
International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Advances in Computer Engineering & Applications (ICACEA-2014) at IMSEC,GZB

19

An Overview of Cryptographically Secure

Pseudorandom Number generators and BBS

Divyanjali
M.Tech Researcher

Apaji Institute,
Banasthali Vidyapith,

Rajasthan, India

Ankur
M.Tech Researcher

Apaji Institute,
Banasthali Vidyapith,

Rajasthan, India

Vikas Pareek
Associate Professor

Apaji Institute
Banasthali Vidyapith,

Rajasthan, India

ABSTRACT

In this manuscript we have presented a literature survey of

cryptographically securepseudo random number generators,

their requirements regarding statistical properties and next bit

test. The paper also provides a brief overview of Blum Blum

Shub (BBS) Generator specifically, which is considered to be

the best cryptographically secure pseudorandom number

generator. We have performed the rigorous testing of BBS

generator on National Institute of Science and Technology

(NIST) statistical test suite2.1.1. Scatter plot and P-value

distribution graphs are also included in the manuscript to

support the conclusion.

General Terms

Random number generation

Keywords

Blum Blum Shub generator,Cryptographically

SecurePseudoRandom Bit Generator,RSA generator

1. INTRODUCTION
Random numbers are generated with the help of a computer

program and are deterministic in nature, they are developed to

beused in simulation to simulate natural phenomena and

where a vast amount of random digits are needed. In the

process of generating random digits a random seed of length

lis obtained from a true random source, is then supplied to the

algorithm to produce a longer bit stream of random bits of

length k>>l.

Many algorithms are designed to generate these long sequence

of random bits but to predict the next generated bit in the

sequence is difficult for a adversary but not impossible, so to

protect the communication over internet, as SSL handshake

process keys, Encryption keys are generated with these

random number generators it is necessary that the generated

random bits should be obtained from a cryptographically

secure pseudo random number generator. Some

Cryptographically secure pseudorandom number generators

(CSPRNG) uses the source of entropy that are truly unbiased,

fully random and unbreakable by any intruder, like Lavarand

[1], Simon Cooper and Landon Curt Noll introduced the new

version of Lavarand by replacing the lava lamps with another

source of entropy a webcam with its lens cap on. The thermal

“noise” produced by the webcam is captured it is digitized and

then a Hash algorithm is applied over it, that do the mixing of

numbers strip off unwanted sections of predictability and

generates cryptographically secure random sequences. The

new generator turn out to be more popular than the old lava

lamp because it is license-free, patent-free, open source and

easily available to user on the website. But in present

manuscript we emphasize on cryptographically secure pseudo

random numbers generators based on way function problems.

One of the most important tasks of random number generators

is key generation but its uses are not limited to cryptography.

Depending upon nature of generators, random number

generators are classified; if the random number generator is

based on any one-way function, it is easy to compute y=f(x)

but very difficult to compute x=f-1(y), for example; Discrete

log problem (Blum Micali Generator) [2], Quadratic residue

problem (Blum Blum Shub) [3], Hash (FIPS -186)

[4],Elliptic curve cryptography [5], Subset sum [6], Integer

factorization (RSA generator) [7] it is said to be

cryptographically secure pseudo random number generator

(CSPRNG). A property of these RNGs is that there is no

algorithm exist, which can find out next bit to be generated in

the sequence given previous bits without knowledge of seed

in polynomial time. If the RNG is to be used in simulation, it

need not to be cryptographically secured but should have long

cycle length and uniform distribution over the range of

number domain.

A cryptographically secure pseudorandom bit is the bit that

must be non-deterministic in nature and can be used for

cryptographic purpose. To confirm this, next bit test is to be

performed. Next-bit test is finding an polynomial time

algorithm that can predict (k+1)th bit with probability greater

than 1/2, when given first k bits as input for bit generators and

generates random bits that can be used for cryptographic

application.

2. LITERATURE SURVEY
Computer’s first requirement of random numbers was for

simulations and numerical computations such as Monte Carlo

calculations. It is significant to note that the requirement of

randomness is different in cryptographic applications than that

of simulation. Prediction is often a prerequisite when we talk

about cryptographically secure pseudo random number

generator.

First cryptographically secure pseudo random number

generator [7], in terms of unpredictability, was introduced by

Adi Shamir in 1981 who is one of the inventors of RSA [8].

Shamir uses the core concept of RSA i.e. the problem of

Integer factorization to ensure the security of his new

CSPRNG, with the assumption of the strength of this

CSPRNG is equivalent to the security of the RSA

cryptosystem because of intractability of the problem of

Integer factorization. On the other hand, since it uses modular

exponentiation of huge numbers, makes it slow as well as not

suitable for practical applications.

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Advances in Computer Engineering & Applications (ICACEA-2014) at IMSEC,GZB

20

Micali-Schnorr introduced a slight improved and modified

version of RSA generator is more efficient than the RSA

since 𝑁 1 −
2

𝑒
 bits are generated per exponential by e,

where e is encryption key for RSA. However each

exponentiation requires one modular squaring per bit.

Subsequently another Cryptographically secure PRBG is

introduced Blum Blum Shub generator [3] also known as BBS

generator which works on the concept of quadratic residue

one way function. Its security also depends upon the

intractability of the Integer factorization of modulus N. BBS

generator requires only one modular squaring per bit, instead

of one modular exponentiation. In contrast to RSA generator,

BBS generator is also slow but suitable for practical

applications like session key generation, Public key

cryptosystem, nonce etc. Many other generators were also

proposed as cryptographically secure PRBG but RSA and

BBS generators are the most famous among all of them.

