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ABSTRACT
In this paper we look at the research work on hiding the topol-
ogy details in a source routing multi domain software defined
networking(SDN), in which each domain is handled by a sin-
gle controller and all are coordinated by a central controller. Se-
crecy of the topology is maintained by the secret key shared be-
tween the central controller and the other controllers. The cen-
tral controller redistributes the shared secret key among other
controllers once if the threshold number of flows are reached.
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1. INTRODUCTION
The Internet is one of the great technology success stories of the
twentieth century. It has enabled greater access to information, pro-
vided new modes of communication among people and organiza-
tions and has fundamentally changed the way we work, play and
learn. It has bought the entire world under a single roof. Unfor-
tunately, the Internet’s very success is now creating obstacles to
innovation in the networking technology that lies at its core and the
services that use it. The size and scope of the public Internet now
make the introduction and deployment of new network technolo-
gies and advanced services difficult. While the research community
has developed innovative solutions to a wide range of networking
challenges, there has been remarkably little progress towards de-
ploying these capabilities in the Internet at large.
The ossification of the Internet is a natural evolutionary stage in
the development of any highly successful technology. To some ex-
tent these problems are addressed by network virtualization, but be-
cause of the overhead involved causing hindrance to the growth of
technology. To address these issues the concept of programmable
networking was introduced. Software defined networking is one
such programmable networking technology which aim to provide
network as a service like any other resources such as computing
and storage. Because of its dynamism in implementing new net-
work protocols and configuration of network it as gained a very
popularity in less time.
Revealing the network topology in a multi tenant environment can
cause the entire network shutdown if the network topology is mis-

used. In case of cloud multi tenant networking environment one
vendor wants to hide the details of their infrastructure from the
other vendor.
By identifying the articulation points and cut vertex set in the net-
work, the attacker can implement active attacks like breaking down
the communication links in the network and passive attacks like
eavesdropping over the communication channel.
In this paper we used a random decomposition technique to decom-
pose the given network graph and on top of it we applied the en-
cryption algorithms to maintain the secrecy of the computed path.

2. LITERATURE SURVEY
As SDN is a new design paradigm so the security challenges of
SDN have to be addressed from the scratch. As the control plane
is separated from the data plane in SDN, it is creating a clear cen-
tralized point of attack. Because of heterogeneity in the traditional
networks an attacker have to follow different attacking strategies
in order to attack the entire network but where as in the case of
SDN, entire network can be compromised by compromising the
controller.
Some new threats and attacks on SDN have been proposed in re-
cent time and active research is going to address the security chal-
lenges in SDN. An attack on SDN is proposed in [3], which is im-
plemented by fingerprinting the SDN network and then launching
efficient resource consumption attacks such as DOS attack on con-
trol and data plane. The possible threats to SDN along with counter
measures are studied in [4]. A secure controller platform named as
permOF is defined in [5] which manages communication of OF ap-
plications securely with the SDN controller.
One common thing in all the proposed attacks and threats in [3], [4]
and [5] are they are independent of the routing algorithm is being
used. In this paper the we presented the possible attacks on multi
domain source routing SDN along with their countermeasures. In
source routing the attacker have an advantage of knowing the net-
work topology, once if the network topology is known the attacker
can implement the further attacks such as bypassing the flow or
DOS attacks on data plane.. By using encryption and secret key
sharing among the controllers an approach is proposed in this pa-
per to hide the network topology.

3. PROPOSED APPROACH
Let G = (V,E) be a given network graph, where V is the set of
switches, E be the set of communication links among them and K
be the number of controllers.
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3.1 Initial Setup
The steps to be followed for the initial decomposition of the given
network graph and assigning switches to the controllers are as fol-
lows:

a) By applying any of the random graph decomposition techniques
or the approaches proposed in [1] and [2], decompose the given
network into k − 1 components and we call those components
as domains.

b) Allocate one controller per domain and assign all the switches
in that domain to that controller and we call these controllers as
local domain controllers or slave controllers which are coordi-
nated by a master controller.

c) Assign all the switches to master controller to provide the vis-
ibility of entire network to the master controller, which takes
the responsibility in hiding the topology details of domain to
another.

d) Each slave controller applies Warshall Floyd algorithm on all
the switches to compute the shortest paths between them.

e) Master controller applies Warshall Floyd algorithm on all the
edge switches to compute the shortest paths between them.

3.1.1 Graph Decomposition. Let G = (V,E) is decomposed
into k − 1 components C1, C2, ..., Ck−1.
The ith component Ci can be represented as Ci = (Vi, Ei). Where
Vi is the combination edge and non-edge switches. Edge switches
are the ones which establishes the inter domain communication
and are linked to both local domain controller and master controller.

