
International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Advances in Computer Engineering & Applications (ICACEA-2014) at IMSEC,GZB

29

Performance Evaluation of Error Back Propagation

Algorithm for Non-Linear Classification and Function

Approximation in VHDL Platform

Soumava Kumar Roy

Department of Electronics and
Communication

Manipal Institute of Technology
Manipal, India

Crefeda Faviola Rodrigues
Department of Electronics and

Communication
Manipal Institute of Technology

Manipal, India

ABSTRACT

In this paper we present the implementation of Error Back

Propagation Training Algorithm (EBPT) in VHSIC Hardware

Descriptive Language (VHDL) platform for two standard

benchmark problems of Nonlinear Classification of XOR

function and Sine wave Generation. The effect of variation of

learning parameters on accuracy of the output and speed of

convergence of the algorithm are presented. Improved speed

of convergence without much change in accuracy was

obtained by incorporating Momentum method.

General Terms

Adaptive Signal Processing, Machine Learning, Non Linear

Classification.

Keywords

Error Back Propagation Training, VHDL, Momentum Method

1. INTRODUCTION
The concept of Artificial Neural Networks (ANN) has

emerged from simulating the versatility of human brain to

deal with the ambiguity of digital computers. The ANN

consists of layers of basic computing units called neurons.

The Computing units include a summing and threshold units

and when these computing elements are arranged in layers

and trained properly they perform many non-linear functions.

One of the popular ways of training of Multi layered

perceptron networks is through the use of Error Back

Propagation Training Algorithm [1]. Through the principle of

gradient descent it minimizes the error of the networks

outputs and desired output for a given training cycle and feeds

this error to the network for adaptive weight changes. ANNs

are implemented in software, trained and simulated on

general-purpose sequential computers for emulating a wide

range of neural networks models. Software implementations

offer flexibility. Whereas Hardware implementation of Neural

Networks exploits the inherent parallel processing capabilities

in these Neural Networks to achieve faster learning and

convergence speed of the desired outputs [2]. FPGA

implementation offers a solution for Hardware Neural

Network Implementation [3]-[5]. Multilayer Feed Forward

Networks implemented have been implemented on FPGA by

reducing resource requirements without compromising on

speed [4]. Our work aims as evaluating the performance of

ANN algorithm like Error Back Propagation using behavioral

simulation in VHDL by varying Learning Parameters of

EBPT for the successful implementation on Hardware. [6].

2. ERROR BACK PROPAGATION

STRUCTURE
The error back propagation topology consists of a layered

structure of a hidden layer and output layer. Each layer consist

processing units called neurons. The functionality of the

neuron is to do a weighted summation of the inputs and

depending on the nonlinear function called activation function

to generate an output. The input layer feeds the hidden layer

neurons and the output of the hidden layer in turn feeds the

output layer neurons. Each layer‟s input set is augmented with

a bias of „-1‟, in accordance with the perceptron learning rule.

The EBPT algorithm incorporates two phases for learning, the

multilayered feed forward phase and the back propagation

phase. The Processing units in the feed forward performs

parallel computations of multiplication and addition to

produce an output called net and the final output of the neuron

is determined by the activation function. The back

propagation phase involves computing the error by

subtracting the desired output from generated output of the

feed forward phase and feeding back the error to the network

to adapt the weights until the error lowers itself below a

predefined threshold.

3. NON LINEAR CLASSIFICATION

Figure1. Feed forward structure for XOR classification

Figure 1, depicts the feed forward structure for XOR

classification. This structure is implemented using behavioral

simulation in VHDL. Each iteration is in accordance with the

rising edge of „clk‟. The input layer consist of two input nodes

(X1 and X2) is augmented with a bias of „-1‟.These inputs

feed the hidden layer neurons. The output of the hidden layer

(y) is augmented with bias „-1‟ and in turn is fed to a single

neuron at the output layer. The weights of both hidden layer

(v11, v12, v13, v21, v22, v23) and output layer (w11, w12,

w13) are initialized to random values. The neurons at both

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Advances in Computer Engineering & Applications (ICACEA-2014) at IMSEC,GZB

30

hidden layer and output use continuous unipolar neurons.

