
International Journal of Computer Applications (0975 – 8887)

International Conference on Advances in Science and Technology (ICAST-2014)

6

AnDeWA: An Approach for Analyzing and Detecting

Work Flow Deviation Attacks in Web Applications

Sireesha C
C-DAC

Hyderabad

Jyostna G
C-DAC

Hyderabad

Raghuvaran P
C-DAC

Hyderabad

P R L Eswari
C-DAC

Hyderabad

ABSTRACT

Workflow deviations in web application occur due to logical

flaws left while designing, implementing and hosting the web

application. It is really hard to find the workflow deviations in

web applications without accessing the website database and

the application sensitive information. In this paper, AnDeWA

is presented as a lightweight approach for detecting the

workflow deviations in web applications with the minimum

prerequisites of users to role binding information. AnDeWA

follows the dynamic analysis technique which analyzes the

web application behavior at a run time to detect the workflow

deviation attacks.

General Terms

Web Application Security.

Keywords

Authentication and Authorization bypass, cross-site scripting,

session hijacking, work flow analysis.

1. INTRODUCTION
The cyberspace and web have made the entire universe get

together. Furthermore, now-a-days web is being used heavily

in several states to provide citizen services, which include

banking and administration. All the same, these improvements

in Internet technologies are being worked to induce untoward

effects. Vulnerabilities in web applications are utilized as

vehicles to launch several attacks. According to Symantec,

survey reports-2013 [1], small businesses and organizations

are being targeted by attackers. Popular web application

threats [2] include SQL injection, Cross-Site Scripting (XSS)

[3], Authentication & Authorization bypass, Session

Hijacking [5] [6] and Cross-Site Request Forgery (CSRF) [4].

Sometimes configuration file settings are also exploited for

launching the attacks. For instance, in PHP [7] [8], global

variable details are used by an attacker to acquire

unauthorized access to the application. All these attacks are

gained by compromising either web application or

misconfiguration of .config files. In order to protect from

these attacks, various research efforts are realized in

developing browser side as easily as well web application side

security solutions. Through this paper, we represent

AnDeWA- an approach for Analyzing and Detecting

Workflow deviation Attacks in web applications. This

security solution is implemented and tested for PHP based

web application and outcomes are promising.

2. EXISTING SOLUTIONS
In order to detect & prevent web application attacks, source

code as well as run time analysis approaches [9] [10] [11] are

applied. Existing solutions‟ pixy [12], rips [13], MIMOSA

[14] and IBM Rational AppScan [15] require scripting code of

a web application in order to detect the vulnerabilities.

Swaddler [16] is a solution, in which vulnerabilities are

detected by analyzing the state of web application based on

session values at a PHP interpreter level during runtime. Some

other result is the Acunetix web vulnerability scanner [17],

audit‟s web applications by checking for exploitable hacking

vulnerabilities through static analysis. To provide the security

at web application level another possible solution is the use of

Web Application Firewalls (WAF) [18]. But WAFs are

designed by white listing the rules. The rule set of the WAFs

describes the behaviour of the application. But these WAFs

are failing to prevent the Session Hijacking; Privilege

Escalation and Logical flaws exist in web applications due to

the inability in white listing the rules of defected code and

session maintenance. In our research work we are targeting to

detect and prevent workflow bypass attacks by using dynamic

analysis approach without seeing the application source code.

3. OUR APPROACH
AnDeWA is used to detect workflow deviation attacks like

SQL injection; authentication & authorization bypass through

session stealing and sequence bypass attacks. The solution

works without disturbing the application database, without

carrying user‟s sensitive information and without opening any

external ports.

AnDeWA: works as an interceptor like OWASP Webscarab

[19], which captures the web communication. AnDeWA

capture web request and response messages along with the

session flags. These details are gathered up to produce a

behavioral model of the web application and are stored in a

database on the host. Session flag in the model indicates the

existence / non-existence of the session. A value 1 indicates

the presence of the session for accessing the web page and 0

for web pages without sessions. This behavioral model is

enforced at runtime along with the details like user agent and

client IP address to detect the workflow deviation attacks.

Figure 1 shows outline of AnDeWA.

