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ABSTRACT

Winiarski [5] has studied the rates of decay of Lagrange
interpolation error for entire functions in several complex
variables. These results do not give any information about the
rates of decay of above error when function is not necessarily
entire. In this paper the authors have worked out this problem.
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1. INTRODUCTION

The purpose of this article is to extend the results of Winiarski
[5] when the function is not necessarily entire, in several
complex variables. Complex analysis differs dramatically
between one and several variables. Many fundamental
features change with space dimension from one to greater
than one. For example, any domain on the complex plane is a
domain of holomorphy but in this is not the case.

Now first let’s discuss the domain of holomorphy. Let D be a
domainin C",n>1.

Definition 1.1

D is called a domain of holomorphy if there is a holomorphic
function f defined on D that is singular at every boundary
point, that is, f can not be extended holomorphically across
any boundary point.

In single complex variable, every domain is a domain of
holomorphy. But in higher-dimensional Euclidean spaces, the
above concept in general need not hold. Take the following

examplein C%. Let
D={(z,2,) eC? :%<\22\ <land|z,| <QU{(z,,2,) e C*:z)| s%and |2 <%}.

For any function f holomorphic on D, set

F) =t ] T@W 4,
2ri - W—1z,

where ' ={weC: | W| =3/4}. Thenitis easy to see

that F | o = T onDandF is holomorphic on

D, , where
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D, ={(z,.2,):| z,| <1land| z,| < 1}.

This implies that D is not a domain of holomorphy since any
holomorphic function f on D can be holomorphically extended
to a strictly larger set via applying Cauchy integral formula in.
Thus, it becomes fundamental to determine whether a given
domain D is a domain of holomorphy or not. To avoid this
difficulty, the authors have the following definition:

Definition 1.2
Let D be a domain in C". D s called holomorphically

convex if KD is relatively compact in D for any compact
subset K of D. Here
Ko ={zeD:|f(z)| <sup,| f| for all f
holomorphic on D} is the convex hull of K and D\ K s
connected.

Since holomorphically convex hull of a compact set is always
contained in the geometrically convex hull of this set, it

follows that any convex domain is holomorphically convex. It
turns out that holomorphic convexity is the right condition for

characterizing domains of holomorphy in C " For clearity
of the above concept the authors have the following Theorem
due to H. Carten and P. Thullen [1].

2. THEOREM A

Let D be a domain in C", N >1.  Then the following
statements are equivalent

i D is a domain of holomorphy.
ii. D is holomorphically convex.
Now the author assume that E be a holomorphically convex

set in the space C" of n complex variables
Z=(2,,..2,).

Let H(E) be the linear space of all functions analytic on E
.Defineanormon H(E) as,

| £ =sup;e{] (@), f e H(E)}

Let SV denote the set of all polynomials in Z of degree
<v. For f e H(E), set

Ay (F)=2,,(F,E)=inf . {| f-p|}:



International Journal of Computer Applications (0975 — 8887)

International Conference on Advances in Emerging Technology (ICAET 2016)

Let Ky,...., Ky, 1=1.2,...,v,, denote the sequence of all

solutions in non-negative integers of the inequality

* 7

K, +..+k, <v.
Let p" = {pl,..., P,. }beasystemof v, points
N

Pi Z{Zli""’zni}’ i=1..

such that the determinant

V(p™) = det [zfil' ,...,zr'fi"' ] il=1..v

* 1

is different from zero. Considering a new determinant

v,z p®),
lpla---a Pi1: 2 Pisasen Py, J’ z
pointof C". Let

L0z, p®)= V{/(E;)f)”jvr)) i=1.

corresponding to the system of points

being an arbitrary
V..

The polynomial

L,(2) =ZV} (pi)L(i)(Z, p(V’), 7eC", p¥ cE,
i=1

is called the v Lagrange interpolation polynomial for f
with nodes p*”’

Further, put

ﬂ’v,Z(f)E/’Lv,Z(f’E)E” LV _val||’

A,:(f)=2,,(f,E)=|f-L,

Winiarski [5] has studied the rates of decay of
A, (F), 1 =123, for entire functions. His results do

not give any information about the rates of decay of
A, (1), i=123,when f(Z)eH(E) is not

necessarily entire. In the present paper an attempt has been
made to solve this problem.

Now first define the extremal function [2]

#(@) = (2. E) = lim bup| p@)" : pe A (€))7 eC”

and A, (E) isthe set of all polynomials p of degree < v

/v

such that || p”E <1

It can be seen from the definition that

#(Z) =1forZ eC" and ¢(zZ)=1forz €E.

