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ABSTRACT 
Multiple sequence alignment (MSA) is an NP-complete and 

important problem in bioinformatics. In this paper, we have 

proposed iterative alignment method using a Genetic 

Algorithm for Multiple Sequence Alignment, named TSGA-

MSA. The steps in this algorithm are discussed in details and 

its performances on a set of benchmark datasets from the 

BAliBase 2.0 are analysed. The experimental results, the 

effects of the initial generation and genetic operators on the 

performance of this algorithm, the parameter settings, and a 

comparison of results with other well-known algorithm are 

presented and discussed. 
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1. INTRODUCTION 
We start by introducing some existing methods for solving the 

problem of MSA using genetic algorithm then the notion of 

conventional traces as representation of the relation between 

two sequences. 

Then we define scoring schemes based on both, the 

comparison of two characters of the sequences and the 

comparison of whole segments of the sequences. The 

evolutionary genetic model of TSGA-MSA for generating the 

best scorer alignment is shown in Figure 1 and the process is 

described below. 

2. RELATED STUDY 
Genetic algorithm is one of the useful tools determining 

alignment of multiple sequences. Iterative methods may be 

implemented through evolutionary approach that use 

computational heuristics based on natural biological 

phenomena such as selection, crossover and mutation to 

evolve a population of candidate solutions based on an 

objective function because they work similarly to progressive 

methods but repeatedly realign the initial sequences as well as 

adding new sequences to the growing MSA [1].  

In the following the main characteristics of various existing 

evolutionary algorithms are presented. 

 

  
Fig 1: Evolutionary Genetic Model

These algorithms differ in many features like the chromosome 

representation of the multiple alignment, the used fitness 

function and the applied operators.The first evolutionary 

algorithm using an adequate set of problem specific crossover 



International Journal of Computer Applications® (IJCA) (0975 – 8887)  

International Conference on Advances in Computer Engineering & Applications (ICACEA-2014) at IMSEC, GZB 

22 

and mutation operators called SAGA [2] proposed by C. 

Notredame and D.G. Higgins in 1996. SAGA is a 

straightforward implementation of a genetic algorithm that 

have been successfully  applied to the MSA problems, which 

tried to optimize a weighted sum-of-pairs function with 

natural or quasi-natural affine gap penalties. It is used to 

optimize two different objective functions and shows that they 

can search large solution space efficiently. But due to repeated 

use of fitness function it may increase its time complexity. 

Based on SAGA, two other evolutionary algorithms have been 

developed: PGA [3], which is a parallel implementation of 

SAGA, and SAGA-COFFEE [4], which tries to optimize a 

consistency based objective function: Let Wi;j being the 

percent identity between two aligned sequences, Ci;j being 

the number of aligned characters, that are shared between the 

pairwise alignment and a library containing all pairwise 

alignments, and Li;j being the length of the pairwise 

alignment. Then the consistency based objective function of 

SAGA-COFFEE is computed as follows (with n being the 

number of sequences): 

 

 

 

Further, GA based algorithms were among the some of the 

most effective approaches used to solve the MSA problem. In 

[5], a combination of a GA and DP is used with two different 

distance matrices. The main drawback of this technique is its 

limitation in performing crossover and mutation operations. In 

[6], a GA approach is proposed with a description of the so-

called Center Star Algorithm (CSA). In addition to this 

algorithm’s convergence problems, forcing the GA to work 

around the CSA and the initial population creates a major 

disadvantage for this approach. It leads to the inability of the 

main search algorithm to explore all parts of the solution 

space. In [7], a very different GA approach is presented. In 

this work, five mutation operators are designed to be 

randomly selected in each cycle of the algorithm. Here, no 

particular optimization plan is used; therefore, this greedy 

algorithm just moves toward any potential answer. One of the 

most appropriate GA approaches to solve the MSA problem is 

presented in [8]. Although, the authors carefully define their 

chromosome, crossover and mutation operators, the definition 

of their scoring function appears to be their main drawback. In 

[9] a very interesting divide-and conquer GA based 

approaches is presented. Here, the sequences are divided into 

smaller sequences and then they are aligned by a GA. If these 

partial alignments generate better results, they would be 

replaced by the original ones. Although this approach 

managed to significantly reduce the simulation time, there is 

no guarantee that the aggregation of these partially optimal 

strings ends up with the global minimum and/or a reasonable 

alignment. 

In [10], the authors present a very simple implementation of 

the GA. In this work, the GA’s convergence speed is 

significantly reduced by the simplicity of the algorithm. The 

fact that this GA approach discards many offspring is the 

main reason for its slow convergence. In [11], the 

convergence speed of a GA is increased by combining it with 

a Simulated Annealing algorithm.  

The GA in [12] uses quantum mechanics concepts by 

employing a binary matrix to represent only four 

chromosomes that are used to solve the problem. In each GA 

cycle, the best three solutions are directly copied to the next 

generation and only one of them (the worst one) is selected 

for the GA operations. The proposed GA is significantly 

biased toward good answers, which strongly prevents it from 

exploring other parts of the solution space. Authors of the 

research in [13] present a GA based approach to find the 

optimal cut-off-points to divide the large sequences to several 

smaller ones. Each of these smaller sequences is solved by an 

Ant-Colony approach.  

