
International Journal of Computer Applications (0975 – 8887)

International Conference on Computer Technology (ICCT 2015)

11

Reconfigurable Image Processor using an Fpga-

Raspberry Pi Interface

Zalak Dave
Eduvance,

Mumbai, India

Shivank
Dhote

Vidyalankar
Institue of

Technology,
MumbaiIndia

Pranav
Charjan

Vidyalankar
Institue of

Technology,
Mumbai India

Jonathan
Joshi

Eduvance,
Mumbai, India

Ganesh
Gore

Eduvane,
Mumbai, India

ABSTRACT

Image processing (I.P.) systems, involving multiple

processing functionalities, use standard software tools to

manipulate pixel values. The load on the system is high when

these software tools are used for real time I.P. applications as

the system they are running on are systems that are not

specific to a particular application. This would require either

high end hardware systems or an application specific

hardware. Field Programmable Gate Arrays (FPGA) provide a

cost effective custmizable solution. The Command Controlled

Image Processor proposed in this paper provides a specific

hardware based solution which is designed only for certain

specific image processing tasks. This paper deals with the

design and implementation of a multifunction processor with

different modules using a FPGA. The design has been

prototyped on a Xilinx Spartan 3E FPGA. The expected and

achieved outputs have been given with comparison to

standard MATLAB outputs. The hardware occupancies and

delays have also been reported for different FPGA devices.

General Terms

MATLAB, Image Processing, FPGA

Keywords

Basys-2, Raspberry Pi, FPGA, Image Processing.

1. INTRODUCTION
Over 10 years ago, Xilinx Corporation introduced the first

generation of Field Programmable Gate Arrays, or FPGAs

[1][2]. These chips were designed to allow hardware

manufacturers to include simple control logic in their products

without having to resort to custom circuits. Essentially, the

technology allows engineers to use software tools to specify

hardware circuits. Although the technology was originally

developed as an alternative to PALs and used for glue logic,

there were early visionaries who perceived that the potential

for FPGA technology was much greater than that. Even in the

early stages of FPGA development, Papers were published

that suggested this technology could be used for complex

applications such as imaging. The key to FPGA technology is

that it is reconfigurable. At any time, new software can be

loaded into the chip that completely changes its character and

function. Although the original FPGAs were relatively simple

devices, this class of chip has grown in size and complexity to

the point that today, complex algorithms can be implemented

using FPGAs. The programming tools for these products,

however, have not advanced to the same level as other, more

mature technologies. As a result, creating software to run in

an FPGA environment requires a high level of skill.

Developers create schematics or a Hardware Description

Language (HDL) representation of a design. The design is

then compiled into a bit-stream which is loaded into the chip,

rather than building a physical circuit. Advancements in

FPGA technology have allowed it to become a viable

alternative to other general purpose and specialized

processors. FPGA represents the next step in computer design

and control. For real-time computation, FPGA technology

provided even more specialization and power. FPGAs

continue to advance this process. For many applications, the

use of FPGAs offers a faster, less expensive solution that is

easier to upgrade as technology continues to move forward. In

addition to higher speed and lower costs, the implementation

of an FPGA solution requires fewer chips on a board. This

allows a smaller footprint to be achieved as well as creating a

highly customizable product. In addition, FPGA based system

can be upgraded in the field by simply sending new code to

run on the chips.

2. RELATED WORK
Traditionally, most real time image processing and machine

vision systems used DSP based image processing boards.

These products provided the horsepower necessary to process

large amounts of data in real-time. General-purpose DSPs

tend to support the largest common factor in all algorithms,

with no regards for specific needs. As a result of this

tendency, DSPs have largest required word widths, the most

common memory addressing schemes, and generic arithmetic
operations. For specific needs of image processing in defense

applications the requirement of data width is 8 to 14 bit wide,

the need for 32 bit wide data width is not there. Larger data

width brings additional requirements of packing two or more

adjacent bits into in word. Image processing rarely require

higher data widths like floating point computations. Field

Programmable Gate Arrays, or FPGAs, provide a

programmable, high- speed solution that is both less

expensive and more flexible than DSPs. It has been shown by

Bosi [3], that FPGA can be used for specific needs of

convolution where DSP has its limitations. The hardware

implemented still uses DSP for data control and display. This

approach brings in multiple hardware platforms where know

how of each hardware is a must. With this criterion in mind,

this paper explores the performance and architectural tradeoffs

involved in the various image processing applications have

been implemented on a FPGA. Work done in [4] and [5] are

examples of such implementations. The aim of this work is to

explore at a student level the aspect of implementing multiple

image processing applications on a FPGA.