Vi = Vei ∪ Vnei

Where Vnei and Vei are the set of non edge and edge switches of
the ith component Ci respectively. k1, k2, ..., kk−1 be the shared
secret key between the master controller and the corresponding lo-
cal domain controllers 1, 2, ..., k − 1 respectively.

3.2 Path Generation
Let s be the source switch and d be the destination switch, the mas-
ter controller computes shortest path between s and d as follows:

(1) Identify the source and destination switch domains.
(2) Obtain edge switches of domains to which source and destina-

tion switches belongs
(3) Construct the network graph with source, destination and the

corresponding domain edge switches.
(4) Apply the Dijkstra’s algorithm on the above graph to find the

shortest path between source and destination switches.

Let Cs = (Vs, Es) and Cd = (Vd, Ed) be the domains such that

s ∈ Vs, d ∈ Vd

and

Vs = Ves ∪ Vnes, Vd = Ved ∪ Vned

G
′
= (V

′
, E

′
) be the graph constructed by the master controller,

such that

V
′
= s ∪ Ves ∪ Ved ∪ d

Then Dijkstra’s algorithm is applied on the graph G
′
= (V

′
, E

′
) to

find the shortest path between the source and destination switches
s and d respectively.

The computed path is a combination of a source switch, followed
by a set of edge switches, which further followed by a destination
switch and path will be represented as follows:

P = {s, intermediate switch ∈ {Ves ∪ Ved}, d}

The master controller retrieves the shortest paths between the edge
switches which belongs to same domain by communicating with
the slave controller.

3.3 Complete Path Generation and Encryption
Two approaches are proposed in this paper for generation of en-
crypted complete path in this paper.

(1) Encrypting the sub paths of a domain using it’s corresponding
shared secret keys

(2) Encrypting the complete path using the all shared secret keys

3.3.1 Encrypting the sub paths using corresponding shared se-
cret keys. The algorithm to retrieve the complete path from P and
encrypting it is done as follows:

Data: P
Result: Complete Path CP
initialization;
while not at end of P do

read current switch;
read next switch;
retrieve path from the corresponding slave controller;
encrypt the retrieved path using the secret key shared between
the master and the corresponding slave controller of the
domain to which current switch and next switch belongs to by
a master controller;
and add it to CP;
go back to the beginning of current section;

end
Algorithm 1: Algorithm to generate and encrypt the complete path

3.3.2 Encrypting using all shared secret keys. In this first com-
plete path CP is generated from P and further which is encrypted
by all the shared secret keys from which the CP passes on. The
algorithm to generate the encrypted complete path is as follows:

Data: P
Result: Complete Path CP
initialization;
while not at end of P do

read current switch;
read next switch;
retrieve path from the corresponding slave controller;
add it to CP;
and encrypt CP excluding the first switch using the secret key
shared between the master and the corresponding slave
controller of the domain to which current switch and
next switch belongs to by a master controller;
go back to the beginning of current section;

end
Algorithm 2: Algorithm to generate the encrypted complete path
using all shared secret keys
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3.4 Retrieval of Encrypted Path for Communication
Once if the encrypted complete path is generated by the master
controller, the communication among the switches between differ-
ent domains in the above mentioned approached is describes as fol-
lows:

3.4.1 In the case where only sub paths are encrypted using the
corresponding controller shared secret key. In this approach cryp-
tic flow tables will be maintained in the switch by a slave controller
in it’s corresponding domain switches. A cryptic flow table is the
one which maps the port number to it’s corresponding encrypted
value.

3.4.2 In the case where complete sub path is encrypted using all
shared secret keys through the complete path passes on. In this
approach whenever a packet enters into a new domain the source
route in the header is encrypted using the corresponding shared se-
cret key of that domain.

3.5 Identifying threshold value and redistributing the
shared secret keys

Let G = (V,E) be the given graph and is decomposed into k − 1
components C1, C2, ..., Ck−1. The number of possible flows in the
entire graph is equal to ∏

v∈V

deg(v)

The number of possible flows in a given ith component Ci =
(Vi, Ei) is equal to ∏

v∈Vi

deg(v)

By observing different
∏

v∈V deg(v) flows the attacker can derive
the entire network topology and by observing the

∏
v∈Vi

deg(v)
flows passes through a particular domain an attacker can derive the
topology of that domain. In order to prevent the attacker to derive
the topology of a network, the central controller assigns a new set
of key values to the slave controllers anytime before any of the
threshold values reached.

