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ABSTRACT 

Emotion recognition from speech has emerged as an important 

research area in the recent past. The purpose of speech emotion 

recognition system is to automatically classify speaker's 

utterances into seven emotional states including anger, boredom, 

disgust, fear, happiness, sadness and neutral. The speech 

samples are from Berlin emotional database and the features 

extracted from these utterances are Teager-based delta-spectral 

cepstral coefficients (T-DSCC) which are shown to perform 

better than MFCC. Dynamic Time Warping (DTW) and its 

variant Improved Features for DTW (IFDTW) is used as a 

classifier to classify different emotional states. Unlike in 

conventional DTW, we do not use the minimum distance for 

classification. Rather, the median distance criterion is employed 

for improved emotion classification. The proposed emotion 

recognition system gives an overall classification accuracy of 

97.52%. 
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1. INTRODUCTION 
    Human emotion recognition is an important component for 

efficient human-computer interaction and has become a major 

research topic due to its many potential applications. It plays a 

critical role in communication, allowing people to express 

oneself beyond the verbal domain. It is being applied to growing 

number of areas such as humanoid robots, call centers, car 

industry, mobile communication, computer tutorials via virtual 

avatars, etc. [1]. The term emotion describes the subjective 

feelings in short periods of time which are related to events, 

objects, or persons. Since the emotional state of humans is a 

highly subjective experience, it is hard to find objective and 

universal definitions. This is the reason why there are different 

approaches to model emotions in literature.  

    Emotion recognition is a statistical pattern classification 

problem. It consists of two major steps, feature extraction and 

classification. While the theory of pattern classification is well-

developed [2], the extraction of features for emotion recognition 

is a highly empirical issue and depends on the specific 

application and database. Various speech features containing 

emotion information are found in the literature such as energy, 

pitch frequency [3], formant frequency [4], Linear Prediction 

Coefficients, Linear Prediction Cepstrum Coefficients [5], Mel-

Frequency Cepstrum Coefficients [6]. In [7], harmony features 

based on psychoacoustic harmony perception known from music 

theory are employed as features. In [8], modulation spectral 

features are used by using an auditory filter-bank and a 

modulation filter-bank for speech analysis. In [9], both linguistic 

and acoustic features are used for anger classification. To reduce 

the size of feature set and selecting the most relevant subset of 

features in emotion recognition system, following techniques 

have been employed in the recent years: Fisher’s linear 

discriminant analysis [10], forward and backward feature 

selection [5], fast correlation-based filter [11], and sequential 

floating forward selection [12]. Also, the following methods 

have been used for emotion classification in the recent years: 

dynamic time warping (DTW) [13], Bayesian networks [14], 

Hidden Markov Models (HMM) [15], support vector machines 

(SVM) [15], artificial neural networks (ANN) [16], Gaussian 

Mixture Models (GMM) [17], k-nearest neighbor (KNN) [15], 

decision trees [15], and hybrid approaches [18]. 

    This paper is organized as follows. Section 2 explains the 

Berlin emotion database used to train and test the proposed 

system followed by Section 3 which reviews the conventional 

MFCC feature extraction, DSCC features and the proposed 

Teager-based DSCC (T-DSCC) features. Section 4 explains the 

feature recognition technique using conventional DTW, 

Improved Features for DTW (IFDTW) algorithm and its 

modification using a median distance. Section 5 demonstrates 

the experimental results followed by conclusions in Section 6. 

2. SPEECH DATABASE 
     In this paper, the Berlin Emotion Database (EMO-DB) [19] is 

used as a database for the experiments, which contains 535 

utterances, as shown in Table I, of 10 professional native 

German-speaking actors (5 male, 5 female) simulating 

utterances which could be used in everyday communication and 

are interpretable in all applied emotions. The actors were 

advised to read pre-defined sentences in the targeted seven 

emotions of anger (Wut), boredom (Langeweile), disgust (Ekel), 

fear (Angst), happiness (Freude), sadness (Trauer), and a neutral 

emotional state. The length of the utterances varies from 2 to 8 

seconds. The recordings were taken in an anechoic chamber 

with high-quality recording equipment at a sampling rate of 16 

kHz with a 16-bit resolution and a mono channel. 70% of the 

utterances were used for training and the remaining for testing. 