3. SYSTEM ARCHITECTURE

3.1 Overview
According to the block diagram in Figure 1 below there is a

command interface which will be used to send necessary

International Journal of Computer Applications (0975 – 8887)

International Conference on Computer Technology (ICCT 2015)

12

commands to the processor depending on the output required.

These commands are sent to the Raspberry Pi which is often

called a credit card sized computer. The advantage is that

Raspberry pi has GPIOs(general purpose Input Output)[6][7]

pins which can be easily interfaced with the processor.

Figure1: The System Block Diagram.

The image processor is prototyped on a Basys-2[8] board by

Digilent[8] which has the Xilinx Spartan 3E [9][10] FPGA on

it. As shown in Figure 2 the board has ports which can be

interfaced with the FPGA and required inputs can be sent to

the FPGA. In the designing of the processor various

algorithms are followed to achieve the various effects required

on the image. Also the output from the processor is given to a

VGA driver which is also developed on the same FPGA. The

Basys -2 has a SVGA port[9][11]. The VGA driver is linked

to the SVGA port on the board and this port can be connected

to any supported VGA display device like a monitor or a

projector.

Figure 2: BASYS-2 Development Board.

3.2 The input output interface
The command interface and the R-pi are used to give a

multifaceted approach to controlling the image processor. The

aim is to give the user a more user friendly system as

commands are given in spoken English. These are decoded by

the R-Pi and hence signals are sent to the FPGA on the Basys

2 board using a binary coded system. The processor on the

FPGA will perform certain operations on an image and will

display the output on a monitor using the VGA driver which

is developed on the FPGA as well. The R-Pi runs a python

script which takes string input from the command line and

drives the GPIO pins which are connected to the Basys 2. The

script makes use of Python GPIO module to operate 4 GPIO

pins as output pins. User interface used the Command Line

Interface of the RPi. The user must run a .bat file which starts

the script. Then user must enter the keyword of the operation

to be performed on the FPGA in the command line. The script

reads the keyword and provides the corresponding 4 bit value

to the Basys 2 by means of output GPIO pins.

3.3 The Image Processor
The FPGA on the board is designed in a switch case

pattern and hence depending on the signal received from the

R-pi a specific operation would be performed on the already

present image. According to Figure 2 above, shows the FPGA

has basically been divided into 6 logic blocks and 1 VGA

driver block. The outputs of every module is compared with

the same effect reproduced using MATLAB.

 Figure 3 : The Block Diagram of the FPGA Design

3.4 The VGA Driver
The VGA driver is also written in Verilog which takes care of

the Horizontal and vertical synchronization of the display with

the FPGA. The VGA driver is written for a display of

640x480. Also as we have processed only 256 bit image the

zoom of the display is also taken care by manipulating the

input to the display.

International Journal of Computer Applications (0975 – 8887)

International Conference on Computer Technology (ICCT 2015)

13

4. RESULTS

Figure 4:The Original Image On FPGA (left) and

MATLAB

Figure 5: Physical Hardware Setup

As shown in Fig 5, the hardware setup includes a Rpi

connected to the Basys 2 FPGA board with the result

displayed on the monitor via the VGA cable. The setup is

shown as proof of working design. Individual results are

discussed in subsequent sections.

4.1 Output
4.1.1 Color to Black and White
In this block the concept of thresholding is used. Pixel values

are compared with a specific value and then using a decision

statement either the pixel is converted to black or white. The

threshold value can be decided by the user. Fig. 4 shows the

binary image.

Figure 6: The Binary Image On FPGA(left) and

MATLAB(right)

4.1.2 Color to grayscale
This module also uses thresholding but has different

thresholds. The pixel value lying between two consecutive

highest thresholds is assigned a shade lighter than black and

hence a greyscale image is obtained by assigned different

levels to every pixel value. Figure 5 shows a greyscale image

produced by the processor (left) and MATLAB.

Figure 7: The Greyscale Image On FPGA(left) and

MATLAB(right)

4.1.3 Color Filter
Pixels having one particular value are not processed and rest

of the image is converted to greyscale. In Figure 5 it is seen

that the blue color is left as it is and all other pixels have been

converted to their respective greyscale values.

Figure 8: Color Filtered Image On FPGA (left) and

MATLAB(right)

4.1.4 Rotation
The image is rotated by changing the order of bits that are

being sent to the VGA driver. As the ROM is accessed from

the start in normal display, we let the horizontal access be the

same but change the order in which the vertical bits are

accessed. In Fig 7. the image is rotated by 90 degrees and in

Figure 8 shows the image is having a 180 degree rotation.

International Journal of Computer Applications (0975 – 8887)

International Conference on Computer Technology (ICCT 2015)

14

Figure 9: 180° Rotation On FPGA (left) and

MATLAB(right)

4.1.5 Mirroring
The horizontal and the vertical addresses of the ROM are

exchanged and then fed to the VGA driver circuit. This

completely creates a mirrored image of the original. Figure 9

shows the mirrored effect on the display and on MATLAB.

