
International Journal of Computer Applications (0975 – 8887)

International Conference on Computing & Communication (ICCC-2016)

26

Comparative Study between Various Pattern Matching

Algorithms

Pranit Chettri
Sikkim Manipal University

Sikkim Manipal Institute of Technology,
Majhitar

Department of Computer
Science and Engineering,

Chinmoy Kar
Sikkim Manipal University

Sikkim Manipal Institute of Technology,
Majhitar

Department of Computer
Science and Engineering

ABSTRACT
Present paper describes the details of the study of the work that

has been done in the field of text searching, a sub-division of

Natural Language Processing (NLP) till date. The work in this

project includes the study and analysis of some of the

algorithms devised under this topic, finding the faults or loop-

holes and trying to increase the efficiency of these algorithms

devised, taking forward the range of work done on it.

Experiment is done on the various text search algorithms that

have been devised namely Knuth-Morris Pratt Algorithm,

Naïve Search Algorithm and Boyer-Moore Algorithm by

providing text input of various sizes and analyzing their

behavior on these variable inputs. After analyzing and doing

the study on these algorithms the results states that Boyer-

Moore‟s Algorithm worked quite well and efficiently than the

rest of them when dealing with larger data sets. When working

on larger alphabets the Knuth-Morris Pratt Algorithm works

quite well. These algorithms do have drawbacks as their

efficiency depends upon the alphabet/pattern size. And also

this paper describes new pattern matching algorithm that uses

delimiter for shifting the pattern while matching.

Keywords
 NLP, KMP Algorithm, Naive Search, BM Algorithm.

1. INTRODUCTION
Natural Language Processing is a field of computer science,

artificial intelligence (also called machine learning), and

linguistics concerned with human (natural) languages[1]. It is

the process of extracting the meaningful information from any

natural language input and/or producing natural language

output. Natural language understanding is considered to be an

AI-complete problem because of its requirement of extensive

knowledge about the world outside and its ability to manipulate

it.

NLP is experiencing rapid growth as its theories and methods

are deployed in a variety of new language technologies. The

problem of string matching is that there are two strings; one is

the text T of length n and the other is a pattern string P of

length m i.e. the string to be matched with the given text string

T. It is a very important subject in wider domain of text

processing and its algorithms are its basic components used in

implementations of practical software under most operating

systems. Some of the basic implementations of string matching

algorithms are seen in gene sequencing, protein analysis, text

editors, digital dictionaries, information retrieval, bibliographic

search, question answer applications; Artificial Vision also

uses string matching techniques as an integral part of their

theoretical and practical tools along with musical technology

and computational linguistics. The strings are matched

according to shifts. If P occurs with a certain shift s in T then

that shift is termed as a valid shift otherwise it is known as an

invalid shift. The single string matching problem is to find the

first valid shift with which the pattern P occurs in a given text

T. This is shown as follows:

Fig 1: Example of String Matching.

As seen above the matching algorithm uses a concept of

window to scan the text. The size of the window depends upon

the condition m≤ n.

There are four algorithms taken into consideration in this paper

and they are Naïve String Matching Algorithm, Knuth-Morris-

Pratt Algorithm and Boyer Moore Algorithm. The above

mentioned Algorithms were implemented and a comparative

analysis was done. The performance measure taken into

consideration was the number of iterations required by each

algorithm in order to find the shift of P in T.

Experiments are done using Python because it has a shallow

learning curve, its syntax and semantics are transparent, and it

has good string-handling functionality. As an interpreted

language, Python facilitates interactive exploration. As an

object-oriented language, Python permits data and methods to

be encapsulated and re-used easily. Python comes with an

extensive standard library, including tools for graphical

programming and numerical processing. The recently added

generator syntax makes it easy to create interactive

implementations of algorithms.

2. LITERATURE SURVEY
In this section, it tries to mention various knowledge that has

been gained from various literature surveys done on the various

pattern matching algorithms.

