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ABSTRACT 

M. F. Barnsley proposed the concept of fractal interpolation 

function (FIF) using iterated function systems (IFS) to 

describe the real world objects. The purpose of this paper is to 

study the parameter identification method for FIF with 

vertical scaling factor functions (VSFF) for one dimensional 

data set and establish the generalized version of the analytic 

approach of Mazel [13]. 
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1. INTRODUCTION 
Fractal geometry is of prime importance among the major 

recent developments in understanding the structures of natural 

objects. Barnsley [1] introduced the concept of fractal 

interpolation function (FIF) in 1986 using Hutchinson’s 

operator [10] and iterated function systems. Thereafter, the 

theory of fractal interpolation has become a powerful tool in 

various branches of applied sciences and engineering. 

Barnsley [2], [3], Dalla and Drakopoulos [6], Manousopoulos 

et al [11]-[12], Mazel et al [13] and many others have 

extended and generalized it in diverse domains of activities. 

The applications and properties of such functions are further 

characterized by a number of papers reported in the literature, 

see for instance [3]-[5], [7], [9], [14]-[16] and several 

references thereof. The graphs of fractal interpolating 

functions can also be used to approximate image components 

of many natural objects such as the profiles of mountain 

ranges, the tops of clouds, stalactite-hung roofs of caves and 

horizons over forests. This technique is capable of achieving 

large amounts of data compression and thus it is widely used 

in simulation, modeling and computer graphics.  

Usually vertical scaling factor is considered as a control 

parameter for the best fitting purpose in the theory of fractal 

interpolation. Mazel [13] and Manousopoulos [11], [12] 

described parameter identification method for modeling any 

discrete data set through fractal interpolation. In [2], Barnsley 

et al considered the case of constant vertical scaling factors 

for the purpose of fractal interpolation. But in actual practice, 

we may come across a number of data sets where the data 

points may not be scaled with constant vertical scaling factors.  

Thus there is a need of varying vertical scaling factors for 

approximating such type of data sets. Recently Feng et al. [8] 

studied fractal interpolation surfaces using function vertical 

scaling factors. Following them, we use vertical scaling factor 

functions (VSFF) to fit the data set and establish the 

generalized version of the analytic approach used by Mazel 

[13] for finding VSFF to construct IFS for FIF.  

2. PRELIMINARIES 
In this section we present the basic definitions and concepts 

required for our study. 

 

Definition 1 [3]. Let (X, d) be a metric space. A 

transformation w: X → X is said to be Lipschitz with Lipschitz 

constant s ∈ R iff d(w(x), w(y)) ≤ s d(x, y) for all x, y ∈ X. A 

transformation f: X → X is called contractive iff it is Lipschitz 

with Lipschitz constant s ∈ [0, 1). A Lipschitz constant           

s ∈ [0, 1) is also called a contraction factor. 

Definition 2 [3]. A hyperbolic iterated function system (IFS) 

consists of a complete metric space (X, d) together with a 

finite set of contraction mappings wn: X → X, with respective 

contractivity factors sn for n = 1, 2, ..., N. This IFS is 

represented by {X; wn: n = 1, 2, ..., N} with contractivity 

factor s = max{sn: n = 1, 2, ..., N}. 

Definition 3 [3]. Let (X, d) be a metric space and H(X) the 

nonempty compact subsets of X. Then the Hausdorff metric h 

in H(X) is defined as 

     h(A, B) = max {d(A, B), d(B, A)} for all A, B ∈ H(X),  

where d(A, B) = max(min(d(a, b): b ∈ B): a ∈ A). 

We now state a Lemma of Barsnley [3] which guarantees a 

contraction map in {H(X), h} out of a contraction map on    

(X, d). 

Lemma 1 [3]. Let w: X → X be a contraction on a metric 

space (X, d) with contractivity factor s. Then                          

w: H(X) → H(X) defined by 

      )(}:)({)( XHBBxxwBw   

is a contraction on }),({ hXH with contractivity factor s. 

The following theorem of [2] ensures the existence of an 

attractor of an IFS. 

