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ABSTRACT 
In this paper the dynamical behaviour of toxin producing 

phytoplankton and zooplankton system is investigated. The 

toxin producing phytoplankton are divided into two groups: 

susceptible phytoplankton and infected phytoplankton. 

Conditions of  local stability of various equilibrium points are 

derived. Further it is observed that the range of toxin 

liberation parameter increases for the coexistence of species 

with increased  number of migratory phytoplankton species. 
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1. INTRODUCTION 
Plankton are single-celled, microscopic organisms upon which 

almost all aquatic life is based. Phytoplankton, the plant form 

of plankton, are the primary producers. They are capable of 

photo-synthesis and stabilize  environment by consuming half 

of the universe carbon dioxide and release huge oxygen.  

Zooplankton, the animal form of plankton, eat other plankton, 

which in turn are the basic food source for fish and other 

aquatic animals. The significant feature associated with many 

phytoplankton is rapid increase of biomass followed by their 

rapid decrease after some fixed time period. This kind of 

rapidly increased phytoplankton density is called bloom, 

which is of two types. One is seasonal, which occurs because 

of change in temperature and nutrient level of water 

depending on season, called 'spring bloom' and the other is  

localized out break associated with change in water 

temperature, greater salinity of water column and higher 

growth rates [1], known as 'red bloom'.  In algae bloom of 

phytoplankton, each alga being short-lived result in a high 

concentration of dead organic matter which starts to decay. 

The decaying process consumes dissolved oxygen in the 

water, resulting in hypoxiation. In the deficiency of dissolved 

oxygen in the water, animals and plants may die off  in mass, 

which in turn has adverse effects on human health, aquatic 

population, tourism, fisheries business, water quality and the 

ecosystem. Algal blooms called 'Harmful Algal Blooms' 

(HABs) consist of phytoplankton which have negative impact 

on other organisms causing mass mortality through production 

of natural toxins, mechanical damage to other organisms, or  

by other means. For the control of such problems which is 

under investigation, deep study of plankton system  is 

required. 

The growth and bloom of toxin producing phytoplankton 

species is a complex process. The toxin producing 

phytoplankton  reduces  the  grazing  pressure of zooplankton 

and may terminate the planktonic bloom. Chattopadhyay et al. 

[2,3]  investigated that toxin producing phytoplankton and 

toxic substances  affect the growth of zooplankton population 

and phytoplankton zooplankton interaction. Anuj Kumar 

Sharma et al. [4] have shown that time delay can destabilize 

the otherwise stable non-zero equilibrium state of a toxin 

producing phytoplankton, zooplankton and dissolved nutrient 

system, by inducing Hopf-bifurcation when it crosses a certain 

threshold value. 

Viruses are the most abundant entities in the sea. These  play a  

significant role on the  survival, extinction and  interaction of  

planktonic population. Several researchers have investigated 

the eco-epidemiological  systems [5-11]. Beltrami and Carroll 

[12]  investigated that a minute amount of infectious agent can 

de-stabilize the otherwise stable trophic configuration between 

a phytoplankton species and its grazer.   

Anderson and May [13] concluded the existence of minimum 

threshold of infection below which the infected population 

does not persist. Sunita Gakkhar and  Kuldeep Negi [14] 

investigated the dynamical behaviour of toxin producing 

phytoplankton infected by a viral disease and zooplankton 

system. 

 In this paper, a toxin producing phytoplankton zooplankton 

system is proposed with the assumption that some of the 

phytoplankton population is infected by a viral infection and 

there is migration of phytoplankton population at a constant 

rate. As seen in nature, it is assumed that infected 

phytoplankton population is more vulnerable to predation and 

TPP population do not release toxins always but release only 

in the presence of dense zooplankton population and for this 

Holling type II functional response has been considered. 

2. THE MODEL 

Let )(tP  and )(tZ  be the toxin producing phytoplankton 

(TPP) and zooplankton population respectively at time .t  In 

the presence of virus, total TPP population is divided into two 

categories: susceptible phytoplankton population )(tS  and 

infected phytoplankton population )(tI  such that  

     tItStP 
                         (2.1) 

The susceptible phytoplankton grow logistically. There is a 

migration of susceptible phytoplankton species at a constant 

rate. Infection is spread among phytoplankton population only 

and infection is not genetically  inherited. The infected 

population do not recover or become immune and is not 

capable of reproducing. However, they can affect the growth 

https://en.wikipedia.org/wiki/Dead_zone_(ecology)
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dynamics of the susceptible phytoplankton indirectly, for 

example by shading. The  susceptible phytoplankton becomes 

infected following  simple law of mass action. A simple 

Lotka-Volterra  form of interaction is assumed for 

phytoplankton zooplankton populations. Using these  basic 

assumptions the dynamics of the system can be governed by 

the following set of differential equations: 
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(2.2) 

Where K, r are the carrying capacity and growth rate of  

phytoplankton  population  respectively.   is rate of  

infection. 1b , 1e  are the  rates  at which zooplankton 

predates susceptible and infected phytoplankton  respectively. 

