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ABSTRACT

This proposed study deals with the optimality and duality
results for non-linear convex programming problems,
involving semi-differentiable functions with respect to a
continuous arc.
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1. INTRODUCTION

We obtain Fritz-John [5] type necessary optimality criteria for
the optimal solution of the following non-linear program

(P) Minimize f(x)
Subjectto  g;(x) <0, j=12,.m,
XxeS
where Sc R", f :S —> R and ngS—>R ,

j =1,2,...,Mare real values functions, S is a locally

connected set, such that for each X*, X € S, , there exists a

vector valued function H (@) satisfying

Hx*,x“) ES, 0<ﬂ,<a(x*, X) )
H ., is a continuous in the interval ]O, a(x*, X)[
and
Heowo =X H o =X @

And the right differentials of f and gj s j =12,..matx*

exist, with respect to the arc H )

Let X° = {XE S‘gj(x) <0, j :1,2,..m}

Theorem 1:

Let x* be an optimal solution of (P). If
(df)* (** H , o).and (dg,)" (0K H . o)
are convex functions of X, gj , j e J is continuous at x*

with S convex or S = R" . Then there exist
r' eR,r*eR™, such that
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£ (dF) (0 H o)+
F7(dg)’ (X" H,. o)) 20

Forall XeS @)

rrg(x)=0 @
(ry,r*>0) (5)
where 1 =1(x*) = {ilg, (x*)=0}
and J =J(x*) ={j|g; (x*) <0}

Proof: Firstly, we shall show that the system
(df)" (O H . 0,)<0
(dg,)* (¢*\H . 0,) <0

(6)

has no solution, X € S .

If possible, let X € S be a solution of the system (6). Since
right differentials of fand g;, ielat X*, exist with respect

to the arc (X*, H o ), therefore
f(H . w)=T)+
AAF YOS H o))+ Aa(a)

g; (Hx*yxu)) =0 (x*)+
Adg,) (5 H, o)+ A (A)

Wherea:[O,l]—)R, lim a(4)=0 (9)

1-0°

o[04 >R lim a(2)=0, iel(x) (10)

Using (6),( 9) and (10), we get, for small enough A , say
0< A< A,

(df) (X H , o) +a(2) <0
and (dg,)" (O H . o)
+a;(2) <0, iel(x®)

Hence, it follows by using the relation (7) and (8) that for
0<A< A,
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f(H ) — F(x*) <0 (11)
g; (Hx*’xz ) —9;(x*) <O,
and (12)
e |1 (x*)

Now, g, j € J iscontinuous at x* and H XX is also

a continuous function of A ; therefore

lim gj(HX*,xﬁ)zgj(x*)<0

A—0"

which implies that there exist

}”j"o</1j' <a(x*,x), j €J,such that
gj(HX*Xu))<0,f0r O<ﬂ<ﬂ:j (13)

Let A*=min(4,,4;, j €J) . then from (11) to (13)
itfollows thatfor 0 <A <A*, H _ ;) € X~
and f(H,, ) <f ("), which is a contradiction, as
x* is an optimal solution of (P).

Hence, the system (6) has no solution X € S.
: +
since (df )" (X*, Hx*,x(°+>) . (dg, )" (x*, Hx*,x“’*) ) are

convex functions of x, therefore, there exist
r’,r eR,iel,suchthat

rdf) (X H, o))+
r-1*T (dg1)+ (X*1 H x*,x(0+) ) >0
forallxeS (r,,r*)>0

Defining I’j* =0, we get the required result. Weir and Mond

[10] provided a Fritz-John dual for the non-linear
programming problems involving differentiable functions by
using the Fritz-John optimality conditions instead of Kuhn-
Tucker conditions and thus did not require a constraint
qualification. Now, we associate the following Mond-Weir
type Fritz-John dual to the problem (P):

(D) Maximize f(u)

() (U H, o))+
Subject to

7 (dg)" (U, H, ) 20

o

for all x e X (14)
>rg;u)=0 (15)
j=1

ueS,(r,r)>0,r eRreR" (16)

Theorem 2(Weak Duality) Let x be feasible for (P) and

(U, r, I’) be feasible for (D). If f is locally p-connected and

m
Z rj g j isstrongly locally p-connected at u, then
j=1

f(x)> f(u).
Proof: If possible let f(x)<f(u).

Since f is locally P-connected at u, therefore, it follows that

r, (df )" (u, Hu,x("*)) <0 17)
with strict inequality if I, > 0.

By the feasibility of x and (U,r,,r) for (P) and (D),
respectively, we get

>rg,(0= 319,

m
Now Z I‘j g j is strongly locally P-connected at u, so
j=L

+

d >rg; | UH, e <0 (18)
1

with strict inequality if some I; > 0,j=212,..,m.
Adding (17) and (18) and using (16), we get
() (U H, o) +17(dg) (U H, o) <O

which is the contradiction to (14).

Hence, T (X)> f(u).
Theorem 3 (Strong Duality)
: - +
Let x* be an optimal solution of (P), (df )" (x*,H , «.,)
and (dg,)" (x*,H o x(9) ) be convex functions of x and
g5 J € J , be continuous at x* with S convex or S = R"

. Then, there exist I’O* eR,r*e R™, such that

(X*, 1y, ™) is feasible for (D) and the values of the
objective functions of (P) and (D) are equal at x*. Also, if for
each feasible (U, Y I’) for (D), f is locally P- connected and

m
z I’j g j is strongly locally P-connected at u, then
j=1

(X, I’O*, r") is optimal for (D).
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Proof: Since x* is an optimal solution of (P), therefore, by
Theorem 1, there exist I’O* e R, r* e R such that

(X", 1,7, ") is feasible for (D). Equality of objective
functions for (P) and (D) follows trivially. Further, if
(X*, 1, r*) is not optimal for (D), then there exists

(u, ry,r), feasible for D, such that

f(u)> f(x*)

which is which is a contradiction to weak —duality.

2. CONCLUSION

Weir and Mond provided a Fritz-John dual for the non-linear
programming problems involving differentiable functions by
using the Fritz-John optimality conditions instead of Kuhn-
Tucker conditions and thus did not require a constraint
qualification. In this paper we associated the Mond-Weir type
Fritz-John dual to the non-linear programming problem.
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