Let  @(Z,E) be locally
and

E ={feC":¢E,E)=T},F>1,r=(r,...0),1=(L...})

bounded

Then EF is an analytic Jordan curve. Let DF be the
convex domain with the boundary E; . Then E < D; for
each T(1<F <o) ad E D, forr' >T.
Since through an arbitrary point 'z”o ¢ E  there passes one
and only one curve E- (I < T <), it follows that for
each f eH(E) there exists an  unique
R=R(f) (1<R <) suchthat f can be extended
analytically to DF for each ' < ﬁ but forno T > R.
The authors call Dﬁ as the “domain of holomorphy” for f
and denote the class of those f € H(E) which have the
domain of holomorphy D~ by H (E, R).

Now define the growth parameters for a function

f e H(E,R) asfollows:

A function f € H(E, F_Q),i <R <0, will be said to
be of order p [7] if

) log"log" M, (t, f)
p =limsup E
t1 —log (1-t)

where M (T, f) = max | f(2)|
S
and

ME§(t,f):mtaE{< M(r,f),0<r, <R, 0<t<l.
Incase 0 < p < oo, thetyperl of f isdefined as

) log" M (t,f)
T =limsup Rf
t1 @a-t

Here log™ x = max (0, log X).
In this the authors prove the following lemmas that are needed
in the sequel.
Let
G"(z°,R)= {'z” =(21,:2,):[2, -2
o]

be a polydisc in C" with centre Z° :(Zi,...,ZO) and

n

<R,i=1..n|

polyradius ﬁz(Ri,...,Rn ), where  Z°

; are complex

numbers and Ri are fixed real numbers for i =1...,n
For the sake of simplicity, the author assume throughout that

7°=0,R=(R,...,R) and denote
G=G"(0,R).

A function f , analytic in G"(O,R), s uniquely
expressed as an absolutely convergent power series
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@)=Y 'b.z" 7eG"(O,R),

k=0

where, kK = (kl,..., kn) is n-tuple of nonnegative integers,
sk _ Sk Kn
7" =128,..2;

F=(r,.,r), 0<r <R, i=1..,n, Ikt

and HIZH:k1+...+ K,. With

M(F,f)z‘rp&i;|f('z')|=max|f(2)|,

|zi|=x

be the maximum modulus of f on the closed polydisc

5“(5,§) Set
Mg (t, f):m?é( M(r, f), O<t<],

Where

G=|G|={r...r,)eR":0<r <R, i=L..,n}

Define Gz —order pg ; of f as

pe - = limsup log™ log™ M (t, f)'
' t1 —log (1-t)

If 0< Pog <%, theG-type Ty of fisdefinedas

T, s =limsup log” M (¢, 1) MGf(t'ff).
’ o1 (1—t)7eR

Now first the author obtain coefficient characterizations of
G; —order and G5 —type€ of a function analytic

inG"(0,R).

Lemma 2.1

Let f(2)= Z bEZE be analytic in the polydisc
[k

G"(0,R) and have

Gy —order p, z, 0< p; z <oo. Then

Posx . log " log*| b | R*
—=— =limsup —
Pog+1 [k log H k H
Lemma 2.2
Let f(f) = Z bEZE be analytic in the polydisc

k[0
G"(0,R) and G, —order p ., (0 < Pgr < oo)
and Gy —typeTGﬁ(O <Tez < oo). Then

o R

PG R

: Oog*
e Toz =limsup

Pogr Jicf>= ” k ”
Proofs of Lemma 2.1 and 2.2

A function g, analytic in G"(0,1) is uniquely expressed an
absolutely convergent power series [4]

9()=> b,I", 7eG"(01).

k[0
Consider the function f(Z)=g(R 7), where
RZ = (Rlzl,..., R,Z, ), is analytic in G" (0, ﬁ) It

can be easily seen that order and type of f and g are equal.
Hence using Theorems 5.2.1 and 5.2.2 of Juneja and Kapoor
[6], the authors get the required results.

Set

E'={Z:4(Z,E)=r}{f>p,f>1and D’

is the convex domain interiorto  E ;

Lemma 2.3

Let T(Z) be analytic in D:O,I’0 > 3. Then there

exists a polynomial QV € SV such that

| 1(2)-Q,@)|<KM.(F. 1) BIF), Z<E,

forall T(<T,) sufficiently close to T,. Here K isa
constant depending on the set E and Fo but is independent of
vand T,.

Proof. It can be seen as in the case of single complex variable

[3, p.109], [5, p. 138] that inside D;O, f(Z) can be

expressed as
f(Z)=> b h(2) @.1)
k=0

where {hlZ }Fl? -0

E and the righ333t hand side of above series is uniformly

is the sequence of Faber polynomials for

*
convergent on every convex subsets of D .
o]

It is known that the analogues of Cauchy inequality in one
variable case for f (Z) is given by

M,.(F, f)

|| s — 77—
X

for B<T<T,. (2.2)

It is also known [5, p.137] as in the case of one variable that
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Ih (Z)|<2B* for Ze<E, 23)
Where BE: lf,...,ﬂ:”.

