
International Journal of Computer Applications (0975 – 8887) 

International Conference on Advancements in Engineering and Technology (ICAET 2015) 

16 

A Review Study on Presentation of Positive Integers as 

Sum of Squares 

Ashwani Sikri 
Department of Mathematics, 

 S. D. College Barnala-148101 
 

ABSTRACT 
It can be easily seen  that every positive integer is written as 

sum of squares. In 1640, Fermat stated a theorem known as 

“Theorem of Fermat” which state that every prime of the form 

 can be written as sum of two squares. On 

December 25, 1640, Fermat sent proof of this theorem in a 

letter to Mersenne. However the proof of this theorem was 

first published by Euler in 1754, who also proved that the 

representation is unique. Later it was proved that a positive 

integer n is written as the sum of two squares iff  each of its 

prime factors of the form  occurs to an even power 

in the prime factorization of n. 

Diophantus stated a conjecture that no number of the form 

 for non negative integer λ, is written as sum of 

three squares which was verified by Descartes in 1638. Later 

Fermat stated that a positive integer can be written as a sum of 

three squares  iff  it is not of the form  where 

m and λ are non-negative integers. This was proved  by 

Legendre in 1798 and then by Gauss in 1801 in more clear 

way. 

In 1621, Bachet stated a conjecture that “Every positive 

integer can be written as sum of four squares, counting ” 

and he verified this for all integers upto 325. Fifteen years 

later, Fermat claimed that he had a proof but no detail was 

given by him. A complete proof of this four square conjecture 

was published by Lagrange in 1772.  Euler gave  much 

simpler demonstration of Lagrange‟s four squares theorem by 

stating fundamental identity which allow us to write  the 

product of two sums of four squares as  sum of four squares 

and some other crucial results in 1773. 
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1. INTRODUCTION 
First we characterize the positive integers which can be 

represented as the sum of two squares, the sum of three 

squares and the sum of four squares by considering the first 

few positive integers. 

 

 

 

 

 

 

 

 

 
So, we see that positive integers are expressed as sum of four 

or less than four squares.  

Sum of two squares  
We begin with problem of expressing positive integers as sum 

of two squares, for this we will first consider the case when 

positive integer is prime. 

Theorem 

No prime p of the form  is written as a sum of two 

squares[1]. 

Proof  

Let  

    …… (1) 

Suppose if possible that p is written as sum of two squares 

i.e.  where a, b are positive integers. 

Now, for any integer „a‟, we have 

 

   
 …… (2) 

Similarly,    …… (3) 

From (2) and (3), we have  

, which contradict (1). 

So, our supposition is wrong. Hence, p is not written as sum 

of two square. 

Wilson’s Theorem 

 If p is a prime then  [1] 

Thue’s Theorem[1] 

 Let p be a prime and a be any integer such that 

 Then the congruence   

has an integral solution , where, 

  

Theorem of Fermat[2] 
An odd prime p is represented as sum of two squares if and 

only if   

Proof   

Let p be written as sum of two squares say      

… (1) 

Claim  

Suppose  

Then p|a2  …… (2) 

Also   …… (3) 
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So, (2) & (3) implies p|p- a2 

Which implies that  p|b2        by (1)  

Which further implies that  (because p is prime) 

Now  

  
 p2|a2 +b2 

  p2|p     by (1)  

Which is not possible 

So  

In Same way  

Now  

  

 Congruence  has unique 

Solution say  

   …… (4) 

(1)   

  
Modulo p above equation by use of four becomes; 

 

  

  has sol  

  is quadratic residue of p 

  

Converse Let  

       is a positive 

integer 

Now p is prime so by Wilson theorem we have 

 

1.2.3 ……………  

 1.2. ……….  ……….

 

   [Because    

 ] 

 1.2……….   ………… 

 

 1.2……….   ………… 

 

  

  

[Because   ] 

 where a = 1.2………….

 

  

   [Because ] 

  

So by Thue‟s theorem implies that the congruence 

 has solution  

Where  and x0, y0 are 

integers.  

i.e.  

  

   by use of 

(5) 

      [Because 

congruence ≡ is symmetric relation] 

 p|x02+y02 

   …….. (6) [for some 

] 

Now  

  

  

 but  is a natural number.  