2b , 2e are  the growth rates of zooplankton due to predation 

of susceptible, infected  phytoplankton respectively.   is the 

natural death  rate of  infected  phytoplankton population. d is 

the mortality rate of zooplankton population due to natural 

death.   is the rate of toxin liberation by the toxin producing 

phytoplankton (TPP) population.   is the half-saturation 

constant for TPP population.  

  00 S ,   00 I ,   00 Z  are the initial conditions 

associated with the system (2.2). 

3. BOUNDEDNESS OF SOLUTION 
Lemma.  All the solutions of system (2.2) which initiate in 

3

R  are uniformly bounded for suitably chosen positive 

),min( d   and 2121 ebbe  . 
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Derivative of (3.1) w.r.t. time t, along the solution of (2.2) is 

given by 
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Introducing a positive number  we can write 

 

     

MIZ
b

eb
e

Zd
b

b
Ir

r

K
W

dt

dW













2

21
1

2

12

4


 

taking ),min( d   and 2121 ebbe  , we get 
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3
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4. EQUILIBRIUM POINTS 
Equilibrium point for the system (2.2) are given by 

(1) Equilibrium point on the boundary of first octant 
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(2) Planer equilibrium point on S-Z plane is 

 ',0,'2 ZSE  , where 
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For its existence, the necessary and sufficient condition 
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In case the phytoplankton is not releasing any toxin, the 

corresponding equilibrium point  00 ,0, ZS  is obtained by 
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taking 0  . Thus 
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Clearly 0' SS  and 0' ZZ  . Thus toxin production in 

phytoplankton increases the equilibrium value of 

phytoplankton and decreases the equilibrium value of 

zooplankton.  

(3) Planer equilibrium point on S-I plane is  0,,3 ISE  , 

where  
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For existence of 3E , 0I , which is possible if 

r

M
KS  . 

 (4) The non-trivial equilibrium point is  **** ,, ZISE  

where 
*S  is the positive root of fourth degree equation:                 
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It is always possible to write  (4.1) in at least one way, as the 

product of product of two quadratic forms with real 

coefficients   
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The equation in 
*S  admits at least one positive root in the 

following cases: 
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In case phytoplankton population do not produce toxins, then 

corresponding equilibrium  ZISE ˆ,ˆ,ˆˆ   can be obtained 

by substituting 0  . 

As 
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5. STABILITY ANALYSIS 
We will now discuss the local behaviour of the system around 

each of the equilibrium points. Variational matrix around the 

point  ZISE ,,   is given by 
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The variational matrix for 1E  is 
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The characteristic equation for 2E is 
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The variational matrix for 3E  is  
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Its characteristic equation is given by 
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The quadratic equation gives negative eigen values. Thus 3E  

is locally asymptotically stable if the third eigen value given 

by 
 
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 223  is negative, 

otherwise it will be unstable in the direction of Z. 

The variational matrix for 
*E  is given by 
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The characteristic equation is given by 
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Applying Routh Hurwitz criterion, 
*E  is locally 

asymptotically stable provided the following conditions are 

satisfied 

0,, 321 AAA  and 321 AAA  . 
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6. CONCLUSIONS  
In this paper, the dynamical behaviour of toxin producing 

phytoplankton and zooplankton system with migration of 

toxin producing phytoplankton population under the 

assumption that some of phytoplankton are infected by viral 

infection, has been considered. Infected phytoplankton are 

more vulnerable to predation as seen in nature. Conditions of 

local stability of coexistence of three species are established. 

It is  observed that the range of toxin liberation parameter 

increases for the coexistence of species with increase in 

number of migratory phytoplankton species. There is a lot of 

scope for future research. 

Some directions for future research are as below : 

1. One can consider the case in which the disease 

affects the zooplankton population also. 

2. The incubation period of the disease can also be 

considered. 

3. One can consider the case of migration of infected 

phytoplankton population. 

4. In this paper it is assumed that the predated 

phytoplankton are converted into zooplankton 

instantaneously, although it seems obvious that 

some delay should be accounted for. One can 

investigate the role of the delay.  
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