3. REQUIREMENTS OF

CRYPTOGRAPHICALLY SECURE

PRBG
A good pseudo random generator is needed to qualify on

some standards to prove to be truly random. To verify this

many statistical test are performed that are used to find

whether there exist any correlation or not and the generated

bit sequence have a good period length and uniform

distribution over U(0, 1). But unfortunately, there is no

statistical test that can accomplish that if a PRNG passes all

the tests of statistical test suite like National Institute of

Science and Technology (NIST 2.1.1) [9] is flawless and

cryptographically secure.

The requirement of normal PRBGs are satisfied by a

cryptographically secure PRBG but contrarily is not true.

They have to pass the statistical test suites as well as also have

to prove the immunity over any adversary’s attack, so that one

should be unable to crack the PRBG.

Andrew Yao, the Knuth prize winner scientist mentioned in

his paper in 1982 [10] that if a generator is passing the next

bit test can pass all other polynomial time statistical test for

randomness and should satisfy the property of

unpredictability. It is necessary for a good PRBG to hold the

property of unpredictability. There exist two types of

unpredictability [11]:

 Forward unpredictability

Forward unpredictability is inability to predict next number

inthe sequence, with probability more than 1/2 i.e. 0.5 without

the knowledge of seed, given that previous numbers are

known.

 Backward unpredictability

In backward unpredictability seed should not be derived

fromthe output of pseudo random number generator [12] this

done because if the seed is derived then pseudorandom

number generator is no more secure and its randomness is

compromised.

James Reeds [13] specify two notable standards of

randomness in his paper “Cracking a random number

generator” in 1977.

 The usual statistical standard states that a sequence of

numbers, which cannot be distinguished from a sequence of

true random numbers chosen from the unit interval,

isconsidered random. Sequence should be uniformly

distributed over the given space of numbers. PRNGs that

are acceptable by these standards are suitable for

simulations, sampling, games, computer algorithms,

medicine and similar applications.

 If a PRBG is to be used for a cryptographic application it

should satisfy some key properties i.e. unpredictability is

most important rather than uniform distribution and long

cycle length. It is less important whether the sequence is

uniformly distributed, but it is essential that the generated

numbers should not contribute to adversary to find previous

number or the next number going to generate.

4. BBS: THE CRYPTOGRAPHICALLY

SECURE PRBG
Blum Blum Shub is a provably secure pseudo random number

generator, proposed by Lenore Blum, Manuel Blum and

Michael Shub in 1986 [3]. The algorithm is considered to beas

secure as quadratic residue problem, an NP-complete

problem. In other words, to break the BBS is equivalent to

solve the quadratic residue problem, which in turn, would

solve the NP-complete problem the basis of cryptography.

Due to this reason thealgorithm is most preferable algorithm

for cryptographic purpose like key generation. This section

explains the algorithm along with the quadratic residue

problem.

4.1 Quadratic Residue Problem
For natural numbers a, n i.e. a, nϵN and aϵZn, a is said to be

quadratic residue n if and only if a number x with xϵZnexists

anda is congruent to x squared modulo n i.e.

𝑎 ≡ 𝑥2𝑚𝑜𝑑 𝑛 (1)

QRnis used to represent the set of all quadratic residues

modulo n and QNRnstands for the set of all quadratic non-

residues modulo n[14]. If n is an odd prime then its QRnwould

contain elements less than n/2.

The quadratic residue problem is to check whether a given

number a is quadratic residue modulo n or not. To know this

one has to find a number x for which condition given in

equation (1) is satisfied, that can be done only by using brute-

force technique to exhaust Zn. However, to compute its

reverse i.e. finding a given numbers x, n, is quite easy to

calculate, hence it is considered to be an NP-complete

problem. The subsequent sectionillustrates how BBS uses the

same problem as a one-way function.

4.2 BBS: The Algorithm
To use the concept of quadratic residue, Blum, Blum and

Shub proposed to choose the two odd primes p and q, and

compute n= p ∙ q. Then square modulo n of seed is computed

and theresulting number is considered to be the first number

generated. The seed is replaced with generated number

insubsequent iterations and a square modulo n is

computedagain, generating a number per iteration. To geta

bit sequence, least significant bit of generated number

isextracted per iteration and is added to the generated

binarysequence. Hence BBS needs only one square

(ormultiplication) per bit generated. Let the seed is s, s∈Zn,

thenfirst number is

𝑋1 ≡ 𝑠2𝑚𝑜𝑑 𝑛 and the bit 𝑏1 ≡ 𝑋1𝑚𝑜𝑑 2

For ith iteration

Xi ≡ Xi−1
2 mod n and bi ≡ Ximod 2

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Advances in Computer Engineering & Applications (ICACEA-2014) at IMSEC,GZB

21

This way the algorithm needs to compute only one square

operation to generate a bit, which is much less than any of the

other cryptographically secure algorithm.

Following is the pseudo code of the algorithm:

BLUM_BLUM_SHUB (SEED):

1. X0 = SEED

2. Choose two odd prime p and q

3. n ← p ∙ q

4. l ← length of sequence

5. fori ← 1 to l

6. do𝑋𝑖 ≡ 𝑋𝑖−1
2 𝑚𝑜𝑑 𝑛

7. do𝑏𝑖 ≡ 𝑋𝑖𝑚𝑜𝑑 2

8. return B = <b1b2b3…bl>

Example

Let p = 101, q = 97 and seed X0 = 128

n = 101 ∙ 97 = 9797

𝑋1 ≡ 1282𝑚𝑜𝑑 9797 = 6587 b1=1

𝑋2 ≡ 65872𝑚𝑜𝑑 9797 = 7453 b2=1

𝑋3 ≡ 74532𝑚𝑜𝑑 9797 = 8016 b3=0

𝑋4 ≡ 80162𝑚𝑜𝑑 9797 = 7530 b4=0

𝑋5 ≡ 75302𝑚𝑜𝑑 9797 = 5661 b5=1

𝑋6 ≡ 56612𝑚𝑜𝑑 9797 = 934 b6=0

𝑋7 ≡ 9342𝑚𝑜𝑑 9797 = 423 b7=1

𝑋8 ≡ 4232𝑚𝑜𝑑 9797 = 2583 b8=1

The generate bit sequence of above example is 11001011.