Experimental results are tabulated by varying the learning

parameters such as Learning Constant (ɳ), Steepness

Coefficient (λ), initial weights, number of hidden layer

neurons and positive momentum coefficient (α), Shown in

Figure 2, is the simulation window where the counting

variable denotes the 4 inputs of the XOR taken in order. And

„o‟ denotes the approximate outputs in order

Figure2. Simulation window for XOR function Outputs at

iteration 19,997

3.1 Learning Constant (ɳ) variations:
Variation of learning constant has a significant effect on the

convergence and effectiveness of the EBPT algorithm. Since

optimum learning constant is problem specific, on the basis of

trial and error we showed that higher the value of learning

constant better was the accuracy of the outputs at a given

iteration as given in Table 1. Also observed that higher the

value of learning constant lower the number of iterations for a

given satisfactory output given in Table 2.

TABLE 1. LEARNING CONSTANT VARIATION AT

10,000 ITERATIONS

Inputs

Theoretical

Outputs

Learning Constant

ɳ=0.01 ɳ =0.5 = 1.0

00 0

Practical

Output

0.47 0.0388 0.0247

01 1 0.4506 0.9542 0.9711

10 1 0.56451 0.9646 0.9769

11 0 0.5024 0.035 0.0224

TABLE 2. NUMBER OF ITERATIONS FOR

DIFFERENT VALUES OF LEARNING CONSTANT

Learning Constant ɳ = 0.01 ɳ = 0.5 ɳ = 1.0

No. of iteration
99,000 20,000 10,000

3.2 Steepness Coefficient (λ) variations:
The neurons activation function is characterized by steepness

coefficient (λ), given by Equation 1.

nete
netf

1

1
)((1)

f(net)- continuous unipolar activation function

net- weighted summation of input

Variation in steepness coefficient showed that higher values

of steepness coefficient produced approximately similar

results as that of learning constant. This implied that varying

anyone of the parameters learning constant or steepness

coefficient was sufficient to obtain correct classification of

XOR outputs as given in Table 3. By increasing steepness

Coefficient reduced iterations were observed as given in Table

4.

TABLE 3. STEEPNESS COEFFICIENT VARIATION

AT 10,000 ITERATIONS

Steepness

Coefficient
λ= 0.01 λ=0.5 λ= 1.0

No. of

iterations

109000 10,000 2,500

TABLE 4. NUMBER OF ITERATIONS FOR

DIFFERENT VALUES OF STEEPNESS

COEFFICIENT

3.3 Initial Weights
Randomness in the initial weights led to better convergence of

the output whereas while initialization of same weights (1.0)

did not give satisfactory results at 4,90,000 iterations depicted

in Table 5.

TABLE 5. OUTPUTS FOR DIFFERENT

WEIGHTINITIALIZATIONAT 4,90,000 ITERATIONS

3.4 Number of Hidden Neurons
By increasing the number of neurons at the hidden layer

improvement in speed of learning without affecting the

accuracy much was obtained, thereby making the network

faster in calculations of the outputs in Table 6 and 7.

Input
Theoreti

cal

outputs

Steepness Coefficient

λ= 0.01 λ= 0.5 λ= 1.0

00 0
Practic

al

Output

s

0.49655 0.0742 0.0247

01 1 0.496535 0.9117 0.9711

10 1 0.49656 0.9353 0.9769

11 0 0.49652 0.0649 0.0224

Inputs

Theoretical

outputs

Initial Weights

Same

weights=1.0

Random

weights

00 0

Practical

Outputs

0.0042 0.003

01 1 0.6488 0.9964

10 1 0.7016 0.997

11 0 0.7395 0.0028

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Advances in Computer Engineering & Applications (ICACEA-2014) at IMSEC,GZB

31

TABLE 6. VARIATION IN THE NUMBER OF HIDDEN

LAYERS AT 2000 ITERATIONS

TABLE 7. NUMBER OF ITERATIONS FOR

DIFFERENTNUMBER OF HIDDEN LAYER

3.5 Momentum Method
Momentum method is based on feeding fraction of the

previous training cycle weights to the current weight updation

cycle as given by Equation 2.

 ΔW(t) = ηΔE + αΔW(t− 1) (2)

 ∆W(t)- current weight updation

 ∆E- Change in error

 ∆W(t-1)- fraction of previous weights

The positive momentum coefficient is given by „α‟ and

varying this parameter, led to better accuracy of the outputs in

Table 8 and drastic improvement in speed in Table 9.