So this implies that  

Put in (6)  

  
 p is sum of two square. 

 

Corollary[2] 
Any prime p of the form 4n+1 can be represented in a unique 

way as a sum of two squares (aside from the order of the 

summands).  

Proof 
Since p is prime of  the form 4n+1, so it is represented as sum 

of two squares, Now we will prove the uniqueness, assume 

that  

p= a2+b2 =c2+d2       (1) 

Where a,b,c, d are  all positive integers, (a,b)=1, (c,d)=1 

Now a2d2 - b2c2 = a2d2+b2d2 - b2d2- b2c2 

   =(a2+b2)d2-b2(d2+c2) 

   = pd2 - b2p 

                                                   (by 1) 

   = p (d2-b2) 

   ≡0(modp)  (because d2 

– b2 is an integer) 

       a2d2-b2c2 ≡ 0 (mod p)  

=> p|a2d2 - b2c2  

=> p| (ad-bc) (ad+bc) 

but p is prime  

=> p|ad-bc or p|ad+bc   (2) 

(1) => a,b,c,d are all less than 
p

 

   => 0≤ad-bc <p & 0< ad+bc <2p 

So (2) => ad-bc=0 or ad+bc =p  (3) 

If ad+bc=p then we would have ac=bd; for,  

p2= (a2+b2) (c2+d2) = (ad+bc) 2+ (ac-bd) 2 

       = p2+ (ac -bd) 2 

  => p2= p2+ (ac-bd) 2 

  => (ac-bd)2 =0 

  => ac-bd =0 

  => ac=bd 

So (3) => either ad=bc or ac=bd - (4)  

Suppose if possible that  ad=bc - (5) 

   => bc= ad, d is integer  
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   => a|bc 

   => a|c [Because (a,b)=1] 

  =>   +ve integer λ s.t 

   c=λa (6) Put in (5) 

   ad=bλa  

  => d= λb  -(7) 

Now   p= c2+d2  by (1) 

  p = λ2 (a2+b2)     by (6), (7) 
=> (a2+b2) = λ2 (a2+b2)       by (1) because a2+ b2 is not 

equal to zero 

=> λ=1 

Put in (6), (7) 

c=a, d=b 

In same way the condition ac=bd impliess to a=d, b=c 

Which proves uniqueness 

 
Lemma[3] 
If positive integers ∝ and β are written as sum of two squares 

then ∝ β is also written as sum of two squares. 

Proof  

Let  and  where a, b, c, d are 

integers.  

 

  
 

 

  
 ∝ β is sum of two squares. 

Theorem[4] 
 A positive integer n is written as the sum of two squares if 

and only if each of its prime factors of the form  

occurs to an even power in the prime factorization of n. 

Proof 
Suppose n is written as sum of two squares i.e. 

    …. (i) 

where a & b are integers. 

Let p be prime factor of n of the form  which occurs 

in prime factorization of n. 

Claim 
Power of p is even 

Let  

       

   …….. (ii) 

Let  and     and  

  …….. (iii) 

(ii) and (iii)   

Now either p does not divide x or p does not divide y  

     [because 

otherwise if p x and p y  then p|(x,y)  which implies that 

p|1  not possible] 

       then   which implies that  

not possible as p is a prime] 

Let us suppose p does not divide x  gcd  

 =1 where  are integers 

      
   ……….. (iv) 

(i) & (iii)     

    

    where 

 
Now we will prove p does not divide m 

Suppose if possible p divides m which implies p divides 

x2+y2 

 p| β12(x2+y2) 

 p| β12x2+ β12y2 

   
    ………..(v) 

(iv) & (v)   

  

 Congruence  has a solution 

 

 is quadratic residue mod p 

  

Not possible [because   

 
Our supposition is wrong 

Hence p does not divide m gcd  [because p is 

prime] 

Now   p|d2m 

   p|d2  because gcd 

 

     because p is prime 

Let  be the highest power of p in prime factorization of d, 

where λ is a positive integer. 

 2  is the highest power of p in prime factorization of 

 

 2  is the highest power of p in prime factorization of 

  
(because p does not divide m) 

 2  is the highest power of p in prime factorization of n 

 Power of p in prime factorization of n is even. 

