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ABSTRACT 
Contact between susceptible and infected individuals is one of 

the major reasons for the spread of contagious viral disease, 

for example, the severe acute respiratory syndrome, SARS, 

and is a major public health problem in the world.  The 

present study aims to assess via a mathematical model, the 

role of contact rate in the control of the spread of contagious 

disease like SARS. In this article, we have induced an 

effective contact rate in the mathematical model as a periodic 

function of time due to the seasonal occurrence of SARS 

which was considered as a parameter earlier. The spread of 

the disease also depends on the time taken to initiate 

preventive measures by the authorities which have been 

described and explained by a new term, action time, in the 

present study. Numerical simulations have been performed 

with the help of fourth-order Runge-Kutta method to illustrate 

our results. With the help of simulation, the control of the 

spread of diseases has been explained with varying periodic 

effective contact rate and action time. 
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1.  INTRODUCTION 
The contagious disease like SARS is transmitted by close 

contact from person-to-person worldwide [14]. The 

incubation period of SARS is 2 to 7 days, although in some 

cases it may be as long as 10 days [15]. The control of 

contagious disease like SARS is based on quarantine of 

infected individuals and isolation of individuals with clinical 

symptoms. 

In classical epidemiology, a critical factor is known as ‘mass 

action principle’ which states that the course of an epidemic 

depends on the contact rate between susceptible and infected 

individuals. Also, the net rate at which infections are acquired 

is proportional to the numbers of encounters between 

susceptible and infected individuals [8]. And the constant of 

proportionality, denoted by   has been termed as the 

transmission coefficient [1]. As it has been reported that, the 

contagious disease like SARS spread with the close contact 

with the infected individuals [7] therefore to control the 

infection of the contagious disease like SARS we need to 

control the effective contact rate. In this article we have 

developed a SEIR model with the help of effective contact 

rate function which was considered as parameter in other 

previous models and also describe the spread control of the 

infection in the individuals with the help of action time. It is 

well-known that many disease exhibit seasonal (periodic) 

fluctuations, such as influenza, measles, whooping cough, etc. 

([2], [6], [11]). Zhang et al. [16] have considered time varying 

periodic effective contact rate for rabies in china because of 

seasonal occurrence of disease.  

Over the past few decades, In the mathematical biological 

literature, a large number of compartment mathematical 

models have been proposed to control the spread of infectious 

diseases such as SIS [9], SIR [2,10], SEIR [9,12], SEIRS [13], 

SVEIR [7] (where S, V, E, I and R denotes the population of 

susceptible, vaccinated, exposed, infected and recovered 

individuals respectively). The model constructed in the 

present article is an extension of the standard SEIR model, 

therefore an attempt has been made in the present paper to 

develop a SEIR model for the contagious disease like SARS 

with the induction of periodic effective contact rate function 

and also describe the spread control of the infection in the 

society with the help of action time. Action time or period has 

been introduced in this manuscript which may be defined as 

“A time taken by the health agencies to control the spread of 

infection from infected to susceptible individuals by various 

means such as by increasing the immunity of infected and 

susceptible, vaccination of both susceptible and infected, 

quarantine of infected, yoga etc.” Including an effective 

contact rate as a periodic function, this was considered as a 

parameter earlier. 

In this article, we simulate the data of SARS cases reported by 

Greater Toronto Area in 2003 [7]. 

The rest of paper is organized as follows: A SEIR 

mathematical model for control the spread of contagious viral 

disease like SARS is formulated in Section 2. Effective 

contact rate function is described in Section 3. Basic 

properties of solutions are given in Section 4 and numerical 

simulation and discussion are in Section 5. Finally, the 

conclusion is summarised in Section 6. 

2.  A SEIR MODEL FOR CONTAGIOUS 

DISEASE 
In this section, we have established a SEIR model for the 

transmission of the contagious disease like SARS. For this, 

the total population is divided into four compartments: 

susceptible       exposed      infective      and 

recovered     .The parameters                are the 

effective contact rate, rate of development of clinical, 

recovery rate, disease induced mortality rate and natural 

mortality rate respectively. Our motive is to control the spread 

of SARS using mathematical model, for which we have 

assumed that susceptible individuals can be infected only 

through contact with infectious individuals. Therefore, instead 

of considering   as a parameter, we have formulated an 

effective contact rate which is a function of time  .The 

progression of infection through different compartments 

shown with help of block diagram, which is given below: 
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Fig. 1: Progression of infection from susceptible     
through exposed (E) infected     and recovered     

compartments for the model . 

