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ABSTRACT 

Winiarski [5] has studied the rates of decay of Lagrange 

interpolation error for entire functions in several complex 

variables. These results do not give any information about the 

rates of decay of above error when function is not necessarily 

entire. In this paper the authors have worked out this problem. 
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1. INTRODUCTION 
The purpose of this article is to extend the results of Winiarski 

[5] when the function is not necessarily entire, in several 

complex variables. Complex analysis differs dramatically 

between one and several variables. Many fundamental 

features change with space dimension from one to greater 

than one. For example, any domain on the complex plane is a 

domain of holomorphy but in   this is not the case.   

Now first let’s discuss the domain of holomorphy. Let D be a 

domain in   .1, nC n
 

Definition 1.1  
D is called a domain of holomorphy if there is a holomorphic 

function  f  defined on D that is singular at every boundary 

point, that is,  f  can not be extended holomorphically across 

any boundary point. 

In single complex variable, every domain is a domain of 

holomorphy. But in higher-dimensional Euclidean spaces, the 

above concept in general need not hold. Take the following 

example in .2C    Let 

}.
2

1
 and 

2

1
:),{(}1 and 1

2

1
:),{( 12

2

2112

2

21  zzCzzUzzCzzD  

For any function f holomorphic on D, set 
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where .}4/3:{  wCw    Then it is easy to see 

that fF D     on D and F is holomorphic on 

,1D where 

}.1 and 1:),{( 21211  zzzzD  

This implies that D is not a domain of holomorphy since any 

holomorphic function f on D can be holomorphically extended 

to a strictly larger set via applying Cauchy integral formula in. 

Thus, it becomes fundamental to determine whether a given 

domain D is a domain of holomorphy or not. To avoid this 

difficulty, the authors have the following definition: 

Definition 1.2  

Let D be a domain in DC n .    is called holomorphically 

convex if DK


   is relatively compact in D for any compact 

subset K of D. Here  

)(:{ zfDzKD 


fKsup      for all  f  

holomorphic on D} is the convex hull of K  and KD \    is 

connected.  

Since holomorphically convex hull of a compact set is always 

contained in the geometrically convex hull of this set, it 

follows that any convex domain is holomorphically convex. It 

turns out that holomorphic convexity is the right condition for 

characterizing domains of holomorphy in .nC   For clearity 

of the above concept the authors have the following Theorem 

due to H. Carten and P. Thullen [1]. 

2. THEOREM A 

Let D be a domain in .1, nC n
   Then the following 

statements are equivalent  

i. D is a domain of holomorphy. 

ii. D is holomorphically convex. 

Now the author assume that E  be a holomorphically convex 

set in the space 
nC    of  n complex variables 

).,...,(~
1 nzzz      

Let )(EH   be the linear space of all functions analytic on E 

. Define a norm on )(EH    as, 

  .)(,)~(sup~ EHfzff Ez    

Let     denote the set of all polynomials in z~    of degree 

.    For ),(EHf     set 

  .inf),()( 1,1, pfEff p      
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Let ,,...,2.1,,...,1  lll nkk    denote the sequence of all 

solutions in non-negative integers of the inequality   

 ....1  nkk  

Let      points  of system a be ,...,1

)(
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is different from zero. Considering a new determinant 

 ,,~ )(pzVi    corresponding to the system of points 

  zppzpp ii ,,...,,,,..., 111      being an arbitrary 

point of .nC    Let 
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The polynomial 

 

  ,,~,,~)()~( )(
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is called the 
th    Lagrange interpolation polynomial for  f  

with nodes
)(p    . 

Further, put 

 ,),()( 12,2,    LLEff  

 .),()( 3,3,   LfEff   

Winiarski [5] has studied the rates of decay of 

,3,2,1),(, jfj    for entire functions. His results do 

not give any information about the rates of decay of 

,3,2,1),(, jfj when )()~( EHzf    is not 

necessarily entire. In the present paper an attempt has been 

made to solve this problem. 