Converse 

Let each prime factor of n of the form  occurs to an 

even power in the prime factorization of n 

Let 

 be prime factorization of n 

where pi are primes of the form 4k+1 for all i=1,2,3,……r  

and qj are primes of the form 4t+3 for all j=1,2,3,……..,s 

Since pi is prime of the form 4k+1 

  is sum of two squares 

 by Two squares Theorem of Fermat 

   is sum of two squares by Lemma 
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   is sum of two squares by Lemma 

 ------------------------ 

 ------------------------ 

pii=sum of two squares  

  ……….. (vi) 

Now   

  = Sum of two squares 

    Sum of two squares by Lemma 

    Sum of two squares by Lemma 

------------------------ 

 ------------------------ 

 = Sum of two squares    

  ……..(vii) 
Also 

 

           = Sum of two squares – 

(viii) 

(vi), (vii) and (viii) & repeated use of Lemma implies that  

  
is sum of two squares  

 n is sum of two squares. 

 

Examples[5] 

(i)  is not written as sum of two squares as 

power of prime factor 3 of the form  for k=0 in 

prime factorization of 135 is not even. 

(ii)  is written as sum of two squares as power 

of prime 3 of the form  for k=0 in the prime 

factorization of 153 is even 

Also      

  

  sum of two squares. 

 

Sum of three squares 

Theorem:[6] 

No positive integer of the form  is written as 

sum of three squares where m and λ are non negative integers  

Proof:-  Let     

 ……….. (1) 

Case I    

So (1)   

     
  ……….…(2) 

Suppose n is sum of three squares 

Let         

 ………….(3) 

Where a, b, c are integers 

Now a is any integer 

    

     
  ………….(4) 

In same way   

  ……….…(5) 

            
  ……….…(6) 

(4), (5) & (6)  

 

             
   Not possible by (2) 

 Our supposition is wrong 

 n is not written as sum of three squares. 

Case II   

Suppose n is sum of three squares 

Let  where a, b, c are integers 

   
   …………. (7) 

  even because  is 

multiple of 4 

 Either all the a, b, c are even or either two are odd and one 

is even. 

Suppose if possible that a, b are odd and c is even. 

Let  

where r1, r2 and s are integers. 

 

 

  is not multiple of 4, Not true 

 all a, b, c are even 

Let where a1, 

b1 c1 are integers  

Put in (7)  

   
   ………… (8) 

 even 

As above we can prove that; 

 where a2, 

b2 and c2 are integers 

Put in (8) 

 

   

Repeat above process  times more, we get 

  where am, bm 

and cm are integers. 

Which implies that,   

Which further implies that  is sum of three squares 

not possible by Case I. 

So, Our supposition is wrong 

Hence  is not written as sum of three squares. 

Examples 
1. 15, which is of the form 8 λ +7 for λ =1 &  

    15=  2222 1123 sum of three squares 

2. 240, which is of the form  for m=2 and λ=1 

& 

     240 =  2222 44812 sum of three squares  
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3. 459 is not of the form  for any m and λ & 

    459 = 
222 111313  = sum of three squares  

Sum of four squares 
For coming to four squares problem we state two Lemmas 

Lemma 1 (Fundamental Identity of Euler)[7] 
If the positive integers m and n  each are written as  the sum 

of four squares, then mn is also written as such a sum. 

Lemma 2 (Euler) 

[7] If p is an odd prime then the congruence  

 has a solution  

where  and . 

Theorem:[7] 

For an odd prime p, there exists a positive integer  

such that mp is written as the sum of four squares. 

Proof:  

For an odd prime p, Lemma 2 implies that there exists 

integers  

   ,      

  ……….. (1) 

 
Such that 

  

     
  ………….(2) 

where m is a positive integer 

    
  …………..(3) 

Now (1) and (2) implies that      

i.e.  

       
  …………(4) 

So, (3) & (4) implies that  there exists an integer  s.t. 

mp is sum of four squares. 

 

Theorem:[8] 
Any prime p can be written as the sum of four squares. 

Proof 

The theorem is cleary true for ,  

since So we consider the case 

for odd primes. 

Now p is odd prime. 