Theorem 1 [2]. Let {X; wn, n = 1, 2, ..., N} be a hyperbolic 

iterated function system with contractivity factor s. Then the 

transformation W: H(X) → H(X) defined by 


N

n n BwBW
1

)()(


  for all B ∈ H(X) is a contraction 

mapping on the complete metric space (H(X), h) with 

contractivity factor s. That is, h(W(B), W(C)) ≤ s h(B, C) for 

all B, C ∈ H(X). Its unique fixed point (or an attractor),          

A ∈ H(X) obeys 
N

n n AwAWA
1

)()(


  and is given by

)(lim BWA n
n  for any B ∈ H(X). 

3. FRACTAL INTERPOLATION 

FUNCTION WITH VERTICAL SCALING 

FACTOR FUNCTIONS 
Let {(xn, yn) ∈ I×R: n = 0, 1, …. , N} be the data set, where     

I = [x0, xN]   R and x0 < x1 <  … < xN.  The interpolation 

points divide I into N intervals In= [xn-1, xn],  n = 1, 2, …, N. 

Now we define wn: I×R → R2, n = l, 2, ..., N  in the following 

manner: 
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The constants are chosen such that each map wn is constrained 

to map the endpoints of data set to the endpoints of the 

interval In. That is, 
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for every n = 1, 2, 3, …, N. The real numbers an, bn are 

completely determined by the interpolation points, while the 

dn(x) and φn(x) are continuous function defined on I meeting 

Lipschitz condition for x. Also dn(x) i.e., the vertical scaling 

factor functions (VSFF), are satisfying the condition        

|dn(x)| < 1 for n = 1: N and all x ∈ I, so that the transformations 

wn are contractive with respect to a metric equivalent to 

Euclidean metric. 

Let |)(|supmax xdd n
xn

 and |)(|supmax xM n
xn

 . For any  

h ≥ M / (1-d) and (x, y) ∈ I× [-h, h], |F(x, y)| ≤ d h + M ≤ h. 

Then an iterated function system can be constructed as  

{I× [-h, h]; wn: n = 1: N}.                  (3) 

Theorem 2. If d < 1 and h ≥ M/(1-d), then the IFS 

constructed above is hyperbolic in R2 with respect to metric 

equivalent to Euclidian metric. Therefore, there exists a 

unique non empty set A ⊂ I×R such that 

,)(
1

AAw
N

n
n 



  

where |)(|supmax xdd n
xn

 and |)(|supmax xM n
xn

 . 

Proof.  Since dn(x) and ϕn(x) for all n meet the Lipschitz 

condition for x, so there exist positive real numbers m1, m2 

such that, for any x ∈ I,  

|dn(x1) - dn(x2)| ≤ m1|x1 - x2| and |ϕn(x1) - ϕn(x2)| ≤ m2|x1-x2|  

Let ρ : R2 × R2 → R such that                                                        

ρ((x1, y1), (x2, y2)) = |x1- x2| + θ |y1 - y2|,  

where θ is a parameter. It is obvious that ρ is a metric on the 

space R2.  

For any (x1, y1), (x2, y2) ∈ I × [−h, h], 

ρ(wn((x1, y1), wn(x2, y2) )  

   = ρ((an x1+bn, dn(x1) y1 + ϕ(x1)), (an x2+bn, dn(x2) y2 + ϕ(x2))) 

    ≤ |an ||x1- x2| + θ (|dn(x1) y1 – dn(x2) y2| + |ϕ(x1)−ϕ(x2)|)                    

    ≤ |an||x1- x2|+θ(|dn(x1)| |y1−y2|+|y2| |dn(x1)−dn(x2)|+ m2|x1- x2|) 

    ≤ |an ||x1- x2| + θ (d |y1−y2|+h m1 |x1−x2|+ m2|x1- x2|) 

    ≤ (|an |+ (h m1 θ + m2 θ) | |x1- x2| + d θ |y1−y2|. 

Let θ ≤ (1− max|an|)/2(h m1+ m2). 

Then, we have  

ρ(wn(x1, y1), wn(x2, y2))  

            ≤ {(1+|an |)/2}|x1 −x2|+ dθ|y1−y2|  

           ≤ αn ρ((x1, y1), (x2, y2)),  

where αn = max{(1+|an|)/2, d}. 

For any n = 1, 2, . . . , N, it is obvious that 0 ≤ |αn| < 1; then the 

wn are all contraction mappings on I × [−h, h]. It is said that 

the iterated function system (3) is hyperbolic for any               

h ≥ M /(1 - d). Therefore, there exists a unique non-empty 

compact set as the invariant set of the iterated function system 

(3). 

