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ABSTRACT 
This proposed study deals with the optimality and duality 

results for non-linear convex programming problems, 

involving semi-differentiable functions with respect to a 

continuous arc. 
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1. INTRODUCTION 
We obtain Fritz-John [5] type necessary optimality criteria for 

the optimal solution of the following non-linear program 

                 (P) Minimize f(x) 

Subject to        ,,...2,1          ,0)( mjxg j   

                              Sx    

Where , :  nS R f S R  and :jg S R  ,

1,2,...,j m are real values functions, S is a locally 

connected set, such that for each ,  *, Sxx  , there exists a 

vector valued function )(*, xx
H , satisfying 
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And the right differentials of f and mjg j ,...2,1,  at x* 

exist, with respect to the arc )(*, xx
H  . 

Let  mjxgSxX j ,...2,1  ,0)( 
 

Theorem 1: 

Let x* be an optimal solution of (P). If 

)*,()( and ),*,()( )0()0( *,1*, 



xxxx
HxdgHxdf   

are convex functions of Jjgx j ,, is continuous at x* 

with S convex or
nRS  . Then there exist
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 , such that 
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Proof: Firstly, we shall show that the system 
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has no solution, Sx . 

If possible, let Sx be a solution of the system (6). Since 

right differentials of f and Iig i , at x*, exist with respect 

to the arc )*,(
*, xx

Hx , therefore 
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Where  
0

: 0,1 ,  lim   ( ) 0R
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Using (6),( 9) and (10), we get, for small enough  , say 
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Hence, it follows by using the relation (7) and (8) that for 

,0 0                      
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0*)()( )(*,
 xfHf
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and
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  ( ) ( *) 0,
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Now,  Jjg j ,  is continuous at x* and )(*, xx
H   is also 

a continuous function of  ; therefore 

0*)()(lim
*,0




xgHg jxxj 


 

which implies that there exist    

Jjxxajj  ),*,(0, **  , such that  

*

*,
0for  ,0)( )( jxxj Hg             (13) 

Let  ),,min(* *

0 Jjj     , then from (11) to (13), 

it follows that for    *,0  
XH

xx
)(*,, 

)()( and *

*, )( xfH f
xx

 , which is a contradiction, as 

x* is an optimal solution of (P). 

Hence, the system (6) has no solution Sx . 

Since (0 )*,
( ) ( *, )

x x
df x H 
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are 

convex functions of x, therefore, there exist
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 , such that 
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Defining 
*

jr =0, we get the required result. Weir and Mond 

[10] provided a Fritz-John dual for the non-linear 

programming problems involving differentiable functions by 

using the Fritz-John optimality conditions instead of Kuhn-

Tucker conditions and thus did not require a constraint 

qualification. Now, we associate the following Mond-Weir 

type Fritz-John dual to the problem (P): 

(D) Maximize f(u)  

Subject to  
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Theorem 2(Weak Duality) Let x be feasible for (P) and 

),,( rru  be feasible for (D). If f is locally p-connected and 
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 is strongly locally p-connected at u, then

)()( ufxf  . 

Proof: If possible let f(x)<f(u). 

Since f is locally P-connected at u, therefore, it follows that  

0),()( )0(,0 



xu
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with strict inequality if 0r . 

By the feasibility of x and ),,( rru  for (P) and (D), 

respectively, we get  
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is strongly locally P-connected at u, so 
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with strict inequality if some mjr j ,...,2,1,0  . 

Adding (17) and (18) and using (16), we get  

0),()(),()( )0()0( ,,
 



xu

T

xu
HudgrHudfr  

which is the contradiction to (14). 

Hence, )()( ufxf  . 

Theorem 3 (Strong Duality) 

Let x* be an optimal solution of (P), )*,()( )0(*, 



xx
Hxdf

and )*,()( )0(*, 



xxI Hxdg be convex functions of x and

Jjg j , , be continuous at x* with S convex or 
nRS 

. Then, there exist
mRrRr  *,*

0 , such that 

*),*,( 0 rrx  is feasible for (D) and the values of the 

objective functions of (P) and (D) are equal at x*. Also, if for 

each feasible ),,( 0 rru  for (D), f is locally P- connected and 
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is strongly locally P-connected at u, then 

* * *

0( , , )x r r  is optimal for (D). 
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Proof: Since x* is an optimal solution of (P), therefore, by 

Theorem 1, there exist 
mRrRr  *,*

0 such that 

* * *

0( , , )x r r is feasible for (D). Equality of objective 

functions for (P) and (D) follows trivially. Further, if 

0( *, , *)x r r  is not optimal for (D), then there exists

),,( 0 rru , feasible for D, such that 

   *f u f x  

which is which is a contradiction to weak –duality. 

2. CONCLUSION 
Weir and Mond provided a Fritz-John dual for the non-linear 

programming problems involving differentiable functions by 

using the Fritz-John optimality conditions instead of Kuhn-

Tucker conditions and thus did not require a constraint 

qualification. In this paper we associated the Mond-Weir type 

Fritz-John dual to the non-linear programming problem. 
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