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ABSTRACT 

In this paper we present the implementation of Error Back 

Propagation Training Algorithm (EBPT) in VHSIC Hardware 

Descriptive Language (VHDL) platform for two standard 

benchmark problems of Nonlinear Classification of XOR 

function and Sine wave Generation. The effect of variation of 

learning parameters on accuracy of the output and speed of 

convergence of the algorithm are presented. Improved speed 

of convergence without much change in accuracy was 

obtained by incorporating Momentum method. 
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1. INTRODUCTION 
The concept of Artificial Neural Networks (ANN) has 

emerged from simulating the versatility of human brain to 

deal with the ambiguity of digital computers. The ANN 

consists of layers of basic computing units called neurons. 

The Computing units include a summing and threshold units 

and when these computing elements are arranged in layers 

and trained properly they perform many non-linear functions. 

One of the popular ways of training of Multi layered 

perceptron networks is through the use of Error Back 

Propagation Training Algorithm [1]. Through the principle of 

gradient descent it minimizes the error of the networks 

outputs and desired output for a given training cycle and feeds 

this error to the network for adaptive weight changes. ANNs 

are implemented in software, trained and simulated on 

general-purpose sequential computers for emulating a wide 

range of neural networks models. Software implementations 

offer flexibility. Whereas Hardware implementation of Neural 

Networks exploits the inherent parallel processing capabilities 

in these Neural Networks to achieve faster learning and 

convergence speed of the desired outputs [2]. FPGA 

implementation offers a solution for Hardware Neural 

Network Implementation [3]-[5]. Multilayer Feed Forward 

Networks implemented have been implemented on FPGA by 

reducing resource requirements without compromising on 

speed [4]. Our work aims as evaluating the performance of 

ANN algorithm like Error Back Propagation using behavioral 

simulation in VHDL by varying Learning Parameters of 

EBPT for the successful implementation on Hardware. [6]. 

2. ERROR BACK PROPAGATION 

STRUCTURE 
The error back propagation topology consists of a layered 

structure of a hidden layer and output layer. Each layer consist 

processing units called neurons. The functionality of the 

neuron is to do a weighted summation of the inputs and 

depending on the nonlinear function called activation function 

to generate an output.  The input layer feeds the hidden layer 

neurons and the output of the hidden layer in turn feeds the 

output layer neurons. Each layer‟s input set is augmented with 

a bias of „-1‟, in accordance with the perceptron learning rule. 

The EBPT algorithm incorporates two phases for learning, the 

multilayered feed forward phase and the back propagation 

phase.  The Processing units in the feed forward performs 

parallel computations of multiplication and addition to 

produce an output called net and the final output of the neuron 

is determined by the activation function. The back 

propagation phase involves computing the error by 

subtracting the desired output from generated output of the 

feed forward phase and feeding back the error to the network 

to adapt the weights until the error lowers itself below a 

predefined threshold. 

3. NON LINEAR CLASSIFICATION 

Figure1. Feed forward structure for XOR classification 

 

Figure 1, depicts the feed forward structure for XOR 

classification. This structure is implemented using behavioral 

simulation in VHDL. Each iteration is in accordance with the 

rising edge of „clk‟. The input layer consist of two input nodes 

(X1 and X2) is augmented with a bias of „-1‟.These inputs 

feed the hidden layer neurons. The output of the hidden layer 

(y) is augmented with bias „-1‟ and in turn is fed to a single 

neuron at the output layer. The weights of both hidden layer 

(v11, v12, v13, v21, v22, v23) and output layer (w11, w12, 

w13) are initialized to random values. The neurons at both 
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hidden layer and output use continuous unipolar neurons. 

Experimental results are tabulated by varying the learning 

parameters such as Learning Constant (ɳ), Steepness 

Coefficient (λ), initial weights, number of hidden layer 

neurons and positive momentum coefficient (α), Shown in 

Figure 2, is the simulation window where the counting 

variable denotes the 4 inputs of the XOR taken in order. And 

„o‟ denotes the approximate outputs in order 

 

Figure2. Simulation window for XOR function Outputs at 

iteration 19,997 

3.1 Learning Constant (ɳ) variations: 
Variation of learning constant has a significant effect on the 

convergence and effectiveness of the EBPT algorithm. Since 

optimum learning constant is problem specific, on the basis of 

trial and error we showed that higher the value of learning 

constant better was the accuracy of the outputs at a given 

iteration as given in Table 1. Also observed that higher the 

value of learning constant lower the number of iterations for a 

given satisfactory output given in Table 2. 