4. WORKING EXAMPLE
Consider the below multi domain SDN network containing of
switches s1, s2, ..., s10 and four controllers c1, c2, c3 and c4 is de-
composed into three domains. The switches assign to the controller
are as follows

c1 = {s1, s2, s3, s4}
c2 = {s5, s6, s7}
c3 = {s8, s9, s10}
c4 = {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10}

Where

Edge switches = {s3, s4, s5, s7, s8}
Non edge switches = {s1, s2, s6, s9, s10}

1 In this example c1, c2and c3 be the slave controllers, where as
c4 is the master controller. k1, k2, k3 be the shared secret keys of
the slave controllers c1, c2 and c3 respectively. Let s1 be the source
switch and s10 be the destination switch.

Fig. 1. Multi Domain SDN Network

4.1 Initial Setup
The initial computation of shortest paths is same in both proposed
approaches. The controllers c1, c2andc3 will compute shortest
paths between all the switches which are assigned to them by
applying the well known all pair shortest path algorithm such as
Warshall Floyd.
In the same way the master controller c4 will compute the shortest
paths between edge switches {s3, s4, s5, s7, s8} which are as-
signed to it.
Once if the computation of shortest paths are done, the source
controller c1 communicates with the master controller c4 to get the
complete complete encrypted shortest path.
First the master controller computes the shortest path interms of
edge switches and is done as follows: As master controller has the
visibility to entire network topology it identifies that
s1 ∈ c1, s2 ∈ c3 Edge switches of c1 are {s3, s4},
Edge switches of c2 are {s6, s7}
the edge switches of c3 are {s8}
The master controller constructs a graph G

′
= (V

′
, E

′
) such that

V
′
= {s1, s3, s4, s6, s7, s8, s10}

Dijkstra’s algorithm is applied in G
′
= (V

′
, E

′
) and the computed

shortest path will be

P = s1, s3, s6, s7, s4, s8, s10

The generation and retrieval of complete encrypted shortest path
CP from P in both the proposed approaches is explained as fol-
lows:
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4.2 In the case where only sub paths are encrypted
using the corresponding controller shared secret
key

4.2.1 Generation of complete encrypted path

(1) Initially CP = NIL and P = s1, s3, s6, s7, s4, s8, s10
(2) Read the switches s1, s3, path (s1, s3) = {s1, s3}. Encrypt

path (s1, s3) using k1 and add it to CP

CP = CP ∪ {E (s1, k1) , E (s3, k1)}
CP = {E (s1, k1) , E (s3, k1)}

(3) Read the switches s6, s7, path (s6, s7) = {s6, s7}. Encrypt
path (s6, s7) using k2 and add it to CP

CP = CP ∪ {E (s6, k2) , E (s7, k2)}
CP = {E (s1, k1) , E (s3, k1) , E (s6, k2) , E (s7, k2)}

(4) Read the switches s4, and encrypt it using k1 and add it to CP

CP = CP ∪ {E (s4, k1)}
CP = {E (s1, k1) , E (s3, k1) , E (s6, k2) ,

E (s7, k2) , E (s4, k1)}

(5) Read the switches s8, s10, path (s8, s10) = {s8, s9, s10}.
Encrypt path (s8, s10) using k3 and add it to CP

CP = CP ∪ {E (s8, k3) , E (s9, k3) , E (s10, k3)}
CP = {E (s1, k1) , E (s3, k1) , E (s6, k2) , E (s7, k2) ,

E (s4, k1) , E (s8, k3) , E (s9, k3) , E (s10, k3)}

4.2.2 Communication between the switches. In this approach the
slave controller installs the flow tables into it’s corresponding
switches, the flow tables in each switch map the actual outgoing
interface port to it’s corresponding encrypted value. The the given
example, the flow tables of the switches are shown below
Flow table of switch s1

Actual value Encrypted value
s2 E (s2,k1)

s3 E (s3,k1)

Flow table of switch s2

Actual value Encrypted value
s1 E (s1,k1)

s4 E (s4,k1)

Flow table of switch s3

Actual value Encrypted value
s1 E (s1,k1)

s5 E (s5,k2)

Flow table of switch s4

Actual value Encrypted value
s2 E (s2,k1)

s7 E (s7,k2)

s8 E (s8,k3)

Flow table of switch s5

Actual value Encrypted value
s3 E (s3,k1)

s6 E (s6,k2)

s7 E (s7,k2)

Flow table of switch s6

Actual value Encrypted value
s5 E (s5,k2)

s7 E (s7,k2)

Flow table of switch s7

Actual value Encrypted value
s4 E (s4,k1)

s5 E (s5,k2)

s6 E (s7,k2)

Flow table of switch s8

Actual value Encrypted value
s4 E (s4,k1)

s9 E (s9,k3)

Flow table of switch s9

Actual value Encrypted value
s8 E (s8,k3)

s10 E (s10,k3)

Flow table of switch s10

Actual value Encrypted value
s9 E (s9,k3)

Whenever a packet comes to the switch it maps the encrypted ad-
dress to the actual address and forwards the packet.

