
International Journal of Computer Applications (0975 – 8887)

International Conference on Advances in Science and Technology 2015 (ICAST 2015)

12

An Introduction to Bigtable : A Storage Model for

Handling Massive Volumes of Structured Data

Chetan Mhatre
Department of Information

Technology
Saraswati College of

Engineering, University of
Mumbai, India

Fareen Shaikh
Department of Information

Technology
Saraswati College of

Engineering, University of
Mumbai, India

Ritesh Kamble
Department of Information

Technology
Saraswati College of

Engineering, University of
Mumbai, India

Shubham Singh
Department of Information Technology

Saraswati College of Engineering, University of
Mumbai, India

Shilpa Kolte
Department of Information Technology

Saraswati College of Engineering, University of
Mumbai, India

ABSTRACT
Bigtable is a storage model designed for handling massive

amount of data mainly over distributed systems. It stores data

in tabular format but it is not a relational database. It is the

proprietary system of Google Inc. It is fault tolerant, persistent

and highly scalable. It is written in java, python, go and ruby.

It has been at the heart of many google systems including

google web search, gmail etc. In this paper the basic data

model of the Bigtable is explained along with some concepts

related to Bitable.

Keywords
 Big data, Bigtable, Distributed Storage System.

1. INTRODUCTION
Bigtable is a data storage system built by google as its own

proprietary system. Google started initial development of

Bigtable in 2004. Bigtable not a relational database, it is a

distributed, multilevel map. It is highly compressed and also

high performance.

Bigtable is being designed with in-built fault tolerance and high

scalability. It takes care of hardware failure and it is scalable to

thousands of servers. It can handle millions of reads/writes per

second also it can manage several terabytes of in-memory data

and several petabytes of data on disk spread across multiple

locations. This data can be of huge variety ranging from URLs,

web searches, numeric data and satellite imagery. Bigtable is

capable of managing its servers dynamically. It can add or

remove servers from clusters dynamically also in case of

excessive workload on a particular server it does dynamically

spread its workload on other servers which currently are not

under pressure.

Bigtable is a data storage facility but it does not support full

relational data model. It provides clients with a data model

where they can have a dynamic control over data layout and
formatting. Data is stored using row, column and timestamp

triplet.

The rest of the paper is arranged in the following manner .

Section 2 explains data model along with row column and

timestamp. Section 3 explains the concept of compaction in

Bigtable.. Section 4 explains Tablet representation. Section 5

explains the whole of Bigtable system structure in detail and its

underlying components. Section 6 will explain how to locate a

particular tablet on the Bigtable .Section 7 gives a brief

overview about some of the API’s available with the Bigtable.

In section 8 the conclusion has been made.

2. DATA MODEL
Bigtable is a sparse, distributed, multilevel map which indexed

by a combination of row ,column and timestamp values.

(row:string, column:string,Timestamp:int64)string

Fig 1: Bigtable Data storage model

Fig 1 demonstrates how Bigtable can store multiple values

(instances) of data in a single cell using timestamp, it shows

multiple versions of html pages stored at different values of

timestamp. This feature makes Bigtable a truly

multidimensional map. Google settled on this data model after

a lot of research with similar data models.

2.1 Row

Row keys are arbitrary strings up to 64KB of size. Bigtable

maintains data in lexicographical order of row key. Atomic

access is provided to any of the columns in a row. Multiple

contiguous rows grouped together is called a tablet. Rows can

be dynamically partitioned into a tablet for better system

performance. This tablets can move from one machine to

another. One tablet can be handled by one machine at a given

point of time .One tablet can hold up to 100 – 200 MB of data.

If data in a tablet goes beyond this range or if the load on one

tablet is more than other tablet then the tablet is dynamically

partitioned into multiple tablets by selecting an appropriate

 Timestamps

<html>

…

 t11

 t3

t13

Rows

www.cn

n.com

“contents” Columns

International Journal of Computer Applications (0975 – 8887)

International Conference on Advances in Science and Technology 2015 (ICAST 2015)

13

point from where the tablet can be evenly partitioned.

2.2 Column
Column keys are also strings having a two level naming

structure which has column family and optional qualifiers.

 Column name family : optional_qualifier

Column family are the basic unit of access control. They have

the associated type information for various utilities that can

dump data in various formats Column families must be created

before storing data under column key in that family. Optional

qualifiers on the other hand do provide valuable information

for various operations on sorting, grouping etc.