AnDeWA operates in two phases: Learning phase and

Detection phase. During the Learning phase, AnDeWA

monitors the web application behavior in attack-free

environment. It uses the spider technique [20] to crawl

internally to every single web page and generates profiles and

constructs the model by covering the complete behavior of the

web application. During Detection phase, along with the web

request the user agent and client IP address are also

monitored, and the model is enforced to detect workflow

deviation attacks. The detected deviations are reported for

further analysis.

International Journal of Computer Applications (0975 – 8887)

International Conference on Advances in Science and Technology (ICAST-2014)

7

Fig. 1: AnDewA

3.1 Design Layout
Working functionality of the Learning phase and Detection

phase are as follows.

3.1.1 Learning Phase
Figure 2 shows the AnDeWA functioning at Learning Phase

with Profiler Engine and Model Generator modules. Profiler

Engine captures the web communication for different roles.

For each role, Profiler Engine collects the web request in the

form of request header information, records and passes to the

web server. The response from the web server is forwarded to

the web client. Along with the request and response

information, Profiler Engine also records the chronological

succession of web requests with regard to current and

previous web request state.

Fig. 2: Functioning at Learning Phase

For each web request, a separate communication id is created

to differentiate between requests coming from web clients.

And corresponding request header data is laid aside in a file

with a name “communication id_request”. It also extracts the

cookie id from the header to check the session existence. If

the session exists, session flag is set to 1 otherwise session

flag is set to 0. The session flag for that request has been

redeemed in “communicationid_Srequest” file name. And

also saves the sequence of pages crawled by each role user in

a “roleid.xml” file. For example, with request communication

id to be 1, corresponding header information is saved in

1_request and session flag is saved in 1_Srequest file names.

For form authentication web request, it also determines the

form values with regard to SQL Injection.

After recording the request information it forwards the request

to the web server for processing. The response from the web

server is collected and forwarded to the web client.

Profiler Engine internally spiders each web page and collects

the request and response information. Spider covers all the

web pages internally for strengthening the model of the

application. This procedure is replicated for all the roles of the

web application.

Model Generator is another module in Learning Phase, which

works in offline mode. It analyzes the profile records based on

the communication id and role, builds a relational model

database for the particular web application behaviour. It first

reads the “communicationid_request” files and creates a

request id based on the method of calling and requested

resource name. If requested URL

http://example.com/login.php is using GET method, request

id becomes GET_login.php. From the corresponding

“communicationid_Srequest” file reads the session flag.

Based on the profile records it creates two different model

sets.

 Fig. 3: Model database with request, session flag and role

Model set I represent the model database, and each row

contains communication id, request id, session flag and role.

And for form based authentication it internally maintains rule

set to avoid SQL Injection. Figure 3 shows the Model set1.

Model set II refers to the list of web pages accessible by each

role, including web page sequence. A separate xml file is

created for each role. Each tag in xml file other than the root

element represents a page and list of possible accessible pages

from that page. Figure 4 shows the 2 different xml sequence

files for two distinct roles.

From the Figure 4, role1 user can access analysis.php,

report.php, view.php and search.php pages from home.php.

For role2, management.php, report.php, view.php and

search.php are accessible from the home.php.

Fig. 4: Example of Sequence of pages accessed by role1

and role2

Figure 5 shows the possible attacks addressed by each Model

set.

International Journal of Computer Applications (0975 – 8887)

International Conference on Advances in Science and Technology (ICAST-2014)

8

Fig. 5: Model sets representation and attacks addressed

3.1.2 Detection Phase
This phase enforces the model and continuously processes the

web requests and web responses. It has Enforcement Engine

and Verifier Engine. Figure 6 shows AnDeWA functioning

during Detection Phase.

Fig. 6: AnDeWA functioning during Detection Phase

Enforcement Engine (EE) captures the web request before

hitting the web server right away. Captured request header

information is sent to Verifier Engine.

Verifier Engine (VE) checks the given request against model

sets and sends the status of verification to the EE. If the

request is a genuine behavior of the application, the status is

mapped as “don‟t_block” otherwise if any differences occur

with regard to model sets, then status is mapped as “block”

and logs the deviations. Depending on the verification status

EE proceeds further, if status is “don‟t_block” EE forwards

the request to the web server application. And if status is

“block” it won‟t forward the request to the web server

application instead of it send an unable to process the request

information to the web client.

