_1, W_2 and W_3. These roundkeys 

are used for encryption.  

3. IMPLEMENTATION AND RESULTS 
The sub-pipelined encryptor for AES-128 is implemented by 

repeating the hardware for each round unit 10 times i.e 

creating 10 copies of the round unit and one Key Expansion 

unit. The design is implemented on two FPGA platforms 

namely VirtexE and Spartan 3. The tool used for synthesis 

and post implementation timing result is Xilinx ISE 9.2i. The 

sub-pipelined architecture takes m x Nr +1 clock cycles to 

produce a valid output initially, where m is the number of sub-

stages. After that it accepts and generates output at every 

clock cycle. In this design m = 8. This architecture when 

implemented on Xilinx XCV1000 e-8 bg560 device gives a 

maximum operating frequency of 190.11 MHz and a 

throughput of 24.33 Gbps. The same architecture when 

implemented on Xilinx XC3S4000-5fg676 device operates at 

a maximum frequency of 234.36 MHz and a throughput of 

29.99 Gbps. The table 1 below shows the comparison between 

the previously suggested FPGA implementations on the same 

FPGA platform.From the below table 1 it can be seen that the 

design proposed in this paper is the most efficient one as per 

speed and also throughput per slice. The key contributor to 

this increase in speed is the SubByte transformation unit and 

its careful placement of sub-pipelining registers. The 

minimum clock period i.e maximum operating frequency is 

determined by the indivisible component with the longest 

delay [9]. Hence dividing a code into arbitrary number of sub-

stages does not always increase the operating speed. 

Therefore dividing the rest of the code into more sub-stages 

with shorter delay does not reduce the minimum clock period 

[9].Therefore, the overall speed does not improve despite 

increased area caused by the additional registers [9]. It was 

observed that the Galois multiplication block in SubByte 

transformation produced the largest delay within the 

component. Hence it was further divided by inserting a 

pipeline register (shown in yellow colour figure 2 and 3) 

within the Galois multiplication block. Thus this delay was 

reduced considerably and led to speedup. Furthermore 

resource sharing was done in Key Expansion unit by 

employing the same SubByte transformation unit for the 

SubWord unit.  

 

Table 1. Comparison of the FPGA implementation of AES algorithm 

Design Slices 
Frequency 

(MHz) 

Throughput 

(Gbps) Mbps/slice 

Jarvinen [10] 

XCV1000e-8 
11719 129.2 16.500 1.408 

Saggese [11] 

XCV2000e-8 

5810 + 100 

BRAM 
158 20.300 1.091 

Standnert [12] 

XCV3200e-8 
15112 145 18.560 1.228 

Xinmiao [9] 

XCV1000e-8 
11022 168.4 21.556 1.956 

This work 

XCV1000e-8 
10964 190.11 24.22 2.219 

This work 

XCS4000-5 
11057 234.36 29.99 2.2712 
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4. CONCLUSION 
This paper presents the FPGA implementation of fully sub-

pipelined AES encryptor. The work proposed succeeds in 

increasing the speed of operation without highly affecting area 

consumption. This speedup is the result of combinational 

logic implementation of SubByte and Key Expansion along 

with resource sharing between them. Along with this, sub-

pipelining and its placement has played a key role in 

achieving greater performance as compared to previous work 

Compared to the previous fastest architecture[9], his design 

has approximately 13% more throughput/slice and has an 

increased clock frequency of 12.89%. On similar lines, a 

decryptor can be constructed combined with encryptor. As 

both encryptor ans decryptor have some common modules 

such as SubByte and the Key Expansion unit with a little 

modification for creating mixroundkeys, this can be addressed 

in future work.   
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