 Figure 10: Mirroring on an FPGA (left) and

MATLAB(right)

4.1.6 Animation
In this module the value of the ROM is shifted into another

ROM such that the last 191 values are copied first and the rest

of the memory is left empty. Then using a counter we feed the

values of the two ROMs to the VGA driver one after the

other. This is at more than 15 frames per second and hence

gives a perception of motion. Figure 10 shows the two frames.

Figure 11: The Two Frames in the Animation

4.2 Results Discussion
Based on the results shown above it is seen that the processing

done by the FPGA produces results that are at par with

MTLAB. The results do show that the algorithm though

simple can be efficiently implemented and deployed on a

portable and fast platform like the FPGA. Also given below

are the processing times and hardware occupancies for the

given implementation.

Table 1: Processing times for algorithm implementation

using MATLAB

Sr.
Number

Process Time(sec)

2.2GHz(i3)

Time(sec)

3.1 GHz(i5)

1. Gray Scale 0.033192 0.019982

2. Black and White 0.027514 0.019653

3. Color Filter 0.028218 0.019826

4. Image Mirror 0.030529 0.018255

5. Image Rotation 0.25615 0.018200

Table 1 presents the processing times for the various

algorithms when implemented on a general purpose computer

running MATLAB. This is to give a general idea on the

implementation times that software would take. In comparison

to Table 2 shows the implantation time (delay) for the

algorithms. Delays have been reported for various FPGA

devices for a more general understanding of the performance

of the given algorithms. The FPGA shows a delay of 5.12

microseconds

Table 2: Algorithm path delays for various FPGA devices

Device Name Delay (nanoseconds)

Spartan 3 19.297

Spartan 6 5.468

Virtex 4 9.663

Virtex 5 4.474

Virtex 6 3.188

Table 3 shows the device utilization of the implementation

across various FPGA devices. It is known that FPGA

utilization is measured in terms of number of Configurable

Logic Blocks (CLBs) used on the chip. Results show that the

design comfortably fits on all devices as shown.

Table 3: Device utilization across various FPGA

devices

Device Name Consumed CLBs (%)

Spartan 3 9

Spartan 6 0.35

Virtex 4 13

Virtex 5 0.51

Virtex 6 0.068

5. CONCLUSION AND FUTURE WORK
In this paper the authors have discussed the design and

implementation of a multi-function image processing system

on a FPGA. It has been successfully demonstrated that the

results are at par with a commercial software like MATLAB.

Results have also been reported about hardware (FPGA CLB)

utilization of our design on different FPGAs. The device

delays reported also match up to real time processing speeds

as shown in comparison of different FPGAs.

International Journal of Computer Applications (0975 – 8887)

International Conference on Computer Technology (ICCT 2015)

15

6. REFERENCES
[1] Trimberger S. M, “Field – Programmable Gate Array

Technology”, Kluwer Academic Publishers, 1995.

[2] R. C. Gonzalez and P. Wintz, Digital Image Processing -

Second Edition,Addison- Pearson Education Publishing

Company, 2005.

[3] B. Bosi, G. Bois and Y. Savaria, “Reconfigurable

Pipelined 2D Convolver for Fast Digital Signal

Processing”, IEEE Trans. On VLSI Systems, Vol. 7,

No.3, Sept. 1999.

[4] Jonathan Joshi, Kedar Karandikar, Sharad Bade, Mandar

Bodke,Rohan Adyanthaya, “Multi-core Image

Processing System using Network on Chip

Interconnect”.

[5] Jonathan Joshi, Nisseem Nabar, “Reconfigurable

Implementation of Wavelet based Image Denoising”

[6] Available Raspberry Pi B+ Data Sheet:

http://www.element14.com/community/servlet/JiveServl

et/previewBody/65470-102-1-287848/Raspberry-

Pi%20Technical%20Data%20Sheet.pdf.

[7] Available Raspberry pi B+ pin diagram:

http://www.element14.com/community/docs/DOC-

68203/l/raspberry-pi-b-gpio-40-pin-block-pinout

[8] Available BASYS2, Digilent Website:

www.digilentinc.com/basys2

[9] Available Xilinx website:

www.xilinx.com/support/index.html/content/xilinx/en/su

pportNav/silicon_devices/fpga/spartan-3e.html

[10] Xilinx DataSource™ CD-ROM, Rev 10 second quarter

2004.

[11] Xilinx Website: http://www.xilinx.com/trai-

ning/fpga/fpga-field-programmable-gate-array.html.

IJCATM : www.ijcaonline.org