VE first validates the web request information against Model

Set I, which facilitates in finding authentication bypass

attacks, which generally occur in a vulnerable web application

by modifying the web page‟s user input or by hijacking the

session. In one case the values satisfy the Model Set I

behavior, and so it moves to the next stage of validation with

respect to Model Set II otherwise VE sends the “block” status

to the EE which stops the web communication.

And it also verifies the form authentication values internally

to detect SQL Injection. Once the authentication is done, the

authorization check on that page and sequence is verified with

respect to Model Set II. This verification addresses the

vertical privilege escalation attacks where one user is trying to

access the pages of other roles and also addresses the

sequence bypass attacks where the attacker is forcibly

accessing the pages without following the sequence.

Once the request is satisfied with two levels of verification,

then only VE sends the “dont_block” status to EE, from there

the request is passed to the web server. In event of failure at

any verification level, the VE sends “block” status to the EE

and logs the error. EE rejects the request and sends the error

page to the user. This process is followed for all requests..

3.2 Model Representation
The web application model is represented with the

combination of request, response, input parameters, output

parameters and session values. AnDeWA represents a request

by request identifier „Reqid‟ and session flag „Sid‟.

Reqid is a combination of request method (GET or POST) and

a page name. And Sid is either 0 or 1.

Sid= {0, 1} (1)

So the web requests are represented with function „f1‟ as

𝑓1 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑘 = 𝑅𝑒𝑞𝑖𝑑𝑘 , 𝑠 (2)

Where s∈Sid.

Set „F1‟ contains all web requests of web application.

𝐹1 = 𝑓1 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑘
𝑁−1
𝑘=0 (3)

Where „N‟ represents the maximum number of requests

Function „f2‟ represents a set with previous and current

request identifiers for a particular Reqid.

𝑓2 𝑅𝑒𝑞𝑖𝑑𝑛 = {𝑅𝑒𝑞𝑖𝑑𝑛−1, 𝑅𝑒𝑞𝑖𝑑𝑛 } (4)

Set „F2‟ contains sequence of requests

𝐹2 = 𝑓2 𝑅𝑒𝑞𝑖𝑑𝑛
𝑁−1
𝑛=1 (5)

Where 1≤n≤N-1.

Function „f3‟ represents a set of pages accessed by each role.

Each role is exemplified by an identifier „Rid‟.

𝑓3 𝑅𝑖𝑑 = { 𝑅𝑖𝑑, 𝑅𝑒𝑞𝑖𝑑1 , 𝑅𝑖𝑑, 𝑅𝑒𝑞𝑖𝑑2 , 𝑅𝑖𝑑, 𝑅𝑒𝑞𝑖𝑑3 , … } (6)

Where Reqid1, Reqid2, Reqid3,… ∈F1.

Set „F3‟ contains web pages accessed by all the roles.

𝐹3 = 𝑓3 𝑅𝑖𝑑𝑝
𝑀
𝑝=0 (7)

Where „M‟ represents the number of roles in an application.

From (3), (4), and (5) model sets are evolved. Model set I

(M1) has detailed information about each request along with

the role

𝑀1 = 𝐹1 ⋈ 𝐹1.𝑅𝑒𝑞𝑖𝑑 =𝐹3.𝑅𝑒𝑞𝑖𝑑 𝐹3 (8)

Model set II (M2) contains the list of pages accessed by each

role with sequence.

𝑀2 = 𝐹2 ⋈ 𝐹3 (9)

3.3 Model Enforcement
Model sets are enforced dynamically while executing the web

application. Let us say one user is logged in and

corresponding web communication is verified as per the

following.

1. {f1(request),Rid}∈M1 -verifying the existence of

the web page request with respect to Model set I.

International Journal of Computer Applications (0975 – 8887)

International Conference on Advances in Science and Technology (ICAST-2014)

9

2. f2(Reqid)∈F2 and f3(Rid)∈M2 -Comparison of

sequence of requests made to the web server for

particular role with Model set II.