Table I. Number of Utterances in EMO-DB 

An-

ger 

Bore-

dom 

Dis-

gust 
Fear 

Happ-

iness 

Sad-

ness 

Neu-

tral 

127 81 46 69 71 62 79 
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3. FEATURE EXTRACTION 

3.1 Conventional MFCC 
    Mel Frequency Cepstral Coefficients (MFCC) features are 

widely used for speech recognition as well as emotion 

recognition obtaining a good recognition rate. MFCC is based 

on the characteristics of human ear’s hearing, which uses a non-

linear frequency unit to simulate the human auditory system. 

The detailed procedure of computing MFCC features for each 

speech utterance is explained in [20]. Pre-processing is 

performed on the speech signal for end-point detection, followed 

by framing and windowing since speech is a quasi-stationary 

random process. Pre-emphasis is performed on each frame to 

flatten the spectrum of the speech signal [21]. Spectral 

coefficients are then computed using FFT which are then filtered 

by a Mel-scale non-linear filter. The cepstral coefficients are 

then computed as the inverse Fourier transform of the log of the 

resulting coefficients. Since the log Mel filter bank coefficients 

are real and symmetric, the inverse Fourier transform operation 

is replaced by DCT to generate the cepstral coefficients [22]. 

Typically, only the first 13 cepstral coefficients are used since 

MFCC in the low frequency region has a good frequency 

resolution, and the high frequency coefficients do not obtain 

satisfactory accuracy. Mean Variance Normalization (MVN) is 

performed to eliminate the acoustic difference from the features 

other than emotion. Further, delta and double-delta features are 

also computed for each frame to recover the trend information in 

the frame-by-frame analysis. Thus, 39 MFCC features are 

obtained for each frame of each speech utterance, as illustrated 

in Fig. 1a. 

3.2 DSCC 

 
                        (a)                                                  (b) 
 

Fig. 1: (a) 13-dimensional MFCC features + 26-dimensional 

delta-cepstral coefficients (DCC), (b) 26-dimensional delta-

spectral cepstral coefficients (DSCC) features [23] 

    The speech data can typically vary widely in recording 

quality. These data may have been recorded through different 

types of channels, such as a cell phone, and a room microphone. 

Additionally, the data may contain different levels and types of 

additive noise, such as white noise, babble noise, and music. 

Finally, speech may also be recorded in different acoustic 

environments with different impulse responses. Therefore, an 

ideal recognition system would need to be robust to channel 

effects, noise, and reverberation. In [23], a novel set of features 

were proposed for more robust recognition. This set of features, 

called delta-spectral cepstral coefficients (DSCC), was sought to 

improve recognition accuracy via performing the first delta 

operation in the spectral domain rather than the cepstral domain. 

It was shown that DSCC features were more robust to noise and 

reverberation when used in conjunction with MFCC [23]. 

    The major changes compared to MFCC are that the initial 

time-differencing operation is now moved earlier in the 

processing and a new Gaussianization stage is added. 

Specifically, performing the delta operation in the spectral 

domain enhances the fast changing speech components, and 

suppresses the slowly-changing noisy components. The raw 

delta-spectral cepstral coefficients are highly non-Gaussian as 

observed in Fig. 2a. To adapt DSCC for emotion recognition, 

histogram normalization is applied to the delta-spectral features 

to give them a Gaussian distribution as illustrated in Fig. 2b. The 

DCT operation compresses the 40-dimensional delta-spectral 

features to a 13-dimensional vector of delta-spectral cepstral 

coefficients (DSCC). Double-delta features are then derived 

from the delta-spectral features in the cepstral domain. 

 

 
                             (a)                                                      (b) 
 

Fig. 2: Histogram of short-time power after the delta 

operation for a clean-speech sample (a) before and (b) after 

Gaussianization [23] 

 
 

Fig. 3: Short time power plots of a single Mel-channel for (a) 

temporal difference over the logarithmic power of a speech 

signal (reflecting DCC), (b) Gaussianization operation over 

temporal difference of a speech signal (reflecting DSCC) [23] 

    The short-time power plots are illustrated in Fig. 3. The lines 

representing the clean and noisy speech signals are more similar 

in the plot representing DSCCs (Fig. 3b); this similarity suggests 

that DSCCs should be more robust features in noise than DCCs, 

possibly due to the Gaussianization nonlinearity which replaces 
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the logarithmic nonlinearity. Also, the DSCC features 

completely ignore the static-spectral contents, deriving their 

features instead entirely from the dynamic-spectral contents. The 

dynamic features in the DSCC features are not only good for 

emotion recognition but they are also very robust to additive 

noise. 