TABLE 8. VARIATION IN MOMENTUM

COEFFICIENT AT 1000 ITERATIONS

TABLE 9. NUMBER OF ITERATION FOR

DIFFERENT VALUES OF MOMENTUM

COEFFICIENT

Variation in

Momentum

Coefficient

 α = 0.01 α =0.5 α = 1.0

No. of iterations
1800 1,300 1,000

4. SINE WAVE GENERATION
Figure 3, shows the schematic for the feed forward phase for

the generation of 50 Hz Sine Wave. The input layer consists

of a single input node augmented with bias „-1‟. The output of

hidden layer is also augmented with a „-1‟ bias. The weights

shown are initialized randomly. The hidden layer consisted of

two bipolar continuous neurons as given in Equation 3.

𝒇 𝒏𝒆𝒕 =
𝟐

𝟏+𝒆−𝝀𝒏𝒆𝒕 − 𝟏 (3)

The output layer consisted of single linear neuron. The choice

of using linear neuron was to ensure the output follows the

continuous stream of inputs. Experimental results are

tabulated by varying the learning parameters such as Learning

Constant (ɳ), Steepness Coefficient (λ) and positive

momentum coefficient (α)

Figure 3 Feed forward phase for Generation of 50 Hz Sine

Wave.

The simulation results for 50 Hz Sine wave generation for

optimum values of learning factor (η)=1.0, steepness

coefficient (λ) =1.0 and positive momentum coefficient

(α)=0.5 is shown in Figure 4. The initial weight adaptation is

shown encircled.

Figure 4 Simulation window for Generation of Sine Wave

at 1000ns

As observed from the Figure 5, by changing the momentum

coefficient to a higher value (0.8, i.e. by giving higher fraction

of weight change of the previous iteration to the current

iteration) and keeping other parameters fixed such as learning

factor(1.0) and steepness coefficient (1.0),the system was

unable to learn and learning stopped at 9017 nanoseconds.

The weights go out of the required range and thus it will

require a very large number of iterations to track back the

correct output.

Inputs

Theoretical

outputs

Number of Hidden

Neurons

Hidden

neurons=2

Hidden

neurons=3

00 0

Practical

Outputs

0.0899 0.0474

01 1 0.8905 0.9172

10 1 0.9263 0.9321

11 0 0.0759 0.0944

Variation in

Hidden Neurons
Hidden

neurons=2
Hidden neurons=3

No. of iterations 4000 2500

Input

s

Theoretic

al outputs

Momentum Coefficient

 α =

0.01
α =0.5 α = 1.0

00 0

Practica

l

Outputs

0.158

8
0.0739 0.0507

01 1 0.784 0.8834 0.9148

10 1
0.861

9
0.9124 0.9335

11 0
0.202

7
0.1249

0.0942

2

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Advances in Computer Engineering & Applications (ICACEA-2014) at IMSEC,GZB

32

Figure 5. Simulation window for Generation of Sine Wave

at 9017ns

In Figure 6, shows, by keeping momentum coefficient at the

optimum value of 0.5, learning constant at optimum value 1.0

and varying steepness coefficient to 0.5, a perfect sinusoid

output was not tracked.

Figure 6. Simulation window for Generation of Sine Wave

at 62852ns

By keeping a very low learning factor equal to 0.01 and keep

the other parameters at optimum values a perfect sinusoid was

not tracked as shown in Figure 7.

Figure 7. Simulation window for Generation of Sine Wave

at 24270ns

5. CONCLUSION
Implementation of Error Back Propagation Algorithm is

carried out in VHDL platform for the purpose of in depth

analysis of the effects of learning parameters on the accuracy

and speed of convergence. Training is performed for a typical

Nonlinear XOR classification and Sine Wave Generation

problem. Experimental results verify that optimum parameters

for satisfactory output are problem specific and are obtained

through trial and error.

Figure 8.Shows the effects of varying learning parameters on

the speed of learning. For a given problem varying either

Learning Constant or Steepness Coefficient is sufficient for

satisfactory results. Increase in number of hidden neurons

leads to further reduction in the number of iterations. Fastest

convergence of the output is obtained by introducing

momentum method.

Figure. 8. Graph of effects of Learning Parameters on the

Number of iterations for XOR classification

6. ACKNOWLEDGMENT
I would also extend my appreciation towards Dr. K.

PrabhakarNayak, HOD, E&C, MIT, Manipal who provided us

with ample space and technology access for the smooth

completion of the project work and taking a stand for regular

presentations to be made so that we could get technical

insights from a group of teachers and so that we kept meeting

our deadlines.My project would have not seen the light of the

day without my guide Mrs. T. K. PadmaShri,

Assosiate Professor, Senior Scale, Dept. of E&C, MIT,

Manipal whose constant efforts at perfecting even the slightest

detail of the project helped render a lot of professional insight

into the project, not to mention her technical acumen that

finally helped the project come afloat.