The limited use of the GA just to find the cut-offpoints is 

quite time consuming in this approach. 

After that effective GARS approach by Yang Chen, Jinglu Hu 

[14] based on Genetic Algorithm with Reverse Selection was 

proposed. But it suffers from premature convergence in which 

solution reaches locally at an optimal stage. Furthermore a 

new approach AlineaGA [15] was proposed which used a 

Genetic Algorithm with local search optimization embedded 

on its mutation operators for performing multiple sequence 

alignment. But its mutation probability leads to better 

solutions in fewer generations and that the mutation operators 

had a dramatic effect in this particular domain. Recently 

Amouda Nizam and Jeyakodi Ravi developed new Cyclic 

Genetic Approach (CGA) [16] with the complete knowledge 

of the problem and its parameters. In CGA, the values of 

various parameters are decided based on the problem and 

fitness value obtained in each generation. But the column 

score value varies for each execution may not give relatively 

better alignment. Zahra Narimani [17] proposed a new 

algorithm that uses a new way of population initialization and 

simple mutation and recombination operators. The strength of 

the proposed GA is using simple mutation operators and also 

a special recombination operator that does not have problems 

of similar recombination operators in other GAs. The 

experimental results show that the proposed algorithm is 

capable of finding good MSAs in contrast to existing 

methods, while it uses simple operators with low 

computational complexity. Another multiobjective algorithm 

[18], based on the non-dominated sorting genetic algorithm, 

aims to jointly optimize three objectives: STRIKE score, non-

gaps percentage and totally conserved columns. It was 

significantly assessed on the BAliBASE benchmark according 

to the Kruskal–Wallis test (P < 0.01). 

As a result optimal sequence alignment with local search 

space still remains an open challenge. It is generally observed 

that many algorithms do not consider a sufficient number of 

benchmark dataset for experimentation and validation. To 

meet this challenge various research are are now being 

applied.  

3. TRACE SEQUENCE ALGORITHM 

FOR MSA (TSGA-MSA) 
The proposed Trace sequence algorithm for MSA (TSGA-

MSA) is a modification of the basic GA. Its steps are: 

generation of initial population, inserting the gaps in a 

sequence by tracing he graph, generation of the child 

population by applying genetic operators, formation of a new 

population for the next generation, and then further 

application of vertical division and combination and, finally, 

establishment of the stopping criteria. 

A multiple sequence alignment (MSA) of A is obtained by 

inserting gaps (’-’) into the original sequences such that all 

resulting sequences A*i have equal length L ≥max {ni | i = 1, . 

. . , r}[1]. 
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3.1 Trace of an alignment 
We are taken pairwise alignment A (S1; S2) of two sequences 

S1 and S2. We can identify the characters of S1 and S2 as the 

vertices V of the complete bipartite graph G = (V, E) = Kn1, n2, 

i.e., V = S1∪S2 where Si: = { si: ׀  1≤j≤ni }.We call G the input 

alignment graph. The edges in G are called alignment edges 

and represent possible (mis) matches of the characters in the 

two sequences. We say that a (mis) match in the alignment A 

realizes the edge in E that joins the aligned characters. The set 

of all edges in E that is realized by an alignment is called a 

trace, a notion first introduced by Sankoff and Kruskal [19]. 

In Figure 2 an alignment and the corresponding trace are 

shown. Of course not all edges can be realized where the edge 

e starts and by end (e) the position of the letter of S2 where the 

edge e ends. Start in Si, end in Sj , and if 

       start (e) > start(f) and end(e) ≤end(f) 

or 

start (e) = start(f) and end(e) < end(f): 

 

Fig 2: A pairwise trace and the alignment that realize that 

trace 

 
In the following example depicted in Figure 3, we will 

consider a novel approach to computing an MSA based on 

“integer linear programming”. Suppose we are given two 

sequences a1 = A G C =T and a2 = AGT 

 

Fig 3: Equal length of sequence matrix 

The set of realized edges is called the trace of the alignment. 

An arbitrary subset T ⊆ E of edges is called a trace, if there 

exists some alignment that realizes precisely the edges in E. 

Our goal is to characterize all legal traces. So firstly we have 

trace all the sequence with same pattern and put these symbols 

in same column then insert the gap in that place where the 

same symbol is not matched. Therefore we have to generate 

the maximum length of sequence by inserting the spaces in a 

matrix. Suppose we are given three sequences a1 = A G C T, 

a2 = A G T and A C T that are shown in Figure 4. 

 
Fig 4: matrix after inserting the space 

The encoding process is often the most difficult aspect of 

solving a problem using genetic algorithms. When applying 

them to a specific problem it is often hard to find an 

appropriate representation of the solution that will be easy to 

use in the crossover process. 