Theorem 3. If |dn(x)| < 1 for n = 1: N, x ∈ I and h ≥ M /(1 - d) 

then the IFS defined in (3) with condition (2) has a unique 

invariant set A. The invariant set A is the graph of a 

continuous function f, which interpolates the data set i.e.    

f(xn) = yn for n = 0 : N and the graph of function f is invariant 

set of the IFS (3) if and only if f satisfies the equations  

        f(ln(x)) = F(x, f(x)), for x ∈ I, where n = 1 : N.  

3.1 Calculation for VSFF 
Let {(xn, yn) ∈ I×R: n = 0, 1, …. , N} be the data set and      

(xn-1, yn-1) and (xn, yn) be two consecutive interpolating points. 

Also consider φn(x), given in (1) is define as φn(x) = cn x + en. 

Now equation (1) can be expressed as 
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Clearly the function wn maps the given data set of length (xN - 

x0) to an interval of length (xn - xn-1).  

Now, we apply least square approximation to calculate the 

VSFF for each interpolating data set. We find VSFF in three 

cases by considering three different types of functions: 

1. First we assume a linear function expressed as              

dn(x) = un x + vn, n = 1: N. Then we find the expression 

for un and vn for interval [xn-1, xn] on applying the least 

square approximation as follows 
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2. Again we have a linear function expressed as             

dn(x) = u x + v and constrained by dn(x0) = sn-1 and   

dn(xN) = sn, i.e.  

dn(x) = sn-1+(sn – sn-1)(x - x0)/(xN - x0), for n = 1: N.  

Then, choose 0 ≤ s0 < 1, and apply least square approximation 

to find sn, n = 1: N. we get 
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3. A quadratic function dn(x) = - x2 + u x + v  constrained  

by dn(x0) = sn-1 and dn(xN) = sn, i.e. 
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for n = 1: N. Then, choose 0 ≤ s0 < 1, and apply least square 

approximation to find sn, n = 1: N. we get 
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3.2 Algorithm to select the best 

interpolation interval 
To select the best interpolation interval In and corresponding 

VSFF i.e. dn(x) for the given data set, we present the 

following algorithm.  

a. Choose the initial point on the function H as the first 

interpolation point and the left endpoint of the first 

section. 

b. Choose the next point on the function as the next 

interpolation point and the right endpoint for that 

section. 

c. Calculate the contraction factor for dn(x) associated 

with the interpolation section defined by 

interpolation points. 

d. If |dn(x)| < 1 go to step v, otherwise go to step ii 

e. Compute the map parameters with end point 

condition (2) and form the map wn associated with 

the pair of interpolation points. Apply the map to 

each point of the function to yield wn (H). 

f. Compute and temporarily store the distance between 

the original function located between the pair of 

interpolation points, say H, and wn(H). 

g. Repeat steps ii-vi until the end of the function is 

reached. 

h. Store the pair of interpolation points and contraction 

factor which yield the minimum value of h(Hi, 

w(H)) from steps v and vi. 

i. Let the right endpoint of the stored pair of 

interpolation points be the left endpoint of the next 

pair of interpolation points. 

j. Go to step ii and continue until the entire function 

has been searched. 

3.3 Example 

 

We consider an image of the profile of a mountain range for 

our computation purpose. For applying fractal interpolation 

technique the image is digitized with 1233 points. The vertical 

scaling  factor  functions  are computed  for  the cases given in   

Fig 1. Original and fractal interpolated curves 

 

 

 

section 3.1. Using algorithm 3.2, we calculate the set of 

interpolating data points for the best fitting. The best fitted 

curves are plotted in Figure 1 for linear and quadratic cases. 

The black curve shows the original curve consisting of 1233 

points while red and blue curves are the fractal interpolated 

curves drawn by taking only 13 interpolating points by 

considering linear VSFF and quadratic VSFF respectively.

----  Original  

----  FIF with FVSF (L) 

....  FIF with FVSF (Q) 
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4. CONCLUSIONS 
The modeling of the various natural or other problems require 

some degree of flexibility and smoothness for best fitting 

purpose. Our approach of fractal interpolation function with 

vertical scaling factor functions used in this paper ensures the 

achievement of this extra flexibility and smoothness.  
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