2.1 Naive Search
Also known as proof by exhaustion, proof by cases, perfect

induction or brute force method is a method of mathematical

proof in which the statement to be proved is split into a finite

number of cases and each

International Journal of Computer Applications (0975 – 8887)

International Conference on Computing & Communication (ICCC-2016)

27

Fig 2: Framework for implementation

case is checked to see if the proposition in question holds. It

has no pre-processing phase, needs constant extra space. It

always shifts the window by one position to the right. The

Naïve Search Algorithm is a brute force matching algorithm

with a time complexity of O((n-m+1)m).

2.2 Knuth-Morris-Pratt
Knuth-Morris-Pratt Algorithm bypasses re-examination of

previously matched characters and it makes use of prefix table

to make a possible shift in the pattern Based on the

observation that when a mismatch occurs, the word itself has

sufficient information on where the next match should begin.

Preprocessing of p gives a partial match table, which indicates

where it needs to look for a new match if the current one ends

in a mismatch. The preprocessing complexity of this algorithm

is given by O(m). The average complexity is given by O(n+m)

and the worst case complexity is O((n-m+1)m).

2.3 Boyer Moore
Boyer-Moore preprocesses p, before the commencement of

matching procedure. It uses information gathered in

preprocessed stage to skip sections of t. It is the most efficient

contender. It has a worst-case running time of O(n+m) only if

the pattern does not occur in the text.

3. IMPLEMENTATION DETAIL
Object-oriented paradigm is followed in this project's 'frame-

work' for testing string matching algorithms which is shown in

fig.2. Abstract class BaseMatcher is defined from where all

other search algorithm classes are derived. This is done

because all the string matching algorithms have similar

attributes such as the text string t, pattern string p, length of

text string n, length of pattern string p, the cost to search, and

algorithms like BM and Karp-Rabin require set of alphabets

from where text string is derived which is denoted by A.

The algorithm classes inherits BaseMatcher and overrides

findNext method, in findNext the algorithm is coded. A

function test is defined which accepts an object of

BaseMatcher as a parameter and test it. The advantages of this

architecture are:

a) Easily extensible; more algorithms can be added by

inheriting BaseMatcher.

b) Easily modifiable; minimum change has to be made

to reflect a change in the whole project.

c) Easy to maintain; the code tends to become well-

structured and not cluttered.

4. PERFORMANCE METRIC
The time required for algorithms to execute was the initial

metric, however due to inconsistent results which are shown

in figure 2, it was discarded. Every execution of the same

algorithm on the same data produced different time for

completion. It may be due to the fact that in a multitasking

system, due to scheduler assigning time slots to different

executing processes on a fast cycle wise basis, there is

inconsistency in time taken for completion. Initially the same

algorithm was executed on the same data for 10 times and the

average time of completion calculated. However eventually it

was discarded altogether as unreliable, as average time was

also inconsistent.

Fig 3: Inconsistent of Boyer Moore Algorithm.

So, to overcome this drawback it makes use number of

iteration as performance metric, which has overcome the

expectations.

5. DESIGN OF SLSMA
New Pattern/String matching algorithm which is designed

makes use of concept of heuristic based on the characteristics

of Natural Language Processing, viz. the use of delimiter. This

heuristic enables pattern to skip the certain letters in the text

string. The newly designed pattern matching algorithm

haven‟t use any pre-processing of text that were done in

existing String/Pattern matching algorithm.In this algorithm

there are two strings; one is the text T of length n and the

other is a pattern string P of length m i.e. the string to be

matched with the given text string T.

International Journal of Computer Applications (0975 – 8887)

International Conference on Computing & Communication (ICCC-2016)

28

i= position , where i<n-(m-1)

n= Length of text string

m=Length of pattern string

p=Pattern string

t=Text string

delim =set of delimiters

5.1 Flowchart

Fig 4: Flowchart for SLSMA

5.2 Method
Let us take text string “a big book” and pattern string as book.

Then according to flowchart:

 1. Iteration 1:

i=0

 j=3

 T: a big book

 P: book

 T[3] is “i” and P[3] is “k”; “i” ≠ “k” , “i” does not exist

in „delim‟, therefore ii+1.

 2. Iteration 2:

i=1

j=3

T: a big book

P: book

 T[4] is “g” and P[3] is “k”; “g” ≠ “k” , “g” does not

exist in „delim‟, therefore ii+1.