TABLE 1. LEARNING CONSTANT VARIATION AT 

10,000 ITERATIONS 

 

Inputs 

 

Theoretical 

Outputs 

 

 

Learning Constant 

ɳ=0.01 ɳ =0.5 = 1.0 

00 0 

 

Practical 

Output 

0.47 0.0388 0.0247 

01 1 0.4506 0.9542 0.9711 

10 1 0.56451 0.9646 0.9769 

11 0 0.5024 0.035 0.0224 

 

TABLE 2. NUMBER OF ITERATIONS FOR 

DIFFERENT VALUES OF LEARNING CONSTANT 

Learning Constant ɳ = 0.01 ɳ = 0.5 ɳ = 1.0 

No. of iteration 
99,000 20,000 10,000 

 

3.2 Steepness Coefficient (λ) variations: 
The neurons activation function is characterized by steepness 

coefficient (λ), given by Equation 1. 

nete
netf





1

1
)( (1) 

f(net)- continuous unipolar activation function 

net- weighted summation of input 

Variation in steepness coefficient showed that higher values 

of steepness coefficient produced approximately similar 

results as that of learning constant. This implied that varying 

anyone of the parameters learning constant or steepness 

coefficient was sufficient to obtain correct classification of 

XOR outputs as given in Table 3. By increasing steepness 

Coefficient reduced iterations were observed as given in Table 

4. 

TABLE 3. STEEPNESS COEFFICIENT VARIATION  

AT 10,000 ITERATIONS 

Steepness 

Coefficient 
λ= 0.01 λ=0.5 λ= 1.0 

No. of 

iterations 

109000 10,000 2,500 

 

TABLE 4.  NUMBER OF ITERATIONS FOR 

DIFFERENT    VALUES OF STEEPNESS 

COEFFICIENT 

 

3.3 Initial Weights 
Randomness in the initial weights led to better convergence of 

the output whereas while initialization of same weights (1.0) 

did not give satisfactory results at 4,90,000 iterations depicted 

in Table 5. 

TABLE 5. OUTPUTS FOR DIFFERENT 

WEIGHTINITIALIZATIONAT 4,90,000 ITERATIONS 

3.4 Number of Hidden Neurons 
By increasing the number of neurons at the hidden layer 

improvement in speed of learning without affecting the 

accuracy much was obtained, thereby making the network 

faster in calculations of the outputs in Table 6 and 7. 

 

 

 

Input 
Theoreti

cal 

outputs 
 

Steepness Coefficient 

λ= 0.01 λ= 0.5 λ= 1.0 

00 0 
Practic

al 

Output

s 

0.49655 0.0742 0.0247 

01 1 0.496535 0.9117 0.9711 

10 1 0.49656 0.9353 0.9769 

11 0 0.49652 0.0649 0.0224 

Inputs 

Theoretical 

outputs 
 

Initial Weights 

Same 

weights=1.0 

Random 

weights 

00 0 

Practical 

Outputs 

0.0042 0.003 

01 1 0.6488 0.9964 

10 1 0.7016 0.997 

11 0 0.7395 0.0028 
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TABLE 6. VARIATION IN THE NUMBER OF HIDDEN 

LAYERS AT 2000 ITERATIONS 

 

TABLE 7. NUMBER OF ITERATIONS FOR 

DIFFERENTNUMBER OF HIDDEN LAYER 

 

3.5 Momentum Method 
Momentum method is based on feeding fraction of the 

previous training cycle weights to the current weight updation 

cycle as given by Equation 2. 

 ΔW(t) = ηΔE + αΔW(t− 1) (2)  

 ∆W(t)- current weight updation 

 ∆E- Change in error 

 ∆W(t-1)- fraction of previous weights 

The positive momentum coefficient is given by „α‟ and 

varying this parameter, led to better accuracy of the outputs in 

Table 8 and drastic improvement in speed in Table 9. 