Fig 1: Schematic diagram of BBS

In this example of BBS generator, here we extract the least

significant bits of the generated sequence Xi as it is mentioned

in the original draft of the paper proposed by the Blum Blum

and Shub in 1978. But if we extract the k least significant bits

from the sequence rather than extracting one bit per squaring

that is costlier and makes the functioning of generator slow, k

bits per squaring increase the speed and also do not affect the

security of algorithm.

5. TESTING OF BBS
The randomness of BBS is tested rigorously using statistical

test suites and scatter plots. The PRBGs used

forcryptographic purpose needs to be cryptographically secure

and unpredictable. To be confident about randomness of

number generated from a PRBG, it is important to test its

output sequences. There are several of tests batteries

availablesuch as NIST statistical test suite [9], DIEHARD test

[15], Donald Knuth’s statistical test suite [16], and the Crypt-

XS statistical test suite [17]. They all perform a number of

tests to find different type of non-randomness. None of these

is perfect in itself. Juan Soto [18] has shown that not all the

testsare needed to be performed and the NIST statistical test

suiteis the best in one of these. Hence we have used NIST

statistical test suitests-2.1.1, regarded as most precise tests of

randomness to analyze the statistical properties of BBS

generator.

5.1 The NIST suite
The NIST Test Suite, consisting of 15 tests, is a statistical

package that tests the randomness of (arbitrarily long) binary

sequences. These sequences can be produced either by

hardware or by software based random number generators.

The tests are [9]:

1. The Frequency (Monobit) Test,

2. Frequency Test within a Block,

3. The Runs Test,

4. Tests for the Longest-Run-of-Ones in a Block,

5. The Binary Matrix Rank Test,

6. The Discrete Fourier Transform (Spectral) Test,

7. The Non-overlapping Template Matching Test,

8. The Overlapping Template Matching Test,

9. Maurer's "Universal Statistical" Test,

10. The Linear Complexity Test,

11. The Serial Test,

12. The Approximate Entropy Test,

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Advances in Computer Engineering & Applications (ICACEA-2014) at IMSEC,GZB

22

13. The Cumulative Sums (Cusums) Test,

14. The Random Excursions Test, and

15. The Random Excursions Variant Test.

Further information about these tests is not the subject of

present manuscript. The test suite calculates P-value, the

probability that a perfect random number generator would

have produced a sequence less random than the sequence that

was tested [9]. A significance level (α) can be chosen for the

tests. If P-value ≥ α, then the null hypothesis is accepted,

otherwise null hypothesis is rejected. The α = 0.01

indicatesthat one would expect 1 sequence in 100 sequences

to be rejected. The P-value of P-values (P-valueT),

describesGoodness-of-fit Distribution test on the P-values

obtained for an arbitrary statistical test (i.e., a P-value of the

P-values).

5.2 Statistical Test Results of BBS
For testing of suggested algorithm, we have generated 1000

sequences, each of 106 bits. Each of the sequence is

generatedfrom different randomly chosen seed. The seeds are

provided from a true random source - Random.org

[19].The generation of numbers has been done using C

language library- GCC (GNU Compiler Collection) [20],

and GMP(GNU Multiple Precision) arithmetic library [21] to

handle large numbers. NIST 2.1.1 test battery is applied over

each of thesesequence and P-values for all 15 tests are

computed. The significance level α is set to 0.01.

So, minimum 980 sequences must pass the test when sample

size m = 1000 i.e. for all of the tests except random excursion

and random excursion variant which have sample size of m

=609 and hence needs 595 sequences to pass the test for

sequences to be considered random. The parameters used for

testing and results of NIST suite are summarized in Table 1

and 2 respectively:

Table 1. NIST parameter List

No of sequences tested 1,000

Length of each binary sequences 1,000,000 bits

Significance level 0.01

Block size 16

Template size 9

Maximum number of templates 40

Table 2. NIST2.1.1 testing results

S. No. Name of test No. of sequences with

P-value≥0.01

(Success)

P-value of

P-values

Proportion

ofsequences passing

the test

1 Frequency test 983 0.057146 0.983

2 Block Frequency test 988 0.837781 0.988

3 Cumulative Sums test

 1) Forward sums test 983 0.307077 0.994

 2) Reverse sums test 983 0.268917 0.983

4 Runs test 989 0.452173 0.989

5 Longest Run test 983 0.801865 0.983

6 Rank test 987 0.970302 0.987

7 FFT test 986 0.070299 0.991

8 Non-Overlapping Template matching test (Template Length = 9)

 1. Template = 000000011 981 0.90569 0.981

 2. Template = 110000000 990 0.310049 0.99

 3. Template = 111001010 989 0.884671 0.989

 4. Template = 111001100 985 0.548314 0.985

 5. Template = 111100000 982 0.263572 0.982

 6. Template = 111101110 994 0.00087 0.994

 7. Template = 111110100 988 0.496351 0.988

 8. Template = 111011100 994 0.161703 0.994

9 Overlapping Template test 983 0.167184 0.983

10 Universal test 990 0.417219 0.99

11 Approximate Entropy test 990 0.630872 0.993

12 Random Excursions test

 1. x = -4 615 0.550479 0.992

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Advances in Computer Engineering & Applications (ICACEA-2014) at IMSEC,GZB