 3. Iteration 3:

 i=2

 j=3

 T: a big book

 P: book

T[5] is “ ” and P[3] is “k”; “ ” ≠ “k” , “ ” exists in

„delim‟, therefore ii+j+1.

 4. Iteration 4:

 i=6

 j=3

 T: a big book

P: book

T[9] is “k ” and P[3] is “k”; “k” = “k” , therefore jj-

1.

 5. Iteration 5:

 i=6

 j=2

 T: a big book

 P: book

T[8] is “o” and P[2] is “o”; “o” = “o” , therefore jj-

1.

 6. Iteration 6:

 i=6

 j=1

 T: a big book

 P: book

T[7] is “o” and P[1] is “o”; “o” = “o” , therefore jj-1.

 7. Iteration 7:

i=6

j=0

T: a big book

P: book

T[6] is “b”and P[0] is “b”; “b” = “b”,therefore jj-1.

Now, j = -1

Therefore, P is found in „i‟ position of T, which is 6 and total

of 7 iterations were required to find the solution.

6. EXPERIMENTS AND RESULTS
This section provides the analysis and the results got after

doing a comparative study on the various text search

algorithms like KMP Algorithm, Naïve Search Algorithm and

BM Algorithm giving the details of their individual

performances based on various existing real time books taken

as inputs for datasets which vary in size so that a proper study

of the results could be produced by the various algorithms.

This paper have discussed the complexities, provided below

are the practically experimented graphs of performances

shown by the algorithms when implemented on the real time

books that exist. It has taken into consideration two famous

books of the world namely Gulliver‟s Travels by Jonathan

Swift which acts as a text string of size 590 KB and the other

is Iliad of Homer by Homer which is of size 1.11 MB. It has

taken four pattern strings into consideration in such a way that

the pattern string:-

 Exists in the beginning of text

 Exists in the middle of the text

 At the end of the text

International Journal of Computer Applications (0975 – 8887)

International Conference on Computing & Communication (ICCC-2016)

29

 Does not exist in the whole text.

The performance graphs are given below:-

It takes into account the book “Gulliver‟s Travels” by

Jonathan Swift which acts as a sample text of 590 KB and got

the following graphs for the above four different case studies:-

 When the pattern string to be searched for was

provided as “Jonathan” which exists in the

beginning of the book it produces the following

result in the performance analysis graph:

Fig 5: Graph showing performance of various algorithm

when pattern is at the starting of the text.

When the pattern string to be searched for was provided as

“Glubbdubdrib” which occurs in the middle of the story it

produces the following result in the performance analysis

graph:

Fig 6: Graph showing performance of various algorithms

when pattern is at the middle of the text.

When the pattern string to be searched for was provided as

“Reflectors” which occurs at the end of the book it produces

the following result in the performance analysis graph:

Fig 7: Graph showing performance of various algorithms

when pattern is at the end of the text.

The pattern string to be searched for was provided as

“Sikkim” which does not occur at all in the book. This was

done in order to make the algorithms work in their worst case.

It produces the following result in the performance analysis

graph:

Fig 8: Graph showing performance of various algorithms

when pattern is not present of the text.

Table 1: Results after Comparisons

7. APPLICATIONS
There are various fields where the application of string

matching algorithm is deployed. Following are some of the

fields of Pattern/String matching algorithm.

7.1 Information Retrieval
Despite the use of indices for searching large amounts of text,

string searching may help in an information retrieval system.

For example, it may be used for filtering of potential matches

or for searching retrieval terms that will be highlighted in the

output.[6]

7.2 Retrieving Musical Patterns
Given a search space composed of sequential stream of n

elements in which the elements are from a set A. String

matching algorithms can be used to find the occurrence of

certain musical patterns from the database. The musical notes

are retrieved by QBE (Query by Example) approach. The best

scheme for this problem is Levenshtein distance with Jaccard

similarity. As the Jaccard similarity performs excellent in

passing a query when a pitch change scenario is selected [6].

7.3 Molecular Biology
Gene sequence is a string derived from the set of alphabets

{a,c,g,t} where a stands for adenine, c for cytosine, g for

guanine and t for thymine. A string matching algorithm can be

used to find a particular subsequence in a gene sequence[3].

