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ABSTRACT 

The Steady state creep behaviour of a functionally graded 

cylinder made of isotropic composite containing varying 

distribution of silicon carbide particles has been investigated 

by a mathematical model. The creep behaviour of the FGM is 

described by a Norton’s Power law. The effect of varying 

distribution of SiCP particles of creep stresses and creep rates 

in the FGM cylinder has been analyzed and compared with a 

cylinder, having uniform distribution of reinforcement. The 

study reveals that the increasing particle content in the 

cylinder, tangential and effective stresses increase near the 

inner radius but decrease near the outer radius. The strain 

rates in FGM cylinder decreases with the increase in SiCP 

reinforcement. The magnitudes of tangential and radial strain 

rates in FGM discs are significantly lower than in a uniform 

composite disc. 
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1. INTRODUCTION 
Functionally Graded Material (FGM) is a new class of 

materials in which the material properties are varying w. r. t. 

some positions coordinates. FGMs possess a number of 

advantages that make them superior as compare the traditional 

materials (Noda et. al., 1998, Birma and Byrd, 2007). In most 

of these applications, cylinder is subjected to severe 

mechanical and thermal loads, causing significant creep and 

reducing its service life (Gupta and Pathak, 2001, Hagihara 

and Miyazaki, 2008 and, Tachibana and Iyoku, 2004). 

Arya and Bhatnagar (1976) studied creep behaviour 

of thick-walled anisotropic cylinder subjected to internal and 

external pressures. The results obtained for the cylinder by 

considering anisotropic properties in cylinder were compared 

with those estimated for isotropic cylinder. Mishra and 

Samanta (1981) investigated creep response in an orthotropic 

thick-walled cylindrical shells operating at high pressure and 

temperature. It is observed that the temperature variation has a 

significant effect on the strain as well as the strain-rate, in the 

presence of anisotropy in the material. Shukla (1997) 

investigated stresses and strain in a cylinder subjected to 

internal pressure. It is observed that the presence of lesser 

value of compressibility at the internal surface reduces the 

stresses required for the initial yielding. Chen et. al. (2007) 

studied creep response of thick walled FG cylinder subjected 

to both internal and external pressures. It is observed that 

theoretical results are in good agreement with the analytical 

results obtained by using ABAQUS software. You et. al. 

(2007) analyzed effect of variation of material parameters on 

steady state creep in FGM cylinders subjected to internal 

pressure by using Norton’s power law. Sharma et. al. (2010) 

estimated creep stresses in internally pressurized thick-walled 

rotating cylinder made of isotropic and transversely isotropic 

materials. It is observed that a transversely isotropic rotating 

cylinder is on the safer side of the design as compared to a 

isotropic rotating circular cylinder made of isotropic material. 

In the light of above mentioned, it has been decided to 

investigate the effect of varying reinforcement (SiCp) gradient 

on the creep behavior of the FGM cylinder by using Norton 

Law. The study carried out is an attempt to evolve 

understanding of the creep behavior and content of the 

reinforcement on the creep stresses and strain rate in the FGM 

cylinder  

2. DISTRIBUTION OF 

REINFORCEMENT  
The distribution of SiCp in the FGM cylinder decreases 

linearly from the inner to outer radius. The amount (vol %) of 

SiCP, V(r), at any radius r, is given by (Singh and Gupta, 

(2011). 
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Where maxV and minV are respectively the maximum and 

minimum content of SiCP at the inner and the outer radii of 

the cylinder respectively  

The average SiCp content in the cylinder can be expressed as, 
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Where l is the length of cylinder. 

Substituting V(r) from Eq. (1) into Eq.  (2) and integrating, we 

get,  
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Where ba  

3. CREEP LAW AND PARAMETERS 
The creep behavior of the FGM cylinder is described by 

Norton’s power law as, 

n
ee B                                                        (4) 

Where e is the effective strain rate, e  is the effective stress, 

B and n are material parameters describing the creep 

performance in the cylinder. 

It is evident from the study of Singh and Ray (2001) that the 

values of creep parameters B and n appearing in the Norton’s 

law depend on the content of reinforcement, which vary with 

the radial distance. 
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Where Bo and no are respectively the values of creep 

parameters B and n respectively and ϕ is the grading index.  

The values of Bo , n  and ϕ  are respectively taken as 2.77 x 

10-16 , 3.75 and 0.7 as reported in the study of Chen et. al., 

(2007).  