3.3 Proposed Teager-based DSCC (T-DSCC) 
    The majority of studies in the field of speech emotion 

recognition have concentrated on the features derived from a 

linear speech production model which assume that airflow 

propagates in the vocal tract as a plane wave. This pulsatile flow 

is considered the source of sound production. According to 

studies by Teager [24], however, this assumption may not hold 

since the flow is actually separate and concomitant vortices are 

distributed throughout the vocal tract. Teager suggested that the 

true source of sound production is actually the vortex-flow 

interactions, which are non-linear. This observation was 

supported by the theory in fluid mechanics as well as by 

numerical simulation of Navier–Stokes equation [25]. Therefore, 

non-linear speech features are necessary for classification of 

different emotional status. In an effort to reflect the 

instantaneous energy of nonlinear vortex-flow interactions, 

Teager developed an energy operator, with the supporting 

observation that hearing is the process of detecting the energy. 

The simple and elegant form of the operator was introduced by  

Kaiser [26] as: 
 

                   
2

2
( ) ( ) ( ) ( )

d d
x t x t x t x t

dt d t


  
    
   

                 (1) 

 

where ψ is Teager energy operator (TEO) and x(t) is single 

component of the continuous speech signal. Since speech is 

represented in discrete form in most speech processing systems, 

Kaiser derived the operator for discrete-time sampled speech 

signal x(n) from its continuous form as: 
 

                   2( ) ( ) ( 1) ( 1)x n x n x n x n                      (2) 

 

 

Fig. 4: Proposed Teager-based DSCC feature extraction 

    As a powerful nonlinear operator, TEO gives a remarkable 

performance in the field of background noise suppression and 

signal feature extraction. Thus, we propose to use TEO in the 

process of feature extraction to eliminate the effect of noise. The 

proposed system is illustrated in Fig. 4 where TEO is applied 

after pre-processing. After TEO, the usual steps of DSCC are 

performed as explained in Sec. 3.2. We obtain the resulting 26-

dimensional T-DSCC features for each frame of each speech 

utterance of the emotion database.   

4. FEATURE CLASSIFICATION 

4.1 Conventional Dynamic Time Warping 

    Dynamic Time Warping (DTW) is an algorithm adopted by 

the speech recognition community to handle the matching of 

non-linearly expanded or contracted signals [27].Unlike Linear 

Time Warping (LTW) which compares two time series based on 

linear mapping of the two temporal dimensions, DTW allows a 

non-linear warping alignment of one signal to another by 

minimizing the distance between the two as shown in Fig. 5. 

DTW is a common technique for comparing time series by 

searching for optimal alignments using dynamic programming, 

described in terms of optimal warp paths. This warping between 

two signals can be used to determine the similarity between 

them and thus it is very useful for feature classification.  

 
 

Fig. 5: DTW non-linear alignment of two time series 

    The classical DTW finds the optimal alignment between two 

one-dimensional sequences X = {x1, x2,…xN} and Y = {y1, 

y2,…yM} of length N and M respectively, in which one sequence 

is non-linearly spanned or shrunk in its time axis with respect to 

another sequence. The algorithm works by building an N x M 

cost matrix in which each element d(i, j) corresponds to the 

pairwise local distance computed using the Euclidean distance. 

The local distance measure can either be the Euclidean distance 

or the Mahalanobis distance of which the latter incorporates a 

covariance matrix in the computation. This covariance matrix 

has to be estimated from a general statistical model of the 

features in the application area. Each element of the cost matrix 

defines an alignment between X and Y sequence and is computed 

using a recursive formula: 
 

 ( , ) ( , ) min[ ( 1, ), ( 1, 1), ( , 1)]D i j d i j D i j D i j D i j       (3) 
 

D(1, 1) is initialized to d(1, 1). The alignment that results in the 

minimum distance between the two sequences has the value 

D(M, N). The warping path must satisfy the conditions of 

monotonicity, continuity, boundary and slope constraints [28]. 