After incorporating these changes in standard SEIR model 

[12], the rate of change of the population in each compartment 

is given by the following system of differential equations 
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          (2) 

  

  
                 (3) 

  

  
           (4) 

where                                ,     

and        is an effective contact rate function.  The total 

population size is                         .The 

effective contact rate function      is described in next 

section. 

The explanation of above model parameters is listed in 

Table1. 

Table 1: Parameters description and values used in 

simulation 

Parameter Description Value Source 

  Recruitment 

rate 
    per 

day 

Gumel et al. 

(2006) 

  Natural 

mortality rate 
     
     per 

day 

Gumel et al. 

(2006) 

  Rate of 

development 

of clinical 

symptoms 

0.125 per 

day 

Gumel et al. 

(2006) 

N Equilibrium 

Population 

4000000 Gumel et al. 

(2006) 

  Disease-

induced 

mortality rate 

      per 

day 

Gumel et al. 

(2006) 

  Recovery rate      per 

day 

Gumel et al. 

(2006) 

c Action time 2 to 10 

days 

Assumption 

[15] 

b Spread 

controlling 

parameter 

(c + 2) 

days 

Estimation 

 

3.  EFFECTIVE CONTACT RATE      
This section will be used to formulate effective contact rate 

function. The only way of transmission of Infectious disease 

is close contact between susceptible and infectious individuals 

and also the probability of getting a disease is not constant at 

any point of time. Since the occurrence of SARS is seasonal 

and prevalent during winters and its transmission is very fast, 

therefore contact rate will be considered as a periodic function 

of time. Following assumptions have been made to formulate 

the effective contact rate function: 

1. It has been observed from the literature and data, 

that intensity of the infection of SARS goes up till a 

certain period of time. 

2. The prime reason for the spread of disease is contact 

between infected and susceptible individuals and 

therefore, effective contact rate should increase with 

time in a periodic manner. 

3. Also, it is considered that effective contact rate 

cannot be completely zero at any time   up to 

certain period of time. 

4. A force of infection     will be considered with 

periodically ('seasonal') varying contact rate i.e. 

  
     

 
,                          (5) 

With period    equal to one year.  

Hence effective contact rate function      has been modeled 

as follows 

     
      

 
                                  (6) 

Where      is also a Periodic function of time with period     

For the purpose of simulations effective contact rate function 

      has been modeled as follows:  

     
         

 
                             (7) 

where   represents the spread controlling parameter to 

minimize the infection of disease on the society and    

represents an action time, which is “A time taken by the 

health agencies to control the spread of infection from 

infected to susceptible individuals by various means such as 

by increasing the immunity of infected and susceptible, 

vaccination of both susceptible and infected, quarantine of 

infected, yoga etc.” We are taking the values of    greater and 

equal 2 days, which is the incubation period of SARS.  It has 

been assumed that minimum action time to control the spread 

of the disease should not be less than incubation period, and 

therefore c can take minimum value as 2 days. The spread 

controlling parameter will always depend on the action time. 

4.  BASIC PROPERTIES OF THE 

MODEL 
The model Equations         monitors populations, it is 

assumed that all state variables and parameters of the model 

are nonnegative i.e.             
  and              

Theorem 1: The variables of the model (Equations        ) 
are non-negative at all time. 

Proof: Let                              
      . Thus,     . It follows the equation (1) that 

  

  
           

 

 
 

which can be re-written as, 
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Hence,        
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So that 
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Similarly         and    . 

Lemma 1: The closed set                
    

 

 
  is 

positively- invariant. 

Proof: 

The rate of change of the total population, obtained by adding 

Equations        , is given by 

  

  
        .                     (9) 

Since 
  

  
     , it follows that

  

  
   if   

 

 
. Thus, a 

standard comparison theorem for ODE can be used to show 

that      
 

 
       

 

 
     . In particular,      

 

 
 if 

     
 

 
 . Thus, the region   is positively- invariant. 

Further, if      
 

 
, then either the solution enters in   finite 

time, or      approaches 
 

 
  asymptotically. Hence region    

attracts the all solutions in   
 . 

The system (Equations      )) is continuous and its 

derivative implies that solutions exist and is unique. Since 

solutions approach lies in   they are bounded and hence exist 

for    . Therefore, the model is epidemiologically and 

mathematically well posed. 