2.3 Timestamp
Since Bigtable can store multiple versions of data in a cell it

uses timestamp values to index these multiple versions.

Timestamp is a 64-bit integer value. This timestamp value can

be set by the Bigtable or be explicitly set by the clients.

Timestamps make it possible for clients to access most recent

values or use values among a specific range of timestamp.

Lookup options include returning most recent ‘k’ values, return

most recent values, return all values etc.

Column families can be marked with certain attributes which

may be considered by the system during performing

compactions. One of the advantage of this attributes can be that

users no longer will have to write garbage collection by

themselves since this attributes will take care of that.

3. COMPACTIONS
Tablet state represents a set of immutable compacted

SSTable[7] (Sorted Strings Table) files along with a log file.

Minor compaction happens when memory state fills up ,pick

the tablet with most data and write contents to SSTable stored

in GFS. Separate file for each locality group is created.

Major compaction happen periodically and they compact all the

SSTable for the tablet into a new base SSTable on the GFS.

4. TABLET REPRESENTATION
As mentioned earlier a tablet is contiguous row grouped

together. Now we focus on the internal details of the tablet as

to how the tablet is represented internally. It consists of an

append only log, an in memory buffer and a couple of SSTable

all stored on GFS.

The SSTable is a file of key/value string pairs, sorted by keys.

An SSTable provides a persistent, ordered immutable map

from keys to values, where both keys and values are arbitrary

byte strings[7].One machine holds roughly a hundred servers.

Append only log is stored on GFS. It just holds the entry of all

the mutations .This is mostly used for recovery purpose. All the

mutations are appended to a log. There is one append log per

tablet server. When a write request comes in that request is first

put into a queue, from that queue a thread is invoked which

then that thread writes the data to GFS. Once write is

committed to GFS the same log is then mirrored to in memory

buffer. This buffer holds all the writes that have not been

committed to the disk file. Data on disk is conceptually merged

in SSTable. Some reads may find the required in memory itself

and some may have to search the data on SSTable if they don’t

find it in the memory. When this memory fills up the data on

this memory is dumped into a SSTable file. Eventually it may

be decided to combine all this small table into one large

SSTable on disk. Bloom filters are used to find whether data

can be present for a particular row column combination in

SSTable.

5. BIGTABLE SYSTEM STRUCTURE
The Bigtable system structure consists of Tablet servers,

Master servers, Bigtable client library and the lower level

building blocks namely the Cluster scheduling system, GFS

and the Lock service.

Tablet servers manage multiple tablets by serving data and

accepting writes to the data stored in various tablets across the

system. Master server on the other hand manages all this tablet

servers by managing the metadata operations, it also creates

new tablets and looks after the load balancing .The clients

application opens the cells and then opens the table, this creates

a small data structure in the client library. It’s this same client

processes which can issue read and write operation directly to

the tablet server. Bigtable client library has all the API’s and

client side routines to use the system functionalities.

It can read or write to a tablet server, perform metadata

operations on the master server etc. The lower level building

block are the blocks on which the entire Bigtable system works

on and this system makes use of this low level system blocks to

get their work done. The cluster scheduling system handles

system failure and monitors the entire system. GFS is yet

another proprietary system designed at google which is actually

used by the Bigtable to store tablet data and mutation logs. It is

enhanced for Google's core data storage and usage needs

(primarily the search engine), which can generate enormous

amounts of data that needs to be retained. Lock service also

holds some of the metadata and also elects master server

among servers competing to be master servers, at a given point

only one server can act as master server the rest other just wait

to acquire the master lock.

Fig 2 : Tablet Representation of Bigtable

Read

Write buffer in

memory (Random
access)

Append-only on

GFS

SSTable

On GFS

SSTable

On GFS

SSTable

On GFS

(mmap)

Write

Tablet

International Journal of Computer Applications (0975 – 8887)

International Conference on Advances in Science and Technology 2015 (ICAST 2015)

14

Fig 3 : Bigtable System Structure

6. LOCATING TABLETS

Fig 4 : Tablet location hierarchy

In the Tablet location hierarchy the first step is the file that

stores location of Meta 0 Table and that file is in the lock

service. It is a chubby file[1] which holds a pointer to the

location of Meta 0 table. A Meta 0 table holds all the required

information to locate the appropriate row from the Meta 1

table. The Meta 0 tablet it is never split to ensure that the

tablet location hierarchy has no more than three levels. It is

kept as a whole on a single machine. The row entry in the

Meta 1 table has the actual location of the tablet that is

required by the client. Each table row stores roughly 1KB of

data in memory. There is a limit of 128 MB tables, so the

three-level location scheme is sufficient to address 234 tablets

which roughly is equal to 261 bytes in 128 MB tablets[2].