Only when it satisfies the above two conditions, the requests

are processed by the web server, if any of the above

conditions fail AnDeWA blocks corresponding

communication

3.4 Implementation Details
3.4.1 Learning Phase
This phase generates the profile records by analyzing the

request header information for each request. Request

Processor() catches the request and creates corresponding

request profiles. Collected profiles are analyzed and model

database is created for that web application. Model database is

implemented using MySQL database and xml files. MySQL

database contains request information of each page with the

combination of communication id, request id, session flag and

role. And separate xml file is created for each role. The xml

file contains the chronological succession of pages accessed

by each role.

3.4.2 Detection Phase
To analyze the application web requests coming from

different web clients an apache module has been integrated

with detection phase component of the workflow analyzer.

Apache module intercepts the request and transmits the

request to Verifier Engine for checking the requests against a

model database. If request is genuine, apache module

forwards the same request to the web server otherwise blocks

the request. IPC mechanism has been implemented between

the Apache module and Verifier Engine.

We are using the user-agent and extracting the client IP of

each web request for differentiating the web clients and

verifying against Model databases. This phase also analyzes

the form based authentication request values to detect SQL

Injection attack.

3.5 Experimentation Details
We have taken a web application with two roles manager and

employer. Each user is having access to different web pages

depending on the role. Figure 7 shows the approachable pages

of manager and employer after authentication and some of the

pages, which are accessible without any authentication. The

dotted arrows represent that those web pages do not require

any authentication, and solid arrows represent that

authentication is required for accessing the web page.

Fig. 7: Web Application Normal Scenario

Table 1 shows the requests made to the web application

during Learning Phase. Table 2 & 3 shows the list of pages

accessed and sequence of pages from the current page used by

manager and employer roles respectively. This indicates the

user cannot directly access the Viewusers.php from any of the

pages other than View.php.

Table 1: Model database

S.No Com

m id

Reqest id Session Role

0 1 GET_About.php 0 0

1 2 GET_Help.php 0 0

2 3 GET_Login.php 0 0

3 4 POST_Login.php 0 0

4 5 GET_Services.php 0 0

5 6 GET_Products.php 0 0

6 7 GET_home.php 1 manager

7 8 GET_Assign_works.php 1 manager

8 9 GET_User_mgmt.php 1 manager

9 10 GET_Update_users.php 1 manager

10 11 GET_Update_roles.php 1 manager

11 12 GET_View.php 1 manager

12 13 GET_Viewusers.php 1 manager

13 14 GET_Viewroles.php 1 manager

14 15 GET_Home.php 1 employer

15 16 GET_Work_report.php 1 employer

16 17 GET_View.php 1 employer

17 18 GET_Viewusrs.php 1 employer

18 19 GET_Viewroles.php 1 employer

Table 2: Role- manager

Current Page Next Accessible Pages

Home.php Assign_works.php

User_mgmt.php

View.php

User_mgmt.php Update_users.php

Update_roles.php

View.php Viewusers.php

Viewroles.php

Table 3: Role- employer

Current Page Next Accessible Pages

Home.php Work_report.php

View.php

View.php Viewusres.php

Viewroles.php

International Journal of Computer Applications (0975 – 8887)

International Conference on Advances in Science and Technology (ICAST-2014)

10

3.6 Experimentation Details
Figure 8 shows the possible attack scenario in a web

application. The web application is following the simple

authentication process by asking for a username and password

in Login.php and then allowing the users to access other web

pages without checking status of authentication, whether it is

successful or not. The problem with this is that it assumes that

the only way to get the Home.php is through Login.php, but

an attacker can directly access the Home.php without any

authentication leading to “Authentication Bypass” attack.

Fig. 8: Possible attacks

Another possible exploitation occurs due to failure in

checking access control rules, like not binding the user to role

for every web page or not validating the access rights for that

page. In this example, only manager is having the privileges

to access the User_mgmt.php, from there Update_users.php,

for updating the users Update_roles.php, for updating the

roles. Through a forced browsing attack, a user with an

employer role is guessing and accessing the User_mgmt.php.

Failure in checking the access right at User_mgmt.php leads

to “Authorization Bypass” attack.