5.  NUMERICAL SIMULATIONS AND 

DISCUSSION 
In this section, we have simulated the model numerically to 

understand the role of action time and other factors to 

minimise the effect of the disease. The numerical simulation 

of the model equations (1)-(4) has been done using Fourth 

order Runge- Kutta method [3, 5, and 4] in Matlab 2012b. The 

values of the parameters have been taken from table 1. 

Since the total population N is 4, 00,000 [Table 1], therefore 

let                           and       so that the 

sum of S, E, I and R will remain equal to the total population.  

Since the aim of the present study is to assess the behavior of 

the susceptible, exposed and infected population with respect 

to the action time, therefore graphs for these populations have 

been drawn by taking different values of action time. 

Figure 2, Figure 3, Figure 4 and Figure 5 show the population 

of susceptible, Exposed, infected and recovered individuals 

for         and    days respectively.  

It can be seen from these figures that the peak values of 

exposed and infected population will be increasing when the 

values of action time are increased. Also, it can be observed 

from these graphs that the duration to achieve a decreased 

peak value will be increased with decreasing value of action 

time while the total duration for the eradication of the disease 

is almost same for all values of action time. It shows that if 

the time taken to take preventive measures is less, then the 

effect of the disease on the society will be reduced. 

 

Fig. 2: SEIR population at action time          

 

Fig. 3: SEIR Population at action time          

 

Fig. 4: SEIR Population at action time          

 

Fig. 5: SEIR Population at action time           

Figure 6 shows the population of exposed individuals with 

four different values of action time. It is evident from the 

figure that when we take less time to initiate preventive 

measures, then the population of exposed individuals is less 

in comparison of greater time taken for initiation of 

preventive measures.  
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Fig. 6: 

Number of exposed individuals at various values of c. 

The population of infected individuals at various values of 

action time         and 10 days is shown in figure 7. It can 

be observed from figure 7 that population of infected 

individuals increase with the increment in the value of action 

time. Also the total number of infected population is 

decreasing with respect to the decreased value of action time. 

It can be understood that if time to take preventive measures 

is increased, then more number of people will be infected in 

the society. Preventive measures may include various methods 

such as the decreased contact rate and quarantinization of the 

infected individuals.  

 

Fig. 7: Number of infected individuals at various values 

of   

Figure 8 shows the comparison of the infected population at a 

constant effective contact rate and effective contact rate as a 

function of time. For simulation, the value of parameter   has 

been considered as                  [7] and for function 

of time, the value of action time is taken as 10 days. 

The figure shows that even the infected population has been 

calculated at the maximum value of action time of this study, 

i.e. 10 days, then also the infected population is much less 

than the infected population at a parametric value of effective 

contact rate. Also, it can be concluded that the duration to 

reach the infection at its peak value will be increased when 

effective contact rate is considered as a function of time. This 

time can be utilized in taking preventive measures, making 

people aware about the disease which will result in the 

prevention of the spread of disease. 

 

Fig. 8: Number of infected individuals for   as parameter 

and function 

Figure 9 shows the transmission rate of SARS with time at 

different values of action time (in days). It can be seen that as 

time increases, the area under the curve for transmission rate 

with small action time is low in comparison of greater values 

of action time. Action time may be utilized to take preventive 

method to control the disease and also increasing the 

immunity of the susceptible to avoid them to become infected 

and of the infected to make a fast recovery. 

 

Fig 9: Effective contact rate       at different values of     

6. CONCLUSION  
Since experiments cannot be done with the lives of human 

beings for a disease, therefore, mathematical modeling plays a 

crucial role in understanding the dynamics of the disease and 

hence planning and evaluating interventions can be done in an 

effective manner. In this paper, we have presented a SEIR 

model for SARS, which is a contagious disease and cost many 

lives, by considering effective contract rate as a function of 

time to control the spread of the SARS infection with induction 

of new term, action time. It has been concluded from the 

simulation of the model that if the time taken to initiate 

preventive measures is increasing then more number of people 

will be caught by the infection and it will be difficult to control 

the spread of disease in the society which will cost heavy 

monetary expenditure along with precious human lives. Since 

real data is not available in the required format, therefore an 

attempt will be made to collect the real data and model will be 

validate accordingly. Also, the model will be studied for global 

behavior. 
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