The clients library caches the tablet locations. Tablets are

stored in memory so no costly GFS access is required also the

aggressive prefetching of tablets locations further improve the

overall response time of the system.

7. API
Bigtable API provides provisions to perform various

operations on Bigtable. It provides function to create or delete

tables and column families. Write operation is atomic in

Bigtable.

Few functions are explained below

Bitable Client

Bitable tablet server

Bitable Client

library

Cluster scheduling system Lock service GFS

Bitable master

Bitable tablet server Bitable tablet server

Metadata ops

Performs metadata ops +

load balancing

Read /write

Open()

Serves data Serves data Serves data

. . .

Handles failover, monitoring Holds tablet data, logs Holds metadata,

handles

master-elections

Actual

tablet

Bootstrapped

(from lock

service)

Pointer to

Meta0

location

Meta 1 table Meta 0 table

International Journal of Computer Applications (0975 – 8887)

International Conference on Advances in Science and Technology 2015 (ICAST 2015)

15

7.1 Write operation
Set() : Writes to cells in a row.

Delete() : Delete cells in a row.

DeleteRow() : Delete all cells in a row.

7.2 Read operation
Scanner (): Reads arbitrary cells in Bigtable.

There is only one kind of operation for the read. Each row

read is atomic in nature.

8. CONCLUSION
This paper presents an overview Google’s Bigtable and its

components. Bigtable can work with almost all types of data

because it treats all its data to be arbitrary strings. A brief

overview of the data model of the Bigtable and the Bigtable

system structure is done. Compactions has been explained

along with the entire Tablet location hierarchy. The API

support with the Bigdata is simple and very easy to use. Since

it’s first use in 2005 big table has powered many systems at

google. The systems using Bigtable include projects like

Google's web index, Google Earth, Google finance and many

more. It is a powerful model to manage data over huge

clusters and has proved to be very efficient in its use over time

and with various different types of data. In May 2015 Google

launched a public version of the Bigtable called the Cloud

Bigtable as a part of Google's cloud services.

Future Scope involves a study as to how consistency can be

achieved in multi-row updates, improved built-in support for

SQL like operations when and where required, handling

hardware issues more efficiently when dealing with Meta0

table as Meta0 hardware is the site of single point of failure, a

better programming support for handling Bigtable operations

more efficiently.

9. REFERENCES
[1] Mike Burrows, The Chubby lock service for loosely-

coupled distributed systems (OSDI 06).

[2] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C

Hsieh, Deborah A. Wallach Mike Burrows, Tushar

Chandra, Andrew Fikes, Robert E. Gruber, Bigtable : A

Distributed Storage System for Structured Data (OSDI

06).

[3] Washington.eduhttp://www.cs.washington.edu/events/col

loquia/archive?id=437

[4] Official documentation of Google cloud Bigtable:

https://cloud.google.com/bigtable/docs

[5] Google I/O 2009 – Mercurial on Bigtable

https://www.youtube.com/watch?v=ri796Hx8las

[6] Google I/O 2008 , Underneath the Covers at Google:

Current Systems and Future Directions Jeff Dean

(Google), https://www.youtube.com/watch?v=qsan-

GQaeyk

[7] stackoverflow.com/questions/2576012/what-is-an-sstable

[8] Whitchcock, Andrew, Google's

Bitable:http://andrewhitchcock.org/?post=214

[9] http://static.googleusercontent.com/media/research.googl

e.com/en//archive/gfs-sosp2003.pdf

[10] Bill howe on Bigtable at the University of Washington

https://class.coursera.org/datasci-002/lecture/107

[11] https://en.wikipedia.org/wiki/Bigtable#cite_ref-

o.27reilly_12-0

[12] http://www.slideshare.net/zafargilani/bigtable-

15039321?qid=b7358981-5dfe-4a59-ae29-

d933d0da9a46&v=qf1&b=&from_search=11

[13] http://read.seas.harvard.edu/cs261/2011/bigtable.html

IJCATM : www.ijcaonline.org