Let Q,(z)= > b h(Z) and

[0

[F(@)-Q@)]=< X o] [h(2)]

=

In view of (2.2) and (2.3) it gives

<2M_.(F, ) SBIrf, B<r<r,,

i
2M_. (T, f)(B/F)"™
< - —
- B/’

Now taking T > ((f+T,)/2) if T, <o and
r> ZE if I, =00, the authors get the required proof

Lemma2.4
Let

f eH(E,R), R > 1.Then

2,2 (F) K@ +)M_. (T, f)(1/7)", v=012,..

for all T (< ﬁ) sufficiently close to R. Here K is a

constant depending on E and ﬁ but independent of v and
r.

Proof. In the consequence of Lemma 2.3 and definition of
E,,(f) the proof isimmediate.

Lemma 2.5

Let f e H(E), then
0)

A, (FLE)< A, 4(f,E) < @+v,)A,,(f,E), for v=12,.

iy 4,,(f,E)<2@+v,)A, ., (f,E).

Proof. (i) Let P, be a polynomial of degree < v and let

PV be the v -th Lagrange interpolation polynomial for the
function g*(Z)= f(Z)-p,(2).

Since

L(zZ)=p,(Z)+P,(Z) for ZeC".

Therefore

2. (FE)<|f-L

e +IP.

ES"f_pv

v E

c(L+v,),

<|f-p, E(1+ZV* L‘“Hjs” f—p,
i1

which completes the proof of (i) part. The part (ii) can be
proved similarly.

3. MAIN RESULTS
Theorem 3.1

Let f e H(E), then f e H(E,R),R >1, ifand
only if, Iimsup(/?«v'j(f))"v =1/R , j=12_3.

Proof. Let f € H(E,R). Then by Lemma 2.4, the
authors get

limsup (4, ,(f,E)}"" <1/r

forall T (< R) sufficiently closeto R and so
limsup (4,,(f,E)}"" <1/R.

On the other hand, let #(Z,w)of (N+1)  complex
variables Z,,...,Z,, W defined by

1 &0

pEw)=fwz)= bwhz", |w<R.

Jk]=o
Set
= =k
P.(Z)= > b Z"
[~
Then

¢(’z1w>=2°°Pv('z*)wv

is analytic function of win G" (0, R). Therefore

D) =R(@)+D (PaD)-P.2)) @y
v=l

holds in Dy

and the right hand side of above series

converges uniformly on every compact subsets of Dﬁ.
Since

|P..(Z)-P(Z)|. <4, (f,E)+4,(f E)<22 (f,E).

Now using the property of extremal function [2], the authors
get

P..(Z)-P(7)<24,,(f E)f*? , 7€E,, F>1.
(3.2)

It has been seen that if



International Journal of Computer Applications (0975 — 8887)

International Conference on Advances in Emerging Technology (ICAET 2016)

- / =
lim Sup(ﬂ’v,l(f , E))1 " <1/R, then the series on
V—>0
the right hand side of (3.1) converges uniformly on every
compact subsets of Dy, , for some R’'> R, whichisa

contradiction. Hence lim sup(ﬂvvl(f , E))llv =1/R.

V—>0

This prove the necessary part of the theorem for j =1. In

view of Lemma 2.5, it can also be proved for | =2,3.
Sufficiency part can be proved in a similar manner.

Theorem 3.2

Let feH(E,F_Q),1<§<oo, be of order p. Then

P ] log* log* 4, ;(f,E)R"
—— =Ilimsup ‘ . (33)
p+l e logv

Proof. First prove the theorem for j = 1, let

_ log*log* 4, ;(f,E)R"
limsup Iog’ =a
V—>0 14

Obviously 0 <o <oo.  First assume that 0 < ar < o0
and 0<a’ <a <oo. Then by the definition of & there

exists a sequence {VR} of positive integers tending to o
such that

— ,
Ioglviyl( f,E)R* >v].
In view of Lemma 2.4, the authors get

logM_. (7, f ) 2vZ+v, log (F/R)—log (v, +1)—log K
(3.4)
for the sequence {Vl?} andall T (<R) sufficiently close

to R. Let {FR} be a sequence defined by
1/a'-1
1 =,
Ve = {;Iog (R/rk)} :
then T — R as H k H —> 00. Thus, using (3.4), for all

sufficiently large values of H k H the authors have

1 - a'la'-1 1 - 1/a'-1
IogME:(fi,f)z[—ylog(R/ri)j —[—,Iog(R/fE)j
" o o
_ (1-a)
- a,(a'/aul)

(log(R/F. )" +0@)

Or
al

Iog*log*ME;(FE, f)zl_a

Since - Iog (1— Fg / ﬁ)" —Iog IOg (_/ F;Z )’

log (R /T, )+0()

(~loglog (R /T, ))+0().