23

 2. x = -3 613 0.446255 0.989

 3. x = -2 613 0.540661 0.989

 4. x = -1 617 0.258434 0.995

 5. x = 1 614 0.886546 0.99

 6. x = 2 613 0.623687 0.987

 7. x = 3 615 0.913523 0.992

 8. x = 4 614 0.808301 0.99

13 Random Excursion Variant test

 1. x = -9 600 0.103035 0.985

 2. x = -8 602 0.3824 0.988

 3. x = -7 601 0.631914 0.986

 4. x = -6 600 0.618038 0.985

 5. x = -5 600 0.821041 0.985

 6. x = -4 600 0.414525 0.985

 7. x = -3 603 0.6562 0.99

 8. x = -2 604 0.379555 0.991

 9. x = -1 604 0.855534 0.991

 10. x= 1 605 0.652733 0.993

 11. x = 2 597 0.505865 0.98

 12. x = 3 592 0.126536 0.972

 13. x = 4 597 0.272297 0.98

 14. x = 5 598 0.312791 0.981

 15. x = 6 598 0.429618 0.981

 16. x = 7 599 0.021627 0.983

 17. x = 8 602 0.011722 0.988

 18. x = 9 604 0.855534 0.991

14 Serial test 991 0.853049 0.991

15 Linear Complexity test 992 0.298282 0.992

Fig 2: Frequency Test

Fig 3: Block Frequency Test

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Advances in Computer Engineering & Applications (ICACEA-2014) at IMSEC,GZB

24

Fig 4: FFT Test

Fig 5: Runs Test

Fig 6: Serial Test

Fig 7: Cumulative Sums Test

Fig 8: Rank Test

Fig 9: Linear Complexity Test

Uniform-distribution of P-values for 1000 number of binary

sequences has also been represented by histograms by

dividing the complete interval of P-values [0, 1] is 10 equal

sub-intervals and the P-values that lie in each subinterval are

plotted. For four of these tests, this distribution has been

displayed in Figure 2 to 5 for four of these tests.

It is clear from the Table 2 and the Figure 2 to 5 that the P-

valueT for each of these tests lies in confidence interval i.e. the

tested binary sequence passes all these tests. These all figures

and tables are designed using finalAnalysisReport.txt file

generated by NIST test suite (sts-2.1.1), which is provided in

the appendix of this manuscript. We have performed the test

on some other samples also and these samples pass the tests as

well.

5.3 Scatter Plot
Scatter Plots are used toshow uniformity

oruniformdistribution of the numbers. The scatter plot of

numbers generated for BBS have also been plotted in

MATLAB. Themotivation behind this is to shows the

distribution graphicallyrather than statistically in probabilistic

terms. The figure 6 contains the scatter plot of first 1000

numbers generated by BBS with value of p= 98207 and q=

101111 and seed is given at random.

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Advances in Computer Engineering & Applications (ICACEA-2014) at IMSEC,GZB

25

Fig 6: Scatter Plot of BBS

As the scatter plot shows, there exists a correlation between

the numbers generated in subsequent iterations, but it is not

undesirable as James Reed [13] proved in his paper that

cryptographically secure pseudorandom number generators

need not to have uniform distribution; they must be

unpredictable and provably secure.

6. CONCLUSION
Since it is widely believed that no polynomial time

algorithmexist that can guess the next bit, more than the

probability of0.5 generated by BBS generators and by our

study we conclude that BBS,which is based on Composite

quadratic residue is provably secure, is random enough to be

used in cryptographic applications when computed with very

large numbers. The sequence is generated in BBS by

extracting least significant bits bi from xi, but if we extract the

k least significant bits from each xi, the security of PRBG still

remain intractable as well as fast generation can also be

achieved.

7. ACKNOWLEDGMENTS
We would like to thank Banasthali Vidyapith for letting us use

their resources, providing support and encouragement. It

waspossible to carry out the above stated research only with

the help and assistance of the institute.

8. REFERENCES
[1] Landon Curt Noll ,http://www.lavarnd.org/

[2] Blum M. and Micali S.1984. How to generate

cryptographically strong sequences of pseudo-random

bits. SIAM Journal on Computing 13, pp. 850–864.

[3] Blum L., Blum M.and Shub M. 1986.A simple

unpredictablepseudorandom numbergenerator.SIAM

JournalonComputing15,pp. 364–383.

[4] FIPS 186. 1994.Digital signaturestandard. Federal

Information Processing Standards Publication 186,U.S.

Departmentof Commerce/N.I.S.T.,NationalTechnical

Information Service, Springfield,Virginia.

[5] Lap-Piu Lee and Kwok-Wo WongJanuary–February

2004. A Random Number Generator Based on Elliptic

Curve Operations. Elsevier,Computers & Mathematics

with Applications Volume47,Issues 2–3,pp.217–226.

[6] Merkle R. C.Hellman M. 1978.Hiding informationand

Signature in TrapdoorKnapsack,IEEETransaction on

InformationTheory,vol.24,pp.525-530.

[7] Shamir A. 1983. On the

generationofCryptographically

StrongPseudorandom Sequences. ACMTransactionson

Computer Systems, 1,pp.38–44.

[8] RivestR. Shamir A.Adleman L.1978.AMethod

forObtainingDigital Signaturesand Public-Key

Cryptosystems.Communications of the ACM21(2), 120–

126.

[9] Rukhin A.Soto J. Nechvatal J.Smid M. Barker E. Leigh

S. Levenson M. Vangel M. Banks D. Heckert A. Dray

J.SanVo 2001 Statisticaltestsuiteforrandom and

pseudorandom numbergeneratorsforcryptographic

applications.NISTspecial publication800-22.

[10] Andrew Chi-Chih Yao 1982. Theory and Applications

of Trapdoor Functions. InProceedingsof the23rdIEEE

Symposiumon FoundationsofComputer Science.