Usually web application has a proposed sequence to access

any web page. For some of the crucial pages, it is very much

required to stick to the same flow because they depend on the

data coming from the earlier pages. On each page matching

the session and previous page data is sometimes necessary. In

this example, Update_roles.php can access from the

User_mgmt.php only. With direct URL reference to

Update_roles.php leads to “Sequence Bypass” attack.

3.7 Detection Scenario
The authentication Bypass attack can be addressed in

Detection phase by checking the request id with session flag

and role present in Table 1. Home.php is accessible only if a

session exists, and the corresponding role is identified. The

authorization bypass attack can be detected by matching the

user‟s role but the request is not successful because the on

every single page by referring Table 1.

Sequence bypass attack is addressed by validating the

sequence of pages accessible by each role, which is depicted

in Table 2 and Table 3. Suppose an employer is logged in and

trying to access the User_mgmt.php forcefully, sequence is

not present in an employer role with respect to Table 3. Thus

we can also block the privilege escalation attempts.

3.8 Case Study
We also analyzed the web behavior of various vulnerable PHP

applications like wackopicko, scarf, bookstore_php4t,

portal_php4t to detect workflow deviations. wackopicko has

the two different paths for authenticating the normal user and

admin user. And it is vulnerable to an authentication bypass

(using SQL Injection) and it contains some broken links. We

model the web behavior by considering the two different

authentication paths for 2 roles. During the Detection phase,

we analyzed the web behavior and trying to perform SQL

Injection, the request is blocked from processing.

Scarf application is vulnerable to authorization and sequence

bypass attacks. Where the attacker can directly access the

generaloptions.php page without login as an admin and delete

the users. We modelled the scarf web behavior with admin

and normal user authentication. In Model Set I the

generalpolicy.php request represented with RequestId

“GET_generalpolicy.php” and SessionFlag is “1”. In Model

Set II the sequence maintained as login.php-

>generalpolicy.php for an admin role. Once the model is

enforced in Detection phase it first checks the

generalpolicy.php with respect to Model Set I, if the attacker

can directly access this page it may not contain a session

value initially so the web request is blocked. Some other

potential scenario is if the attacker logged in as a normal user

and attempting to access the generalpolicy.php, in this case

also Model Set I is not satisfied even though the page has the

session, but the RoleID is not satisfied for that request. And it

can also detect from the sequence file present for the normal

user where the normal user cannot have this page. Thus we

can detect sequence bypass with respect to Model Set II.

We also considered the bookstore and portal PHP applications

which are vulnerable to authentication bypass through SQL

Injection and sequence bypass attacks. We are able to detect

the both attacks with respect to Model Set I and Model Set II.

Table 4 shows the list of possible attacks detected with respect

to model sets for different vulnerable web applications.

Table 4 : Detected attacks with respect to Model sets

Application

Name

Detected attacks Model

checking

Wackopicko Authentication

bypass through SQL

Injection.

Model set I

Scarf Authorization

bypass through

forceful browsing

Model Set II

bookstore_php4t

& Portal

Authentication

bypass through SQL

Injection

Model Set I

4. PERFORMANCE DETAILS
We deployed our security solution in PHP based web server

and analyzed the performance of web application by

observing page load time for different web pages using Lori

add-on [21] installed in Firefox with/without AnDeWA

Detection Phase. Here the page load time measures the time

between loading of the page to completely render of the page

in seconds. Table 5 shows the page load timings in seconds

with/without AnDeWA.

Figure 9 shows performance overhead with AnDeWA and

without AnDeWA. With AnDeWA, the curvature is going

slightly higher because the Detection Phase verifies every

single request against model sets and forwards the request to

International Journal of Computer Applications (0975 – 8887)

International Conference on Advances in Science and Technology (ICAST-2014)

11

the web server. With our observation, the average page load

time is 0.22 seconds when AnDeWA is installed.

Table 5: Page load timing with/without AnDeWA

Without AnDeWA With AnDeWA

0.332 0.515

0.379 0.595

0.307 0.583

0.244 0.541

0.425 0.52

0.28 0.731

0.583 0.813

0.582 0.83

0.43 0.766

0.47 0.716

0.073 0.091

Fig. 9: Performance Overhead

5. CONCLUSION
In this paper, we discussed about monitoring web application

behavior at run time and an approach for detecting and

preventing workflow deviations. AnDeWA security solution

identifies the authentication bypass; session hijacking and

sequence bypass attacks.