4. MATHEMATICAL FORMULATION  
Consider a FGM thick-walled hollow cylinder with an inner 

radius a and outer radius b subjected to an internal and 

external pressures p and q respectively. The cylinder is made 

of orthotropic material and is sufficiently long and hence is 

assumed under plain strain condition (i.e. axial strain rate, 

0z ) 

The radial ( r ) and tangential (  ) strain rates in the 

cylinder are given by:   

        dr

ud r
r
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Where  dtduur 

 

is the radial displacement rate and u is 

the radial displacement. 

Eqs (7) and (8) may be solved to get the following 

compatibility equation, 
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The cylinder is subjected to the following boundary 

conditions, 

pr   at ar                      (10)         
qr   at br                              (11) 

Where the negative sign of r implies the compressive nature 

of radial stress. 

By considering the equilibrium of forces acting on an element 

of the cylinder in the radial direction, we get, 
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The material of the cylinder is incompressible, therefore, 

0 zr                  (13) 

The constitutive equations under multi axial creep in an 

orthotropic cylinder, when the principal axes are the axes of 

reference, Bhatnagar and Gupta [2] are given by, 
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Where e  and e  are respectively the effective strain rate 

and effective stress in the FGM cylinder. 

The Principal axes of isotropy are the axes of reference, Dieter 

[5], is given by, 
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Since Under plain strain condition ( 0z ), one may get 

from Eqs. (7), (8) and (13), 

r
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Where C is a constant of integration. Using Eq. (18) in Eqs. 

(7) and (8), we get, 
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Substituting z from Eq. (21) in to Eq. (17), we get, 
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Substituting r and z  respectively from Eqs. (19) and (21) 

into Eq. (14), we obtain, 
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Using Eqs. (4) and (22) in Eq. (23) and simplifying, one gets, 
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Substituting Eq. (24) into Eq. (12) and integrating, we get, 
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Substituting Eq. (26) into Eq. (24), we obtain, 
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To estimate the value of constant C, needed for estimating 1I , 

the boundary conditions given in Eqs. (10) and (11) are used 

in Eq. (26) with X1(Eq. 27) integrated between limits a to b. to 

get, 
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Substituting the value of 1I  from Eq. (25) in to Eq. (29) and 

simplifying, we obtain, 
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Using Eqs. (21) and (22) into Eqs. (14) and (15), one obtains, 
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The analysis presented above yields the results for isotropic 

FGM cylinder. 

5. NUMERICAL SCHEME OF 

COMPUTATION 
Following the procedure described in section 4 and to begin 

the computation procedure, the vlaues of  X2 Eq.(31) is 

estimated by substituting the value of the Creep parameters B 

and n from Eqs(5) and (6) respectively.To obtain the value of 

constant C by substituted the vlaue of X2 in Eq.(30) and using 

this value in Eq.( 25), the value of I1 is obtained. By using this 

value of I1 in Eq.(27), the value of X1 is obtained. After 

getting the value of X1, the Stresses r  and   
are obtained 

from Eqs.(26) and (28) respectively. Now, to estimate the 

distribution of axial stress z , the value of  r  and   
are 

substituted in Eqs.(21), after obtaining the value of r , 

and z , the values of e  and e  are calculated from Eqs. 

(22) and (4) respectively. Finally the strain rates r and  are 

calculated respectively from Eqs. (14) and (15). The results 

have been obtained for three different composite cylinders, as 

described in Table 5.1. 

Table 5.1: Details of different composite cylinders 

Cylinder Vmax. 

vol.% 

Vavg 

vol.% 

Vmin 

vol.% 

Non-FGM (C1) 20 20 20 

FGM (C2) 25 20 16 

FGM (C3) 30 20 12 

6. RESULTS AND DISCUSSION 
 Before presenting the result completed, it is necessary to 

check the validity of the analysis carried out. To accomplish 

this task, the tangential stress in a cylinder for which the 

results are reported by the Chen et. al., 2007. The values of Bo 

, n  and    are respectively taken as 2.77 x 10-16 , 3.75 and 

0.7 as reported in the study of Chen et. al., (2007). The 

tangential stress obtained in the cylinder is compared with that 

reported by Chen et. al. (2007). A good agreement (refer Fig. 

1) is observed between the results obtained in present study 

and those of Chen et. al. (2007). 

  

Figure.1: Validation of present study vs Chen et. al. (2007) 

 

6.1 Variation of Creep Parameters 
Figure 2 shows the variation of creep parameters B with radial 

distance in FGM and Non-FGM cylinders. In FGM cylinders 

C2 and C3, the value of parameter B decreases with increase 

in radius, but the value of B parameter remains constant for 

Non-FGM cylinder due to constant amount of SiCP content. 