There is also a constraint on adjustment window to speed-up the 

calculations since an intuitive alignment path is unlikely to drift 

very far from the diagonal. The distance that the warp path is 

allowed to wander is limited to a band of size R, directly above 

and to the right of the diagonal. Fig. 6 illustrates the window 

bands widely used in DTW.  

    In application to emotion recognition, the two time series 

corresponds to the two numCoefficients by numFrames T-DSCC 

feature vectors of different emotion speech utterances. A two-

dimensional cost matrix is computed that stores the minimum 
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distance between two feature vectors X and Y. The test emotion 

signal’s feature vector is compared to the reference feature 

vectors’ using Median IFDTW (discussed in Section 4.3) and 

the one closest to the reference is chosen as the classification 

output. 
 

 
                                  (a)                                         (b) 

 
(c) 

Fig. 6: Adjustment window constraints: (a) Sakoe-Chiba 

band [28], (b) Itakura Parallelogram [29], (c) IFDTW [20] 

4.2 IFDTW 
    Several modifications of conventional DTW are found in the 

literature [30] since its fundamental flaw is that the numerical 

value of a data point in a time series does not represent the 

complete picture of the data point in relation to the entire 

sequence. Improved Features for DTW (IFDTW) technique was 

proposed in [20] where instead of using absolute feature value or 

derivative estimates, modified features are used since an 

absolute value or local feature is not sufficient to identify and 

match common trends and patterns in the feature vectors. Both 

local and global features of each data point are used to track 

more accurately their contribution towards pattern matching. 

Further, to reduce the computational complexity of IFDTW 

from O(N2) to O(N), FIFDTW technique was proposed in [30] 

which uses a fast DTW algorithm [31] using the concepts of 

constraints and data abstraction approaches. The optimal 

warping path is determined through coarsening, projection and 

refinement stages as illustrated in Fig. 7, and this approach 

speeds-up the DTW computation significantly. 
 
 

 
 

Fig. 7: Refinement of optimal warping path [31] 

4.3 Proposed Median IFDTW 
    In this work, we propose the Median IFDTW technique to 

determine the emotion reference feature vector closest to the test 

emotion feature vector. The conventional DTW as well as other 

modifications and IFDTW algorithm recognize the test 

emotion/speech using the minimum Euclidean distance 

approach. However, consider the analysis of incorrect 

classification of “Happiness” emotion with “Anger” emotion 

using conventional DTW. Fig. 8 shows the distributions of 

distances between test emotion “Happiness” and reference 

emotions “Anger” and “Happiness”. From Fig. 8a, we observe 

that the reference emotion of “Anger” yields the minimum 

distance of 91 which is thus misclassified with the test emotion. 

But using the median distance of 140 from Fig. 8b, the test 

emotion is correctly classified as “Happiness”. Thus, we propose 

to use the median distance for feature classification using 

IFDTW. 

 

 
(a)  

 
(b) 

Fig. 8: Distribution of distances between feature vectors of 

test emotion “Happiness” and reference emotions “Anger” 

and “Happiness” 

We assume that there are m reference emotions. Each reference 

emotion has n utterances from different people (as in EMO-DB). 

The IFDTW distance that the test emotion feature vector 

computes with the feature vector of ith reference emotion is 

denoted as Di (1 ≤ i ≤ m). The IFDTW distance that the test 

emotion feature vector computes with the jth utterance of the ith 

reference emotion is denoted as dij (1 ≤ j ≤ n). Thus, Di = [di1, 

di2, di3,…, dij,…, din]. All IFDTW distances for the test emotion 

feature vector are denoted as D = [D1 D2…Di…Dm]T. We sort all 

distances of every reference emotion from small to large to get 

the new distance series Di’ as: 
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                           ' ' ' '
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(1 )

( )i i i i in
i m
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 

    
                   (4)  

 

Thus, di1’ is the minimum distance and din’ is the maximum 

distance among Di’. We obtain the ordered distance matrix D’ = 

[D1’ D2’ … Di’… Dm’]T. The median distance ai is then 

extracted from Di’, i.e. ai = Median(Di’), and the corresponding 

median distance vector is formed as A = [a1 a2 … ai … am]. The 

resulting distance for the test emotion feature vector is thus 

obtained as the minimum value of vector A, i.e. Min(A). Note 

that for the conventional DTW, the test emotion feature vector 

would be classified by Min([d11’ d21’ … dm1’]). 