Furthermore, it addresses the authorization bypass attack if

users with role binding details are known in the prior.

AnDeWA has its own limitation like, it is able to detect and

prevent Authorization bypass for different role users, but

users within the same role is trying to bypass is not addressed.

By checking the user's session at every page can address this

issue. Another limitation is we are crawling the site by

considering the href links and opening the authentication

pages (login and logout pages) for different roles in a browser

which may not cover all the web pages. If the web site is

designed with form based actions where the manual

interaction is mandatory to pass the parameters, automatic

crawl may not encompass. To come up to this problem we are

attempting to render the form action based pages in browser to

collect the data from the user which aids to crawl to next

page.

6. ACKNOWLEDGMENTS
Our sincere thanks to Department of Electronics &

Information Technology (Deity), Ministry of Communications

and Information Technology, Government of India for

supporting this research work.

7. REFERENCES
[1] Symantec- Internet Security Threat Report 2013 ::

Volume 18

[2] http://www.security-audit.com/blog/owasp-top-10-2013/

[3] Alexander Roy Geoghegan, Natarajan Meghanathan*.

“Cross Site Scripting (XSS)”.

[4] Nenad Jovanovic, Engin Kirda, and Christopher Kruegel.

“Preventing Cross Site Request Forgery Attacks”.

[5] Bhavna C.K. Nathani Erwin Adi.Website Vulnerability

to Session Fixation Attacks

[6] http://www.cs.utexas.edu/users/mckinley/papers/son-

phd.pdf

[7] Dafydd Stuttard, Marcus Pinto. The Web Application

Hacker‟s Handbook-Discovering and Exploiting Security

Flaws.

[8] David K. Liefer,Steven K. Ziegler. “PHP Vulnerabilities

in Web Servers”.

[9] Marco Cova. Taming the Malicious Web: Avoiding and

Detecting Web-based Attacks.

[10] Symantec.White Paper: Web Based Attacks,February

2009.

[11] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-

Hung Tsai, D. T. Lee , Sy-Yen Kuo. Securing Web

Application Code by Static Analysis and Runtime

Protection.

[12] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static

analysis tool for detecting web application vulnerabilities

(short paper)

[13] Johannes Dahse. RIPS - A static source code analyser for

vulnerabilities in PHP scripts.

[14] Davide Balzarotti, Marco Cova, Viktoria V. Felmetsger,

and Giovanni Vigna.Multi-Module Vulnerability

Analysis of Web-based Applications.

[15] IBM Rational AppScan Standard -

http://public.dhe.ibm.com/common/ssi/ecm/en/rad14019

usen/RAD14019USEN.PDF

[16] Marco Cova, Davide Balzarotti, Viktoria Felmetsger, and

Giovanni Vigna. Swaddler: An Approach for the

Anomaly-based Detection of State Violations in Web

Applications.

[17] Acunetix Web Vulnerability Scanner-

http://www.acunetix.com.

[18] https://www.owasp.org/images/b/b0/Best_Practices_WA

F_v105.en.pdf

[19] https://www.owasp.org/index.php/Category:OWASP_W

ebScarab_Project

[20] Jeff Heaton Web Spidering.

http://www.developer.com/java/other/article.php/157376

1/Programming-a-Spider-in-Java.htm

[21] http://www.searchenginejournal.com/best-firefox-

addons-to-analyze-the-page-load-time/12419/

http://www.security-audit.com/blog/owasp-top-10-2013/
http://www.cs.utexas.edu/users/mckinley/papers/son-phd.pdf
http://www.cs.utexas.edu/users/mckinley/papers/son-phd.pdf
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.developer.com/java/other/article.php/1573761/Programming-a-Spider-in-Java.htm
http://www.developer.com/java/other/article.php/1573761/Programming-a-Spider-in-Java.htm
http://www.searchenginejournal.com/best-firefox-addons-to-analyze-the-page-load-time/12419/
http://www.searchenginejournal.com/best-firefox-addons-to-analyze-the-page-load-time/12419/