The variation of creep parameters B and n exhibits a crossover 

at a radius of around 15.8 mm. Figure 3 shows the variation of 

creep parameters n with radial distance in FGM and Non-

FGM cylinders. In FGM cylinders C2 and C3, the value of 

parameter n increases with increase in radius, but the value of 

n parameter remains constant for Non-FGM cylinder due to 

constant amount of SiCP content. Figure 4 shows the variation 

of SiCP Content in FGM and Non-FGM cylinders. It is 

observed that the distribution of SiCP reinforcement in FGM 

cylinder C2 and FGM Cylinder C3 decreases from inner to 

outer radius. However, the Non-FGM Cylinder C1 has 

uniform value because it remains 20% throughout. The 

variation of SiCP Content exhibits a crossover at a radius of 

around 15.8 mm. 

 

Figure 2: Variation of creep parameter B  in cylinders 

 

Fig.3: Variation of stress exponent n in cylinders 
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Fig.4: Variation of SiCP Content in cylinders 

6.2 Distribution of stresses and strains  
Figure 5 shows the variation of radial stress in the FGM and 

Non-FGM cylinders. It is observed that the radial stress 

remain compressive over the entire cylinder with a maximum 

(compressive) and zero value reported at the inner and outer 

radii respectively, under the imposed boundary conditions 

given in Eqs. (10) and (11). It is observed which the radial 

stress is increasing over the entire cylinder radii with the 

increasing SiCP reinforcement in the cylinder and the value of 

radial stress in FGM cylinder is higher than the Non-FGM 

Cylinder. Figure 6 shows the variation of tangential stress in 

the FGM and Non-FGM cylinders. The tangential stress 

remains tensile throughout the FGM and Non- FGM 

cylinders. By increasing Particle gradient in the FGM 

Cylinder, the tangential stress increases near the inner radius 

but decreases toward the outer radius when compared with the 

distribution of tangential stress in Non-FGM cylinder C1. At 

inner radius the value of stress of FGM cylinder C2 is less 

than FGM cylinder C3. Whereas at outer radius its vice versa 

i.e value of stress of FGM cylinder C2 is more than FGM 

cylinder C3. And the values of all these cylinders intersect 

each other in between 12.3 to 14.3. Figure 7 shows the 

variation of effective stress in the FGM and Non-FGM 

cylinders. It is observed that the effective stresses increase 

near the inner radius but decrease towards the outer radius, 

when compared with composite Non-FGM cylinder C1 

having uniform distribution of SiCp reinforcement. 

Figure 8 shows the variation of radial and tangential strain 

rates in the FGM and Non-FGM cylinders. It is observed that 

the effect of radial and tangential strain rates in the cylinders 

decreases with increasing radius. The radial and tangential 

strains rates of Non-FGM cylinder C1 decreases as the radius 

increases, when Non-FGM cylinder C1 is compared with 

FGM cylinder C2 and C3, It is observed that in case of FGM 

Cylinder C2, the radial and tangential strain rates increases at 

inner radius and decreases at outer radius, while in case of 

FGM cylinder C3 the radial and tangential strain rate less than 

Non-FGM cylinder C1 and decreases as moves from inner 

radius to outer radius. Figure 9 shows the variation of 

effective strain rate in the FGM and Non-FGM cylinders 

similar those described for radial and tangential strain rates. 

The strain rates show a little decrease in the middle of the 

cylinder with the increase in SiCP reinforcement. 

 

Fig.5: Variation of radial Stress in cylinders 

 

Fig. 6: Variation of Tangential Stress in cylinders 

 

Fig. 7: variation of Effective Stress in cylinders 
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Fig. 8: variation of radial and tangential strain rate in 

cylinders 

 

Fig. 9: Variation of effective strain rate in cylinders 

7. CONCLUSIONS 
The study carried out has led to the following 

conclusions: 

i. The radial stress (compressive) in the composite 

cylinder decreases throughout with the increase in 

particle gradient in the FGM cylinder. In the also 

observed that with the increase in SiCp gradient in 

the FGM cylinder, the tangential and effective 

stresses increase near the inner radius but decrease 

towards the outer radius, when compared with 

cylinder having uniform distribution of SiCp 

reinforcement. 

ii. The radial, tangential and effective strains in the 

composite cylinder decreases significantly with 

increasing SiCp particle content in the cylinder. The 

reduction observed near the inner radius is more 

than those observed towards the outer radius. The 

strain rates shows a little decrease in the middle  of 

the cylinder with the increase in SiCP reinforcement 
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