7. REFERENCES
[1] Jacek M. Zurada, “ Introduction to Aritificial Neural

Networks”, Jaicob Publishing House, India 2002,ISBN

0-3 14-93391-3.

[2] JiPeirong, Wang Peng , Zhao Qin, Zhao Li, “A New

Parrallel Back Propagation Algorithm for Neural

Networks,” IEEE International Conference on Grey

Systems and Intelligent Services (GSIS), September

2011, pp. 807 -810.

[3] YJ Chen, WP du Plessis, “Neural Network

Implementation on FPGA”, IEEE Africon Conference

6th, Africa October 2002, vol 1.,pp 337- 342.

[4] Nazeih M. Botros and M. Abdul Aziz, “Hardware

Implementation of Artificial Neural Network using Field

Programmable Arrays,” IEEE Conference on Industrial

Electronics, December 1994, Vol 41. No.6, pp. 665-667.

[5] S. Hariprasath and T.N. Prabakar, “FPGA

Implementation of Multilayer Feed forward Neural

Network Architecture using VHDL”, IEEE International

Conference on Computing, Communication and

Applications, Feb 2012, pp. 1-6.

[6] John K. Kruschke and Javier R. Movellan, “Benefits of

Gain: Speeded Learning and Minimal Hidden layers in

Back Propagation Networks,” IEEE Transaction on

Systems, Man, and Cybernetics, January/ February

1991,vol.21, No.1,pp.273- 279.

020000

Variation learning constant Variation in steepness …Change No. of hidden …Momentum Method

N
o

. o
f

It
e

ra
ti

o
n

s

Types of Learning Parameters

No. of iterations Vs.
Learning Parameter

Variations

No. of
iterations (1
iteration=0.1ns
)

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Advances in Computer Engineering & Applications (ICACEA-2014) at IMSEC,GZB

33

[7] David E.Rumelhart, Bernard Widrow and Micheal A.

Lehr, “The Basic Ideas in Neural Networks,”

Communication of the ACM, vol.37,No.3, March 1994.

[8] Feldman ,J.A., M.A. Fanty, and N.Goddard.1988.

“Computing with structured Neural Networks,” IEEE

Computer (March):91-103

[9] Hopfield, J.J., and D.W. Tank. 1986 “Computing with

Neural Circuits: A Model,” Science 233:625-633.

[10] Lippmann, R.P. 1987. “An Introduction to Computing

with Neural Nets,” IEEE Magazine on Acoustics, Signal

and Speech Processing (April):4-22

[11] Jacobs, R.A. 1988. ”Increased Rates of Convergence

Through Learning Rate Adaption,” Neural Networks

1:295-307

[12] Hripcsak, G. 1988 “Problem Solving Using Neural

Networks,” San Diego, Calif.: SAIC Communications

[13] Mirchandini, G., and W. Cao.1989. “On Hidden Nodes

in Neural Nets”, IEEE Trans. Circuits and Systems

36(5):661-664

[14] Pao, Y.H. 1989. “Adaptive Pattern Recognition and

Neural Networks.” Reading Mass; Addision-Wesley

Publishing Co.

[15] Cybenko, G. 1990. “Complexity Theory of Neural

Networks and Classification Problems,” in Neural

Networks EURASIP Workshop Proc., ed. L.B. Almeida,

C.J. Wellekens. Sesimbra, Portugal, February 1990, pp.

24-44

[16] Funanashi, K.I. 1989. “On the Approximate Realization

of Continuous Mappings by Neural Networks,” Neural

Networks 2:183-192.

[17] Karin, E.D. 1990. “A Simple Procedure for Pruning

Back-Propagation Trained Neural Networks,” IEEE

Trans. On Neural Networks 1(2): 239-242.

[18] White, H. 1989. “Learning in Artificial Neural Networks:

A Statistical Perspective,” Neural Computation 1(4);425-

469

[19] Wieland, A., and R. Leighton. 1988. “Geometric

Analysis of Neural Networks Capabilities,” MP-88 W

00022. McLean, Va.: Mitre Corporation.

[20] Poggio, T. and F. Girosi. 1990. “Networks for

Approximation and Learning” Proc. IEEE 78(9): 1481-

1497.