 

3.2 Score functions based on pairs of 

sequence segments 
Traces neglect the order of unaligned residues and therefore 

only matches and mismatches are scored. Since the 

(mis)matches correspond to the alignment edges in the input 

alignment graph, we assign each alignment edge e∈E a weight 

wij representing the benefit of realizing that edge. Then a 

pairwise trace score function can be defined by the formula. 
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3.3 Selection Procedure 
In this case we are applying the tournament selection 

procedure for finding out the best solution. Two solutions are 

picked out of the pool of possible solutions, their fitness is 

compared, and the better is permitted to reproduce. 

 

3.4 Window frame Combine Crossover 

Operator 
In window frame combine operator, both parents are selected, 

from the middle of 20% of the parent generation. For window 

frame combine crossovers, each parent is divided into three 

parts. The different part from these parents are then 

exchanged and merged together to generate two new 

individuals. However, the better one will be taken as a child. 

The crossover is implemented in two steps as described 

below. 

Step 1: To create a 20% window frame from the overall 

length of both parents and calculate the score scores of the 

first 20% of columns for both parents. The parent having the 

better score is divided vertically at that column. The other 

parent is divided using the same mechanism. 

Step 2: We now have cut the 20% window frame of first 

parent and it combine with second to create new individual 

and vice versa.  

To complete the crossover, the middle part of both parents are 

to be exchanged and then all three pieces are merged together 

to generate two new individuals.  
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3.5 Combine Space Mutation Operator 
The purpose of the combine Space operator is to merge two or 

three spaces together. In the combine space operator we 

combine space of 20% rows of all the parent chromosomes 

after crossover. 

 

3.6 New Generation 
In this research, the best 50% of the parents and the best 50% 

of the children were merged together while ensuring that there 

was no duplication of individuals. Experiments with other 

splits, such as 40-60 and 60-40 (parent-child) were also 

performed. This mix (50-50 parent-child) was chosen based 

on experimental observations to ensure a better balance 

between exploration and exploitation. 

 

 

 

 

 

Table 1: Experimental results for reference 2 dataset  

 

 

4. SIMULATIONS AND RESULTS 
In the proposed solution, we have also used two specific 

crossover and mutation operators. In order to determine the 

best crossover and mutation probabilities; we have carried out 

three different experiments, using ten randomly selected 

Balibase 2.0 dataset that were obtained from [20].The 

performances of TSGA-MSA were tested for different 

datasets. When comparing it with different algorithms, such as 

GAMS, SAGA, MSA-GA, SGA and CLUSTAL, the 

BAliscores of the solutions were used. The comparative 

results show that, on average, TSGA-MSA produces better 

alignments than other algorithm with same number of 

generations and time. The results are shown that TSGA-MSA 

successfully found more than 80% accurate solutions than the 

others in 15 test cases, GAMS in 3, SAGA in 2, MSA-GA in 

1, CLUSTALW in 1 and SGA in 0 .Therefore, for the 

Balibase 2.0 test datasets, TSGA-MSA successfully found 

better MSAs in 80.01% of the test cases. The overall 

performances based on the average scores in Table 2 and 

Figure 5 in which it can be seen that TSGA-MSA achieved a 

higher average accuracy than all the other methods considered 

in this section.  

 

 

 

 

 

 

 

 

 

 

 

Dataset Name No of Gen. TSGA-MSA GAMS SAGA MSA-GA SGA CLUSTAL W 

RV11_BB11015  50 0.921 0.843 0.946 0.756 0.018 0.592 

RV11_BB11025  50 0.656 0.317 0.278 0.457 0.013 0.344 

RV11_BBS11022  50 0.731  0.845 0.643 0.653 0.837 0.718 

RV12_BB12006  50 0.845 0.960 0.895 0.908 0.895 1.000 

RV12_BBS12021  50 0.989  0.974 0.811 0.671 0.452 0.961 

RV12_BBS12034  50 0.800 0.983 0.847 0.748 0.682 0.927 

RV11_BBS11009  50 0.945  0.877 0.766 0.768 0.763 0.764 

RV11_BB11022  50 0.577   0.033 0.038 0.002 0.034 0.034 

RV11_BBS11006  50 0.786  0.635 0.630 0.711 0.364 0.654 

RV11_BBS11008  50 0.675  0.826 0.985 0.826 0.945 0.525 

RV11_BBS11013  50 0.989  0.970 0.985 0.941 0.981 0.950 

RV11_BBS11017  50 0.875 0.925 0.721 0.58 0.758 0.619 

RV11_BB11001  50 0.888  0.707 0.743 0.703 0.579 0.763 

RV12_BBS12010  50 0.678 0.384 0.654 0.71 0.364 0.630 

RV11_BBS11001  50  0.945 0.899 0.75 0.73 0.528 0.732 
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Fig 5: Overall performances of all methods for reference 2 datasets 

5. CONCLUSION 
The overall performance of the proposed method was also 

better than other methods considered because of its proposed 

initial generation, its genetic operators and the operators’ 

settings. The statistical and experimental analyses proved that 

the proposed method could be considered to solve MSA 

problems significantly and effectively. 
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