Now first define the extremal function [2] 

   nCzEApzpEzz 


~,)(:)~(suplim),~()~(
/1








  and )(EA    is the set of all polynomials p of degree   

  such that  .1
E

p   

It can be seen from the definition that 
nCzz  ~for  1)~(    and   .~for  1)~( Ezz   

Let ),~( Ez    be locally bounded 

and

  ).1,,1(1,),,(,1,),~(:~   rrrrrEzCzE n

r 

 Then rE    is an analytic Jordan curve. Let rD    be the 

convex domain with the boundary rE   . Then rDE    for 

each )1(  rr    and  .for  , rrDE rr     

Since through an arbitrary point Ezo 
~

   there passes one 

and only one curve  ),1(  rEr   it follows that for 

each )(EHf     there exists an unique 

)( fRR  )1(  R     such that  f  can be extended 

analytically to rD    for each Rr     but for no .Rr    

The authors call 
R

D    as the “domain of holomorphy” for  f  

and denote the class of those )(EHf     which have the 

domain of holomorphy 
R

D   by ).,( REH    

Now define the growth parameters for a function 

),( REHf     as follows: 

A function ,1),,(  RREHf    will be said to 

be of order   [7] if 
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In case   as defined is  of   type the,0 fT   

.
)1(

),(log
suplim
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ftM
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Here  .)log,0(max log xx 
 

In this the authors prove the following lemmas that are needed 

in the sequel. 

Let 

    niRzzzzzRzG i

o

iin

on ,...,1,:,...,~,~
1 

 be a polydisc in  
nC   with centre  o

n

o

i

o zzz ,...,~     and 

polyradius   ,,..., ni RRR    where  
o

iz   are complex 

numbers and iR   are fixed real numbers for .,...,1 ni     

For the sake of simplicity, the author assume throughout that  

),...,(,0
~~ RRRz o    and denote   

).,0
~

( RGG n  

A function  f , analytic in ),,0( RGn
   is uniquely 

expressed as an absolutely convergent power series  
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where,  nkkk ,...,1    is n-tuple of nonnegative integers, 
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be the maximum modulus of  f  on the closed polydisc 
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( RG n
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  of  f  is defined as 
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Now first the author obtain coefficient characterizations of 

order 
R

G    and  type
R

G    of a function analytic 

in ).,0( RGn
 

Lemma  2.1 

Let 
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k

k

k
zbzf    be analytic in the polydisc 

),0( RGn
   and have 

.0,order  
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Lemma  2.2 

Let 
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Proofs of Lemma 2.1 and 2.2 

A function g, analytic in )1,0(nG   is uniquely expressed an 

absolutely convergent power series [4] 

.)1,0(~,~)~(
0

n

k

k

k
Gzzbzg 





 

Consider the function ),~()~( zRgzf     where  

 ,,...,~
11 nn zRzRzR    is analytic in .),0( RGn

   It 

can be easily seen that order and type of  f  and  g  are equal. 

Hence using Theorems 5.2.1 and 5.2.2 of Juneja and Kapoor 

[6], the authors get the required results. 

Set 

   **  and 1,),~(:~
rr DrrEzzE    

  is the convex domain interior to   .*

rE  

Lemma  2.3 

Let )~(zf    be analytic in  .,* or rD
o

  Then there 

exists a polynomial  Q    such that 

  ,~,/),()~()~( * EzrfrMKzQzf
rE




   

 for all )( orr     sufficiently close to .or    Here K  is a 

constant depending on the set E and or   but is independent of 

 and  .or   

Proof.  It can be seen as in the case of single complex variable 

[3, p.109], [5, p. 138] that inside )~(,* zfD
or

 can be 

expressed as 

     





0

)~()~(
k

kk
zhbzf                                  (2.1) 

where  
0kk

h    is the sequence of Faber polynomials for 

E and the righ333t hand side of above series is uniformly 

convergent on every convex subsets of  .*

or
D   

It is known that the analogues of Cauchy inequality in one 

variable case for )~( zf   is given by 

k

E

k
r

frM
b r

),(*

     for    .orr               (2.2) 

It is also known [5, p.137] as in the case of one variable that 
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In view of (2.2) and (2.3) it gives 
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Now taking )2/)(( orr      if  or   and 

2r    if  ,or   the authors get the required proof 

Lemma2.4 

Let 

Then.1),,(  RREHf  

,...2,1,0,)/1)(,()1()( *1,   
 rfrMKf

rE

for all )( Rr     sufficiently close to .R    Here K is a 

constant depending on E and R    but independent of    and 

.r    

Proof.  In the consequence of Lemma 2.3 and definition of 

)(1, fE    the proof is immediate. 

Lemma  2.5 

Let ),(EHf     then 

(i) 

,...,2,1for    ),,()1(),(),( 1,3,1,     EfEfEf

(ii)  ).,()1(2),( 1,12, EfEf      

Proof. (i) Let p    be a polynomial of degree     and let  

P   be the  -th Lagrange interpolation polynomial for the 

function   ).~()~()~(* zpzfzg   

Since  

.~for      )~()~()~( nCzzPzpzL      

Therefore 

  
EEE

PpfLfEf  ),(1,  

  

,)1(1 )(

1


















 







 E

j

j
E

pfLpf

which completes the proof of (i) part. The part (ii) can be 

proved similarly. 