So, above theorem implies that there exists an integer 

 such that mp is the sum of four squares.  

Let n be the smallest positive integer such that np is the sum 

of four squares; say 

   
  ………… (1) 

Where a, b, c, d are integers and also   because 

 

Claim  
First we will show that n is an odd integer. For a proof by 

contradiction, suppose if possible that n is even. Then a,b,c,d 

are all even; or all are odd; or two are even and two are odd. 

In all these possibilities we can rearrange them to have  

 
It follows that; 

 
are all integers and (1) implies that 

           +  +  

+  

is representation of p as a sum of four squares for a 

positive integer . 

This contradicts the minimal nature of n,  

So n is an odd integer 

Now we will show that . Suppose if possible n is not 

equal to 1, then n is at least 3 beacause n is an odd integer. 

So, there exists integers A, B, C, D such that  

    … (2) 

and ,   

 
Here, A, B, C, D are absolute least residue of a, b, c, d 

respectively moduleo n. 

Then 

 

So, 

 

i.e. ,  

i.e.  

and so   

   …………… (3) 

for some non-negative integer k. 

Because of restrictions on the size of A, B, C, D we have;  

  

We cannot have , because this would implies that 

 and in consequence, that n divides 

each of the integers a, b, c, d by (2) which implies that n2 

divide each of the integers a2, b2 , c2 and d2 which further 

implies that n2 divides their sum i.e. n2|np       by (1) 

Or   which is impossible because of  
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Also the relation  implies that .  

In sum;   

& (3)  

)(A2+B2+C2+D2) 

 

+Dc)2+(aC+bD-cA-Db)2+(aD-bC+cB-dA)2 

i.e.     

  ………… (4) 

where  

 

 

 

Now  

  by use of 

(2) 

  by use of (3) 

i.e.  

i.e. n r 

In same way, n s, n t, n u 

 n

u

n

t

n

s

n

r
,,,

are all integers. 

Now (4)   +  +  +  

 pk is sum of four squares. 

Since , we gets a contradiction because n is the 

smallest positive integer for which np is the sum of four 

squares. With this contradiction we have  

Put in (1) 

 
which implies p is sum of four squares and proof is complete. 
Lagrange’s four square theorem[1, 9-10] 

Statement 
Any positive integer n can be written as the sum of four 

squares, some of which may be zero. 

Proof 
Clearly, the integer 1 is written as 

 a sum of four squares. Assume 

that  and let  be canonical 

form of n  where pi are not necessarily distinct. 

We know that each  is written as sum of four squares 

So by apply Fundamental Identity of Euler r times we obtain 

the result that  is written as sum of 

four squares. 

Example  
Write 391 as sum of four squares  

Solution: we use fundamental identity of Euler to write this.  

Fundamental identity of euler:  

If m = a2+b2+c2+d2 and n = x2+y2+z2+t2 

Where a, b, c, d, x, y, z, t are integers. 

Then mn= (a2+b2+c2+d2) (x2+y2+z2+t2) 

   = (ax+by+cz+dt)2 + (ay – bz – ct + dz)2 + (az + bt 

– cx – dy)2 + (at – bz + cy – dx)2 

We know 391 = 17.23 

     = (42 + 12 + 02 + 02) (32 + 32 + 22 + 12) 

= (4.3 + 1.3 + 0.2 + 0.1)2 + (4.3 – 1.3 – 0.1 + 0.2)2 + (4.2 + 

1.1 – 0.3 – 0.3)2 + (4.1 – 1.2 + 0.3 – 0.3)2   

= 152 + 92 + 92 + 22 

= sum of four squares  

2. CONCLUSION AND 

GENERALIZATION 
Every positive integer can be expressed as sum of squares. 

Many ideas were involved to generalize the squares to higher 

powers. Edward Waring stated that each positive integer can 

be expressed as sum of at least 9 cubes and also as a sum of at 

least 19 fourth powers and so on. There arises a question , can 

every positive integer be expressible as the sum of no more 

than a fixed number g(k) of kth powers. For answering this 

question, a large body of research in number theory is 

required. A number of Mathematicians has worked in this 

research and has been working to find the general formula to 

find g(k) for all k. 
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