Therefore,
a!
1-o

Using  max f(g) < max

log™ log™ Mgg(fw f)z

M. (Fp, f)=M_ (r, f)0<t<l,

|3;|=tr, T etE;
1<i<n
in above inequality, the authors get
+ +
_ log™ log ME;(t,f) a'
limsup >
t1 —log (1-t) l-«o

,

Since ' (< @) is arbitrary, therefore

o

>
P -«

P > . 3.5
ol (3.5)

Now, (3.1) gives that
f(Z)=P(2)+), (R.(2)-P.(2))
v=1
holdsin D . Thus in view of (3.2), the authors get

|f@ﬂﬂ&@ﬂ+2ﬂ&4ﬂ—aﬁn

<K+2> "2, (f,E)yr (36)
v=1
for ZeE,,1<F<R. Here K is constant
independent of I. Now, (3.6) gives
Mg (F, f)<K+2M_ (F,h) 3.7)

where  h(Z)=>"A,,(f,E)Z"".

By Theorem 3.1, N(Z) isanalyticin G"(0,R). Using
(3.7) with Lemma 2.1 for h(Z), the authors get

P <c. 3.8
o+l (3.8)

Hence the proof is complete for O<a <o in view of
(3.5) and (3.8) together with Lemma 2.5. For ¢¢ = 0 Or oo,
the proof is trivially true.

Finally,

10

(~log (-, /R))+ 0@ as| k | - oo,
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Let f(Z)=limL, (%), ZeC".

It has been noticed that the type of f cannot be

characterized in terms of the Chebyshev best approximation to
f on E by polynomials of degree < v with respect to all
variables. So it is convenient to consider the measures

A, (F,E), ki = (K,,....,K,)  of the Chebyshev best
approximation to f on Ei by polynomials of degree < ki
with respect to i" variable, 1=1,...,n, where E, isa

bounded closed set in the complex Z, —plane. Hence the

authors have obtained the characterization of type of F in
terms of A, (f,E;) using the concept of partial order and
partial type ilntroduced by Juneja and Kapoor [2, pp.273].
Now let’s prove the following theorem:

Theorem 3.3
Let f eH(E,R),1<R, <o, and if

p, = (P py) > (0,...,0),
T, = (Tl,...,Tn ) > (O,...,O) are partial order and partial
type of f, respectively, then

pp' ki /(pi+1)
limsup |k | .[loga, (f E)RN| — 20 1
mi"{k\}ﬁa H H ) kw( I) I [(pi +1)p'+1kai]

pi kl /(pi +l)

P
(pi + 1),0, "k 7T

where

o ki py+1 o kn ! pp+1
e S P
E(pl +1)””1'<1’1T1J ""'((pn +1 KT, ]

and “E“:k1+---+kn-

Proof. Let f be of partial type-l'i , then for given
& = (&‘1,..., &, ) > (0,...,0) there  exists

rr=r.(g), r, <F <R, suchthat

lim sup w —

t-1 (1-t)™” Ti,G,Ri (3.9)

forall I,(<R,) sufficiently close to R; . Further (3.9)
can be written as

log”M_. (T, f)
limsup ——=T_
iR ((Ri _ri)/Ri) g "

Il
—

=0

Or

log*M_. (F, f) <(T, +&)R /R —r)".  (310)

In view of Lemma 2.4 with respect to i" variable keeping
other fix, (3.10) gives

log"M_. (, f)2log E, (f,E)+klogr, —log(k; +1)—logK;

log 2, (f,E)<(T+&)R IR -1)" ~k logr, +log (k; +1) +logK;.
(3.11)

Now, choosing a sequence {I’m_ } as

k U(pi+1)
R /R — = — . .
( AR ) ((Ti + & )Pi j e

Clearly r, — R, as m; =00, Putting (3.12) in
(3.11), gives the result

pillpi+l)
IOg/Ikm(fin)Rik‘s(Ti +5i)[kij 1+ p; +0(@)

T +e&)p;

pil(pi+1)
=(T; +&)""" (k—j (L+p; +O(®)

Or

kil +1)

_ _ pi
e [Py

The reverse inequality can be proved by applying Lemma 2.2
to the function h(Z)  with respect to i variable. This

completes the proof for j =1. In view of Lemma 2.5, the

theorem can be proved for | = 2,3.

4. CONCLUSION

Using above results one can get information about the rate of
decay of the error discussed by Winiarski [5] and
Markushevich [3]. Moreover, these results can be used to
limit the results when the function is not necessarily analytic.
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