[11] Stinson D. R. 2006. Cryptography Theory and

Practice.Taylor&Francis Group, 3rd.edition, pp.324-325.

[12] Park S. K. Miller K. W. 1988. RandomNumber

Generators: Good onesare hard tofind. Communications

ofthe ACM 31,1192-1201.

[13] Reeds J. A. 1977.Cracking'arandomnumber generator.

Cryptologia,1(1).

[14] Nowak D. 2009. On Formal Verification of Arithmetic

Based Cryptographic Primitives, Information Security

and Cryptology - ICISC 2008, 11th International

Conference, Seoul, Korea, December 3-5, 2008,

Proceedings, volume 5461 of Lecture Notes in Computer

Science, pp. 368-382.

[15] Marsaglia G. 1995. DIEHARD statistical tests.

http://www.stat.fsu.edu/pub/diehard/,lastaccessed

onJuly26,2013.

[16] Knuth D. E. 1998.TheartofComputer

Programming:SeminumericalAlgorithms.Addison

Wesley,Reading, USA.

[17] Gustafson H. Dawson E. Nielsen L. Caelli W. 1994. A

Computer package for measuringthe Strengthof

EncryptionAlgorithms,J.Computer Security,vol.13,

pp.687-697.

[18] Soto J. 1999. Statisticaltestingofrandom number

generators, Proc.of22ndNationalInformation

SystemSecurity Conference, retrieved from
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/nissc-

paper.pdf

[19] Haahr M.Haahr S. Random.org.http://random.org,last

accessed onJuly26,2013.

[20] GCC:the GNU Compiler Collection.http://gcc.gnu.org/,

lastaccessed onJuly26,2013.

[21] The GNU Multiple PrecisionArithmetic Library.

http://gmplib.org/,lastaccessed onJuly26,2013.

http://www.lavarnd.org/
http://www.lavarnd.org/
http://www.lavarnd.org/
http://www.sciencedirect.com/science/journal/08981221
http://www.sciencedirect.com/science/journal/08981221
http://www.sciencedirect.com/science/journal/08981221
http://www.sciencedirect.com/science/journal/08981221
http://www.sciencedirect.com/science/journal/08981221/47/2
http://www.sciencedirect.com/science/journal/08981221/47/2
http://www.stat.fsu.edu/pub/diehard/
http://www.stat.fsu.edu/pub/diehard/
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/nissc-paper.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/nissc-paper.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/nissc-paper.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/nissc-paper.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/nissc-paper.pdf
http://random.org/
http://random.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gmplib.org/
http://gmplib.org/

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Advances in Computer Engineering & Applications (ICACEA-2014) at IMSEC,GZB

26

APPENDIX

NIST sts-2.1.1 output file finalAnalysisReport.txt for Blum Blum Shub generator:

--

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

--

 generator is <./data/bbs_out>

--

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

--

 93 106 76 101 95 106 101 102 129 91 0.057146 983/1000 Frequency

101 87 94 99 111 98 108 94 100 108 0.837781 988/1000 BlockFrequency

 91 94 95 90 88 107 116 105 118 96 0.307077 983/1000 CumulativeSums

 95 92 95 89 84 119 105 113 108 100 0.268917 983/1000 CumulativeSums

106 94 109 84 102 111 84 97 106 107 0.452173 989/1000 Runs

108 101 105 98 110 102 105 88 88 95 0.801865 983/1000 LongestRun

106 100 96 101 97 102 96 111 100 91 0.970302 987/1000 Rank

132 111 97 100 94 95 95 88 86 102 0.070299 986/1000 FFT

 98 107 95 106 106 100 86 105 103 94 0.900569 989/1000 NonOverlappingTemplate

102 83 101 88 99 117 111 101 109 89 0.310049 990/1000 NonOverlappingTemplate

109 88 99 97 106 97 111 100 94 99 0.884671 989/1000 NonOverlappingTemplate

115 100 93 101 99 100 92 94 117 89 0.548314 985/1000 NonOverlappingTemplate

 97 113 120 83 110 95 92 95 94 101 0.263572 982/1000 NonOverlappingTemplate

107 111 92 98 106 94 90 91 99 112 0.703417 991/1000 NonOverlappingTemplate

 71 98 89 97 86 129 89 121 115 105 0.000870 994/1000 NonOverlappingTemplate

117 116 91 100 94 91 88 106 100 97 0.408275 983/1000 NonOverlappingTemplate

100 86 94 117 91 111 101 93 99 108 0.496351 988/1000 NonOverlappingTemplate

104 98 96 87 104 106 102 92 96 115 0.773405 986/1000 NonOverlappingTemplate

107 106 97 92 98 105 101 86 112 96 0.794391 992/1000 NonOverlappingTemplate

 91 100 123 93 100 95 105 94 88 111 0.342451 993/1000 NonOverlappingTemplate

 98 99 98 96 111 85 110 87 98 118 0.377007 991/1000 NonOverlappingTemplate

 80 123 97 96 105 99 114 98 99 89 0.161703 994/1000 NonOverlappingTemplate

103 105 95 86 93 102 113 87 93 123 0.200115 991/1000 NonOverlappingTemplate

 98 106 100 98 104 107 92 89 94 112 0.856359 985/1000 NonOverlappingTemplate

116 108 104 102 84 86 85 102 118 95 0.133404 989/1000 NonOverlappingTemplate

110 98 105 100 98 90 80 94 116 109 0.345650 988/1000 NonOverlappingTemplate

105 111 105 88 94 103 91 101 84 118 0.332970 990/1000 NonOverlappingTemplate

106 101 97 110 93 90 95 102 104 102 0.944274 992/1000 NonOverlappingTemplate

104 94 98 95 112 87 98 112 100 100 0.796268 993/1000 NonOverlappingTemplate

109 106 112 101 94 85 85 101 105 102 0.556460 988/1000 NonOverlappingTemplate

 98 100 113 100 106 92 95 92 111 93 0.805569 990/1000 NonOverlappingTemplate

104 90 82 105 109 117 100 109 87 97 0.279844 991/1000 NonOverlappingTemplate

 88 123 103 98 91 109 98 91 92 107 0.314544 994/1000 NonOverlappingTemplate

103 99 90 111 106 101 91 94 101 104 0.910091 989/1000 NonOverlappingTemplate

 97 99 99 84 106 104 94 104 104 109 0.861264 990/1000 NonOverlappingTemplate

121 107 91 98 95 98 114 95 84 97 0.282626 991/1000 NonOverlappingTemplate

115 101 96 93 94 106 105 97 82 111 0.492436 987/1000 NonOverlappingTemplate

 97 101 103 96 88 94 96 89 109 127 0.235589 988/1000 NonOverlappingTemplate

 93 101 88 94 99 103 106 90 101 125 0.348869 992/1000 NonOverlappingTemplate

103 122 102 105 101 104 88 100 90 85 0.344048 986/1000 NonOverlappingTemplate

 89 103 89 98 102 96 100 123 100 100 0.530120 988/1000 NonOverlappingTemplate

102 91 95 103 99 115 100 100 102 93 0.912724 995/1000 NonOverlappingTemplate

 92 117 112 108 98 95 102 85 94 97 0.471146 991/1000 NonOverlappingTemplate

 84 99 113 99 94 111 103 99 95 103 0.711601 991/1000 NonOverlappingTemplate

 97 75 105 97 97 115 105 107 99 103 0.361938 989/1000 NonOverlappingTemplate

 94 111 118 97 93 85 95 101 94 112 0.375313 989/1000 NonOverlappingTemplate

 98 98 92 118 109 105 86 98 104 92 0.552383 990/1000 NonOverlappingTemplate

101 104 99 99 109 86 94 96 117 95 0.676615 987/1000 NonOverlappingTemplate

 87 110 79 93 84 110 114 107 100 116 0.063615 991/1000 NonOverlappingTemplate

 92 91 107 96 105 94 108 103 109 95 0.875539 994/1000 NonOverlappingTemplate

 91 102 104 97 95 96 105 107 97 106 0.975012 996/1000 NonOverlappingTemplate

111 90 105 89 105 98 102 94 115 91 0.593478 989/1000 NonOverlappingTemplate

 92 120 107 88 107 94 90 93 99 110 0.357000 991/1000 NonOverlappingTemplate

101 101 97 81 110 102 94 107 96 111 0.639202 990/1000 NonOverlappingTemplate

129 106 100 83 92 102 104 90 100 94 0.127393 991/1000 NonOverlappingTemplate

119 85 90 97 104 86 101 109 109 100 0.296834 987/1000 NonOverlappingTemplate

101 111 113 99 100 104 94 100 101 77 0.461612 991/1000 NonOverlappingTemplate

108 97 100 99 107 82 111 93 118 85 0.233162 990/1000 NonOverlappingTemplate

106 107 93 96 116 109 82 99 90 102 0.422638 988/1000 NonOverlappingTemplate

 87 88 111 105 107 94 94 99 123 92 0.228367 990/1000 NonOverlappingTemplate

 84 123 107 94 90 99 122 94 97 90 0.066882 988/1000 NonOverlappingTemplate

110 114 90 86 95 106 106 87 89 117 0.177628 989/1000 NonOverlappingTemplate

103 112 117 101 86 92 101 110 88 90 0.313041 991/1000 NonOverlappingTemplate

106 94 101 90 115 95 100 104 96 99 0.870856 991/1000 NonOverlappingTemplate

 77 115 117 89 105 91 101 103 119 83 0.022760 993/1000 NonOverlappingTemplate

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Advances in Computer Engineering & Applications (ICACEA-2014) at IMSEC,GZB