7.4 Natural Language Processing:
String matching is extensively used in NLP to search for

occurrence of words or to search for supporting words which

describes the context in which the particular word is being

used.[6]

7.5 LZgrep Tool
Boyer Moore technique is used for string matching over LZ78

and LZW compressed texts. This is done directly on the

compressed text hence speeds up the best decompress-then-

search approach by upto 50% [6].

International Journal of Computer Applications (0975 – 8887)

International Conference on Computing & Communication (ICCC-2016)

30

7.6 Medical Texts
The Boyer Moore Horspool algorithm achieves the best

overall results when used with medical tests. This algorithm

performs at least twice as fast as the other algorithms tested

[6].

7.7 Network Intrusion Detection System:

The ability to search through the packets and identify content

that matches known attacks is very important for which string

matching algorithms are used. This requires exact pattern

matching technique for which Boyer-Moore is used [6].

7.8 Polymorphic String Matching
This technique refers to fusions of some of the string matching

algorithms which when done will increase the efficiency as

some of the time consuming parameters need not be used.

Tree data structure is used in data representation. One

example is KMP and Boyer-Moore fusion. Their combination

completes the task in amortized constant time and cost is also

equal to equality check cost. The quadratic time is dropped

and features of both the algorithms are combined and used for

producing a better functional algorithm.[6]

8. CONCLUSION AND FUTURE SCOPE
In this paper a detailed description is provided about the

different string matching algorithms that has been studied and

analyzed with different input texts provided in the form of

books and the performance of these algorithms have been

show in the form of graphs in terms of number of iterations

each algorithm uses to find the pattern string provided.

Therefore, it‟s concluded that Boyer-Moore‟s Algorithm

works most efficiently than the other algorithms under study

but since BM Algorithm has to maintain a dictionary

containing the alphabets in the set from where the test string is

derived, the space complexity tends to be greater than other

algorithms. The New Pattern matching algorithm or SLSMA

that have design tends to perform well when the text string is

short and there is use of delimiters. And it produces better

result than existing string matching algorithm if pattern occurs

at the starting of the text. The New pattern matching algorithm

or SLSMA can perform better if it makes use of concepts of

cellular automata and longest common subsequence.

9. REFERENCES
[1] Natural language processing,online:

http://en.wikipedia.org/wiki/Natural_language_processin

g, Access Date: 23th May,2015.

[2] Koloud Al-Khamaiseh, Shadi ALShagarin"A Survey of

String Matching ", Int. Journal of Engineering Research

and Applications, ISSN : 2248-9622, Vol. 4, Issue 7(

Version 2), pp.144-156,July 2014.

[3] Pandiselvam.P,Marimuthu.T ,Lawrance. R,"A

Comparative Study On String Matching Algorithms Of

Biological Sequences”Deptt of Computer

Applications,Ayya Nadar Janaki Ammal College,

India,jan 2014.

[4] Hussain I., Kausar S., Hussain L., and Asifkhan

M.”,Improved Approach for Exact Pattern Matching,

International”, Journal of Computer Science Issues,

Vol.10, Issue 3, No.1,2013.

[5] Jain P., Pandey S., “Comparative Study on Text Pattern

Matching for Heterogeneous System”, International

Journal of Computer Science and Engineering

Technology, ISSN: 2229-3345, Vol.3 No.11 Nov 2012.

[6] Singla N., Garg D.,“String Matching Algorithms and

their Applicability in various Applications”, International

Journal ofSoft Computing and Engineering, ISSN: 2231-

2307, VolumeI,Issue-6, January 2012.

[7] R.S. Boyer and J.S. Moore, “A Fast String Searching

Algorithm”, SRI International, 1977.

[8] Donald Knuth, James H. Morris and Jr. Vaughan Pratt,

“Fast pattern matching in strings”, SIAM Journal on

Computing, 1977.

[9] Richard M. Karp, Michael O. Rabin, “Efficient

randomized pattern-matching algorithms”, IBM Journal

of Research and Development, 1987.

IJCATM : www.ijcaonline.org