3. MAIN RESULTS 
Theorem 3.1 

Let ),(EHf     then ,1),,(  RREHf    if and 

only if,   .3,2,1,/1)(suplim
/1

, 


jRfj






   

Proof.  Let ).,( REHf    Then by Lemma 2.4, the 

authors get 

    rEf /1),(suplim
/1

1, 







  

for all )( Rr    sufficiently close to  R   and so 
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 On the other hand, let )1( of ),~( nwz    complex 

variables wzz n ,,...,1    defined by 
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is analytic function of w in  ).,0( RGn
  Therefore 

  




 
1

10 )~()~()~()~(


 zPzPzPzf        (3.1) 

holds in 
R

D    and the right hand side of above series 

converges uniformly on every compact subsets of .
R

D    

Since 

).,(2),(),()~()~( 11 EfEfEfzPzP
E    

Now using the property of extremal function [2], the authors 

get 

.1,~,),(2)~()~( )1(

1,1  

 rEzrEfzPzP r


 

                     (3.2) 

It has been seen that if  
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  ,/1),(suplim
/1

1, REf 







    then the series on 

the right hand side of (3.1) converges uniformly on every 

compact subsets of  ,
R

D


  for some  ,RR    which is a 

contradiction. Hence   ./1),(suplim
/1

1, REf 







    

This prove the necessary part of the theorem for  .1j   In 

view of Lemma 2.5, it can also be proved for  .3,2j   

Sufficiency part can be proved in a similar manner. 

Theorem 3.2 

Let  ,1),,(  RREHf   be of order  . Then 
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),(loglog
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Proof.  First prove the theorem for j = 1, let 
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Obviously .0     First assume that  0   

and  .0     Then by the definition of   there 

exists a  sequence   
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   of positive integers tending to   

such that 
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to .R    Let   
k
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in above inequality, the authors get 
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Since )(      is arbitrary, therefore 
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Now, (3.1) gives that 

   




 
1

1 )~()~()~()~(


 zPzPzPzf o  

holds in  .rD   Thus in view of (3.2), the authors get 
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1

1

1, ),(2



 rEfK                         (3.6) 

for .1,~ RrEz r     Here K   is constant 

independent of  .r   Now, (3.6) gives 

  ),(2),( hrMKfrM
rr EE                      (3.7) 

where   .~),()~( 1

1,





o

zEfzh



  

By Theorem 3.1, )~( zh    is analytic in  ).,0( RGn
  Using 

(3.7) with Lemma 2.1 for ),~( zh    the authors get 

    .
1








            (3.8) 

Hence the proof is complete for 0    in view of 

(3.5) and (3.8) together with Lemma 2.5. For ,or  0     

the proof is trivially true.  

Finally,  
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It has been noticed that the type of  f
~

  cannot be 

characterized in terms of the Chebyshev best approximation to  

f  on E  by polynomials of degree     with respect to all 

variables. So it is convenient to consider the measures 

 niik kkkEf
i

,...,),,( 1    of the Chebyshev best 

approximation to  f  on iE    by polynomials of degree ik    

with respect to ith variable,  ,,...,1 ni    where iE   is a 

bounded closed set in the complex plane.iz    Hence the 

authors have obtained the characterization of type of f
~

   in 

terms of ),( ik Ef
i

    using the concept of partial order and 

partial type introduced by Juneja and Kapoor [2, pp.273]. 

Now let’s prove the following theorem: 

Theorem 3.3 

Let  ,1),,(  iRREHf   and if  

   ,0,...,0,...,1  ni   

   0,...,0,...,1  ni TTT     are partial order and partial 

type of  f , respectively, then  
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for all )( ii Rr     sufficiently close to iR   . Further (3.9) 

can be written as 
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In view of Lemma 2.4 with respect to ith variable keeping 
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Now, choosing a sequence   
imr   as 
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The reverse inequality can be proved by applying Lemma 2.2 

to the function )~( zh    with respect to ith variable. This 

completes the proof for  .1j   In view of Lemma 2.5, the 

theorem can be proved for   .3,2j  

4. CONCLUSION 
Using above results one can get information about the rate of 

decay of the error discussed by Winiarski [5] and 

Markushevich [3]. Moreover, these results can be used to 

limit the results when the function is not necessarily analytic. 
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