5. EXPERIMENTAL RESULTS 
    Conventional emotion recognition systems consist of feature 

extraction based on MFCC followed by feature recognition 

using DTW algorithm. We test the effectiveness of our proposed 

Teager-based DSCC (T-DSCC) feature extraction algorithm and 

Median IFDTW feature classification algorithm for the emotion 

utterances of EMO-DB [19] by adding noise with SNR of 10 dB 

in the original speech samples. From the emotion database, 70% 

of the utterances are used for training and 30% are used for 

testing, i.e. 161 utterances for testing with 23 utterances per 

emotion. In T-DSCC algorithm, the emotion speech signal is 

divided into frames of duration 25 ms with 10 ms overlap 

between adjacent frames. The number of Mel filters used for 

feature extraction is 40 and 512-point FFT is used. Table II 

shows the confusion matrix for each test emotion and Table III 

compares the overall recognition accuracy obtained by various 

algorithms. 
 

Table II. Confusion Matrix (23 utterances/emotion) 
(A: Anger, B: Boredom, D: Disgust, F: Fear,  

H: Happiness, S: Sadness, N: Neutral) 

 A B D F H S N 

A 23 0 0 0 0 0 0 

B 0 23 0 0 0 0 0 

D 0 0 22 0 0 0 1 

F 0 0 0 23 0 0 0 

H 0 0 0 0 23 0 0 

S 0 1 0 1 0 21 0 

N 0 1 0 0 0 0 22 
 

Table III. Overall Recognition Accuracy (%) 

 #Features DTW IFDTW 
Median 

IFDTW 

MFCC + 

∆ + ∆∆ 
39 84.52 87.39 91.29 

DSCC 26 93.82 95.14 96.73 

T-DSCC 26 94.18 95.69 97.52 
 

 

    The above results demonstrate that the non-linear features 

based on TEO using DSCC are effective and have optimal 

emotion recognition capacity in the presence of noise. In 

comparison with MFCC, the recognition rates were increased 

significantly by using DSCC and Teager-based DSCC (T-

DSCC) features. This is due to the fact that MFCC is known to 

be developed to mimic human perception process and since the 

problem of emotion recognition deals with identification of 

perceptually similar emotions, MFCC gets confused in 

discriminating the emotion-specific features. On the other hand, 

T-DSCC represents the combined effect of airflow properties in 

the vocal tract (which are known to be language and speaker 

dependent [32]) and human perception process. So, T-DSCC is 

able to capture the emotion-specific information better than 

MFCC and has better class discrimination power than MFCC.  

There is also a significant improvement in performance of T-

DSCC due to the median distance based IFDTW classification 

algorithm. It can be also inferred from Table II that anger, 

boredom, fear and happiness are the best emotions to be 

recognized but disgust, sadness and neutral emotions give 

confusing results in few cases.  

6. CONCLUSION 
    The effort has been done through this work to explore the 

Teager-based DSCC features for recognizing the emotions using 

speech utterances. We have evaluated the proposed emotion 

speech recognition system on acted Berlin emotion database by 

simulating additive noise. The experimental results demonstrate 

that the recognition system with T-DSCC can achieve higher 

recognition rate than the systems using MFCC and DSCC. Also, 

by using the median distance as the criteria in IFDTW 

algorithm, we achieve higher classification accuracy of 97.52% 

compared to using the conventional DTW and its variants.  

    The results reveal that recognition rate of some emotions, 

including disgust, sadness and neutral still needs to be further 

improved. Further research should focus on the following 

aspects: first, the combination of special emotion information 

should be paid attention to, such as the fundamental frequency 

rise in the end of surprising sentence, the shaking sound of fear, 

etc. Second, fuzzy theory can be used to find the probability of 

some kind of emotions. Third, the trend of emotion recognition 

is not clearly known in the case of many other languages. It 

would be helpful to evaluate the proposed and established 

features on different Indian languages for emotion recognition. 

This will help to decide whether the methods and features used 

in literature are language independent or not. 
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