27

116 99 74 99 128 96 90 101 88 109 0.014550 988/1000 NonOverlappingTemplate

110 103 117 96 103 98 86 107 90 90 0.463512 995/1000 NonOverlappingTemplate

 86 117 98 113 87 104 96 113 94 92 0.257004 994/1000 NonOverlappingTemplate

104 96 92 78 108 96 92 106 118 110 0.222480 994/1000 NonOverlappingTemplate

111 98 87 106 110 93 95 95 109 96 0.713641 995/1000 NonOverlappingTemplate

100 108 110 115 96 108 95 90 95 83 0.429923 986/1000 NonOverlappingTemplate

 88 109 91 98 102 107 92 102 106 105 0.841226 990/1000 NonOverlappingTemplate

 99 115 90 93 117 104 100 102 94 86 0.422638 989/1000 NonOverlappingTemplate

 82 101 96 99 111 96 105 98 115 97 0.593478 990/1000 NonOverlappingTemplate

 89 86 97 94 93 120 89 101 108 123 0.084037 989/1000 NonOverlappingTemplate

103 103 94 122 102 100 90 93 101 92 0.579021 989/1000 NonOverlappingTemplate

119 86 84 103 91 101 97 109 106 104 0.314544 983/1000 NonOverlappingTemplate

108 106 108 89 91 89 105 103 105 96 0.777265 987/1000 NonOverlappingTemplate

102 115 74 106 102 104 91 92 109 105 0.206629 987/1000 NonOverlappingTemplate

106 91 110 77 123 93 103 103 103 91 0.111389 994/1000 NonOverlappingTemplate

 90 90 93 100 108 106 110 90 104 109 0.693142 984/1000 NonOverlappingTemplate

 93 104 107 91 86 104 96 105 99 115 0.664168 992/1000 NonOverlappingTemplate

 98 107 95 106 107 98 87 105 103 94 0.907419 989/1000 NonOverlappingTemplate

114 97 84 90 110 105 83 101 120 96 0.125200 988/1000 NonOverlappingTemplate

101 92 85 94 110 111 109 95 118 85 0.212184 993/1000 NonOverlappingTemplate

107 83 94 107 102 108 104 110 88 97 0.574903 988/1000 NonOverlappingTemplate

107 118 102 99 88 101 88 81 117 99 0.154629 984/1000 NonOverlappingTemplate

113 94 113 104 103 95 105 97 88 88 0.589341 987/1000 NonOverlappingTemplate

103 87 91 96 92 109 98 116 99 109 0.572847 993/1000 NonOverlappingTemplate

117 101 109 77 109 98 115 78 97 99 0.048093 982/1000 NonOverlappingTemplate

108 126 86 94 91 90 98 102 98 107 0.205531 993/1000 NonOverlappingTemplate

 92 102 104 98 92 107 103 96 102 104 0.981940 991/1000 NonOverlappingTemplate

 91 112 108 97 111 104 106 83 100 88 0.433590 985/1000 NonOverlappingTemplate

 85 102 98 104 104 112 83 111 104 97 0.490483 995/1000 NonOverlappingTemplate

 95 102 99 96 103 92 103 112 100 98 0.973055 992/1000 NonOverlappingTemplate

123 92 107 120 91 86 91 97 93 100 0.103138 984/1000 NonOverlappingTemplate

 92 95 98 110 96 103 106 108 102 90 0.896345 986/1000 NonOverlappingTemplate

105 115 104 105 80 120 88 107 94 82 0.058243 992/1000 NonOverlappingTemplate

 90 98 98 97 109 87 96 100 113 112 0.641284 992/1000 NonOverlappingTemplate

110 109 91 92 104 88 105 120 92 89 0.278461 985/1000 NonOverlappingTemplate

105 108 94 97 114 100 87 86 103 106 0.595549 989/1000 NonOverlappingTemplate

 98 105 95 92 106 99 104 106 87 108 0.883171 983/1000 NonOverlappingTemplate

100 114 97 105 97 97 112 100 88 90 0.703417 989/1000 NonOverlappingTemplate

 93 97 101 119 98 103 98 79 109 103 0.377007 987/1000 NonOverlappingTemplate

100 103 92 109 98 114 98 94 91 101 0.854708 993/1000 NonOverlappingTemplate

111 103 108 98 107 103 93 98 94 85 0.769527 982/1000 NonOverlappingTemplate

109 105 104 105 98 94 94 110 93 88 0.820143 995/1000 NonOverlappingTemplate

 92 104 103 95 96 105 97 99 112 97 0.956729 990/1000 NonOverlappingTemplate

 96 98 94 90 89 127 114 89 104 99 0.145326 989/1000 NonOverlappingTemplate

 97 101 109 107 94 110 101 73 103 105 0.319084 985/1000 NonOverlappingTemplate

101 86 97 116 106 105 97 97 98 97 0.784927 987/1000 NonOverlappingTemplate

 93 82 94 114 91 101 94 95 114 122 0.112708 993/1000 NonOverlappingTemplate

101 115 106 80 93 111 104 97 107 86 0.274341 990/1000 NonOverlappingTemplate

108 101 96 115 89 90 99 104 92 106 0.695200 990/1000 NonOverlappingTemplate

104 93 94 93 100 90 106 112 101 107 0.851383 985/1000 NonOverlappingTemplate

133 108 105 102 97 100 91 98 85 81 0.028625 988/1000 NonOverlappingTemplate

 94 103 101 108 90 100 91 104 115 94 0.771469 990/1000 NonOverlappingTemplate

103 112 101 109 112 103 100 80 82 98 0.264901 994/1000 NonOverlappingTemplate

100 90 101 119 113 110 96 90 82 99 0.229559 989/1000 NonOverlappingTemplate

107 112 106 92 87 109 88 85 111 103 0.317565 987/1000 NonOverlappingTemplate

111 95 102 101 98 87 111 88 108 99 0.684890 987/1000 NonOverlappingTemplate

110 103 89 95 94 115 98 97 102 97 0.796268 991/1000 NonOverlappingTemplate

102 122 98 92 100 99 87 100 89 111 0.377007 990/1000 NonOverlappingTemplate

111 87 100 90 107 111 107 91 93 103 0.587274 997/1000 NonOverlappingTemplate

105 103 114 103 94 102 100 95 98 86 0.830808 988/1000 NonOverlappingTemplate

105 104 100 108 82 92 89 101 110 109 0.538182 988/1000 NonOverlappingTemplate

107 97 87 97 115 98 94 85 104 116 0.352107 991/1000 NonOverlappingTemplate

124 119 89 95 88 92 100 100 107 86 0.081510 991/1000 NonOverlappingTemplate

104 108 116 106 90 95 113 90 84 94 0.305599 990/1000 NonOverlappingTemplate

102 91 83 98 105 99 107 113 101 101 0.715679 986/1000 NonOverlappingTemplate

111 103 99 114 100 81 119 96 76 101 0.058612 992/1000 NonOverlappingTemplate

 90 111 94 91 102 102 101 100 108 101 0.903338 990/1000 NonOverlappingTemplate

 97 123 106 88 102 93 96 81 111 103 0.172816 987/1000 NonOverlappingTemplate

105 106 105 93 107 79 103 96 104 102 0.668321 992/1000 NonOverlappingTemplate

122 106 80 94 86 91 98 100 118 105 0.069863 986/1000 NonOverlappingTemplate

109 107 110 98 91 106 86 99 94 100 0.755819 991/1000 NonOverlappingTemplate

111 105 115 83 109 104 99 113 76 85 0.044508 992/1000 NonOverlappingTemplate

 98 93 91 103 102 89 115 98 105 106 0.781106 993/1000 NonOverlappingTemplate

 86 110 109 106 108 91 86 90 91 123 0.101311 993/1000 NonOverlappingTemplate

115 103 82 84 104 102 104 105 95 106 0.404728 982/1000 NonOverlappingTemplate

106 115 81 116 97 100 87 90 105 103 0.219006 992/1000 NonOverlappingTemplate

123 108 96 89 107 109 88 95 85 100 0.184549 979/1000 * NonOverlappingTemplate

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Advances in Computer Engineering & Applications (ICACEA-2014) at IMSEC,GZB