4.3 In the case where complete sub path is encrypted
using all shared secret keys through the complete
path passes on

4.3.1 Generation of complete encrypted path

(1) Initially CP = NIL and P = {s1, s3, s6, s7, s4, s8, s10}
(2) Reverse P , then P = {s10, s8, s4, s7, s6, s3, s1}
(3) Read the switches s10, s8, path (s10, s8) = {s10, s9, s8}.

Add {s9, s10} to CP , encrypt CP using k3 and add s8 to CP .

CP = {s9, s10} ∪ CP

CP = E ({s9, s10}, k3)
CP = {s8} ∪ CP

CP = {s8, E ({s9, s10}, k3)}

(4) Read the switch s4, add {}it to CP , encrypt CP using k1 and
add s4 to CP .

CP = {} ∪ CP

CP = E ({s8, E ({s9, s10}, k3)}, k1)
CP = {s4} ∪ CP

CP = {s4, E ({s8, E ({s9, s10}, k3)}, k1)}

(5) Read the switches s7, s6, path (s6, s7) = {s6, s7}.
Add {s7} to CP , encrypt CP using k2 and add {s6} to CP .

CP = s7 ∪ CP

CP = E ({s7, {s4, E ({s8, E ({s9, s10}, k3)}, k1)}}, k2)
CP = {s6} ∪ CP

CP = {s6, E ({s7, {s4, E ({s8, E ({s9, s10}, k3)}, k1)}}, k2)}

(6) Read the switches s3, s1,path (s1, s3) = {s1, s3}.
Add {s3} to CP , encrypt CP using k1 and add {s1} to CP .

CP = {s3} ∪ CP

CP = E ({s3, {s6, E ({s7, {s4, E ({s8,
E ({s9, s10}, k3)}, k1)}}, k2)}}, k1)

CP = {s1} ∪ CP

CP = {s1, E ({s3, {s6, E ({s7, {s4, E ({s8,
E ({s9, s10}, k3)}, k1)}}, k2)}}, k1)
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4.3.2 Communication between the switches. In this approach
whenever a packet comes to an edge switch from the neighboring
domain it decrypts the source route by it’s corresponding shared
secret key.
In the above example the path received by source switch s1 is

CP = {s1, E ({s3, s6}, E ({s7, s4}, E ({s8,
E ({s9, s10}, k3)}, k1) , k2) , k1)}

Once after receiving the path the source switch sends CP − {s1}
to c1, then c1 decrypts CP − {s1} using k1.

D (CP − {s1}, k1) = D (E ({s3, s6}, E ({s7, s4}, E ({s8,
E ({s9, s10}, k3)}, k1) , k2) , k1) , k1)
= {{s3, s6}, E ({s7, s4}, E ({s8, E ({s9, s10}, k3)}, k1) , k2)}

Then c1 sends the decrypted path to s1.
After passing through s3, the packet reaches
to s6. Where s6 is an edge switch it sends
E ({s7, s4}, E ({s8, E ({s9, s10}, k3)}, k1) , k2) to c2, then
c2 decrypts it using k2.

D (E ({s7, s4}, E ({s8, E ({s9, s10}, k3)}, k1) , k2) , k2)
= {{s7, s4}, E ({s8, E ({s9, s10}, k3)}, k1)}

After passing through s7, the packet reaches to s4. Where s4 is an
edge switch it sends E ({s8, E ({s9, s10}, k3)}, k1) to c1, then c1
decrypts it using k1.

D (E ({s8, E ({s9, s10}, k3)}, k1) , k1)
= {s8, E ({s9, s10}, k3)}

The packet reaches to s8. Where s8 is an edge switch it sends
E ({s9, s10}, k3) to c3, then c3 decrypts it using k3.

D (E ({s9, s10}, k3) , k3)
= {s9, s10}

After passing through s9, the packet finally reaches to destination
s10.

5. CONCLUSION
In this paper, we introduce the attacks that are possible in a source
routing multi domain SDN. We proposed a novel encryption and
decomposition techniques to find out the encrypted shortest path
between the switches, which eventually hides the topology of one
domain to another. We also introduce threshold value at which the
secret keys shared between the master and slave controllers are to
be recomputed, to prevent the attacker from deriving the network
topology.
The first attempt is made in this paper for hiding the network topol-
ogy in a source routing multi domain SDN, which is highly signif-
icant in a multi tenant cloud environment. The proposed approach
can effectively countermeasure any kind of attacks which reveals
the network topology.
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