TABLE 8. VARIATION IN MOMENTUM 

COEFFICIENT AT 1000 ITERATIONS 

 

TABLE 9. NUMBER OF ITERATION FOR 

DIFFERENT VALUES OF MOMENTUM 

COEFFICIENT 

Variation in 

Momentum 

Coefficient 

 α = 0.01 α =0.5 α = 1.0 

No. of iterations 
1800 1,300 1,000 

 

4. SINE WAVE GENERATION 
Figure 3, shows the schematic for the feed forward phase for 

the generation of 50 Hz Sine Wave. The input layer consists 

of a single input node augmented with bias „-1‟. The output of 

hidden layer is also augmented with a „-1‟ bias. The weights 

shown are initialized randomly. The hidden layer consisted of 

two bipolar continuous neurons as given in Equation 3.  

𝒇 𝒏𝒆𝒕 =
𝟐

𝟏+𝒆−𝝀𝒏𝒆𝒕 − 𝟏            (3) 

The output layer consisted of single linear neuron. The choice 

of using linear neuron was to ensure the output follows the 

continuous stream of inputs. Experimental results are 

tabulated by varying the learning parameters such as Learning 

Constant (ɳ), Steepness Coefficient (λ) and positive 

momentum coefficient (α) 

Figure 3 Feed forward phase for Generation of 50 Hz Sine 

Wave. 

The simulation results for 50 Hz Sine wave generation for 

optimum values of learning factor (η)=1.0, steepness 

coefficient (λ) =1.0 and positive momentum coefficient 

(α)=0.5  is shown in Figure 4. The initial weight adaptation is 

shown encircled. 

 

Figure 4 Simulation window for Generation of Sine Wave 

at 1000ns 

As observed from the Figure 5, by changing the momentum 

coefficient to a higher value (0.8, i.e. by giving higher fraction 

of weight change of the previous iteration to the current 

iteration) and keeping other parameters fixed such as learning 

factor(1.0) and steepness coefficient (1.0),the system was 

unable to learn and learning stopped at 9017 nanoseconds. 

The weights go out of the required range and thus it will 

require a very large number of iterations to track back the 

correct output. 

Inputs 

Theoretical 

outputs 
 

Number of Hidden 

Neurons 

Hidden 

neurons=2 

Hidden 

neurons=3 

00 0 

Practical 

Outputs 

0.0899 0.0474 

01 1 0.8905 0.9172 

10 1 0.9263 0.9321 

11 0 0.0759 0.0944 

Variation in 

Hidden Neurons 
Hidden 

neurons=2 
Hidden neurons=3 

No. of iterations 4000 2500 

Input

s 

Theoretic

al outputs 
 

Momentum Coefficient 

 α = 

0.01 
α =0.5 α = 1.0 

00 0 

Practica

l 

Outputs 

0.158

8 
0.0739 0.0507 

01 1 0.784 0.8834 0.9148 

10 1 
0.861

9 
0.9124 0.9335 

11 0 
0.202

7 
0.1249 

0.0942

2 
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Figure 5. Simulation window for Generation of Sine Wave 

at 9017ns 

In Figure 6, shows, by keeping momentum coefficient at the 

optimum value of 0.5, learning constant at optimum value 1.0 

and varying steepness coefficient to 0.5, a perfect sinusoid 

output was not tracked. 

Figure 6. Simulation window for Generation of Sine Wave 

at 62852ns 

By keeping a very low learning factor equal to 0.01 and keep 

the other parameters at optimum values a perfect sinusoid was 

not tracked as shown in Figure 7. 

Figure 7. Simulation window for Generation of Sine Wave 

at 24270ns 

5. CONCLUSION 
Implementation of Error Back Propagation Algorithm is 

carried out in VHDL platform for the purpose of in depth 

analysis of the effects of learning parameters on the accuracy 

and speed of convergence. Training is performed for a typical 

Nonlinear XOR classification and Sine Wave Generation 

problem. Experimental results verify that optimum parameters 

for satisfactory output are problem specific and are obtained 

through trial and error. 

Figure 8.Shows the effects of varying learning parameters on 

the speed of learning. For a given problem varying either 

Learning Constant or Steepness Coefficient is sufficient for 

satisfactory results. Increase in number of hidden neurons 

leads to further reduction in the number of iterations. Fastest 

convergence of the output is obtained by introducing 

momentum method. 

 

Figure. 8. Graph of effects of Learning Parameters on the 

Number of iterations for XOR classification 
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