28

 93 122 92 113 87 95 109 90 97 102 0.240501 990/1000 NonOverlappingTemplate

 97 101 105 103 100 106 105 88 96 99 0.976266 990/1000 NonOverlappingTemplate

112 87 72 121 115 107 103 84 102 97 0.013102 991/1000 NonOverlappingTemplate

108 123 99 96 95 76 106 90 103 104 0.132640 990/1000 NonOverlappingTemplate

100 120 87 116 90 106 103 87 95 96 0.224821 981/1000 NonOverlappingTemplate

 86 107 93 99 106 97 91 95 109 117 0.518106 994/1000 NonOverlappingTemplate

100 95 96 106 105 97 92 94 116 99 0.861264 992/1000 NonOverlappingTemplate

 90 95 94 106 108 95 94 107 101 110 0.858002 993/1000 NonOverlappingTemplate

 95 86 98 109 79 98 104 100 124 107 0.125200 988/1000 NonOverlappingTemplate

102 99 95 112 111 101 99 99 86 96 0.825505 986/1000 NonOverlappingTemplate

 89 86 108 118 106 92 94 128 84 95 0.024688 994/1000 NonOverlappingTemplate

 97 103 90 91 106 88 110 103 99 113 0.680755 996/1000 NonOverlappingTemplate

 99 108 106 89 86 105 118 93 96 100 0.502247 992/1000 NonOverlappingTemplate

 92 103 110 90 86 104 96 105 99 115 0.583145 992/1000 NonOverlappingTemplate

122 83 102 114 98 84 102 100 102 93 0.167184 983/1000 OverlappingTemplate

124 101 93 91 106 97 91 106 93 98 0.417219 990/1000 Universal

 99 95 103 104 103 93 93 102 88 120 0.630872 990/1000 ApproximateEntropy

 66 69 57 55 69 68 60 57 70 49 0.550479 615/620 RandomExcursions

 65 60 57 76 63 73 59 59 59 49 0.446255 613/620 RandomExcursions

 59 71 56 55 69 69 71 58 51 61 0.540661 613/620 RandomExcursions

 66 57 61 75 71 52 74 55 55 54 0.258434 617/620 RandomExcursions

 65 65 67 67 58 66 65 51 56 60 0.886546 614/620 RandomExcursions

 67 50 69 57 63 54 59 67 72 62 0.623687 613/620 RandomExcursions

 63 67 52 55 65 64 66 67 63 58 0.913523 615/620 RandomExcursions

 58 67 53 63 55 61 59 65 73 66 0.808301 614/620 RandomExcursions

 56 70 62 64 63 54 63 47 73 68 0.446255 612/620 RandomExcursionsVariant

 70 50 58 68 56 60 66 57 69 66 0.684024 613/620 RandomExcursionsVariant

 58 65 53 70 56 62 72 55 61 68 0.707249 615/620 RandomExcursionsVariant

 56 69 58 69 50 63 67 55 63 70 0.637119 611/620 RandomExcursionsVariant

 63 67 67 64 54 57 56 61 72 59 0.861473 610/620 RandomExcursionsVariant

 62 67 68 50 61 64 61 60 64 63 0.938551 610/620 RandomExcursionsVariant

 66 67 49 55 66 74 57 69 71 46 0.145858 613/620 RandomExcursionsVariant

 64 60 63 65 53 62 76 60 62 55 0.777948 614/620 RandomExcursionsVariant

 49 65 66 58 78 66 56 62 54 66 0.379967 612/620 RandomExcursionsVariant

 57 63 52 68 55 64 66 75 66 54 0.560348 615/620 RandomExcursionsVariant

 55 56 61 57 77 63 59 76 54 62 0.369073 612/620 RandomExcursionsVariant

 48 71 68 58 65 67 44 59 68 72 0.144531 614/620 RandomExcursionsVariant

 71 53 70 60 65 59 57 59 61 65 0.858847 617/620 RandomExcursionsVariant

 64 62 62 52 67 67 60 62 59 65 0.970348 617/620 RandomExcursionsVariant

 61 61 64 58 66 52 72 59 68 59 0.858847 616/620 RandomExcursionsVariant

 52 71 52 61 67 78 55 61 68 55 0.258434 617/620 RandomExcursionsVariant

 53 64 56 64 64 59 63 66 61 70 0.938551 618/620 RandomExcursionsVariant

 55 60 64 58 60 63 61 61 72 66 0.957555 617/620 RandomExcursionsVariant

116 89 114 113 73 112 87 101 97 98 0.035406 986/1000 Serial

107 108 108 97 78 89 123 86 107 97 0.072514 988/1000 Serial

 99 100 82 113 93 96 125 101 93 98 0.192724 991/1000 LinearComplexity

-

The minimum pass rate for each statistical test with the exception of the

random excursion (variant) test is approximately = 980 for a

sample size = 1000 binary sequences.

The minimum pass rate for the random excursion (variant) test

is approximately = 606 for a sample size = 620 binary sequences.

For further guidelines construct a probability table using the MAPLE program

provided in the addendum section of the documentation.

-

