
International Journal of Computer Applications (0975 – 8887)  

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014) 

6 

A Particle Filter based Neural Network Training 

Algorithm for the Modeling of North Atlantic Oscillation 

Archana R 
Federal Institute of Science and 

Technology 
Angamaly, Kerala 

India 
 

A Unnikrishnan 

Rajagiri School of Engineering 
and Technology 

Kakkanad, Kerala 
India 

 

R Gopikakumari 
Cochin University of Science 

and Technology 
Kochi, Kerala 

India 
 

 

ABSTRACT 

Chaotic dynamical systems are present in the nature in various 

forms such as the weather, activities in human brain, variation 

in stock market, flows and turbulence. In order to get a 

detailed understanding of a system, the modeling and analysis 

of the system is to be done in an effective way. A recurrent 

neural network (RNN) structure has been designed for 

modeling the dynamical system. The neural network weights 

are estimated using the Particle Filter algorithm. There are 

various natural systems, which can be represented by chaotic 

dynamical systems. But closed form mathematical equations 

for such systems are not readily available for generating such 

time series. The North Atlantic oscillations are one such 

system which is modeled with the selected RNN model 

structure and Particle Filter algorithm. While the model 

faithfully reproduces the given time series, the phase plane 

generated unravels the dynamics of the system. The 

characterization of the natural chaotic systems is done in the 

time domain by Embedding Dimension, Phase plots and 

Lyapunov Exponents. 
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1. INTRODUCTION 
The chaotic systems are of interest to many researchers over 

the years. Chaotic systems are complex and unpredictable 

phenomena which occur in nonlinear systems which are 

sensitive to initial conditions [1]. The modeling of chaotic 

systems, based on output time series is quite challenging. 

Fortunately artificial neural networks have the required self-

learning capability to tune the network parameters (ie. 

weights) to identify highly nonlinear systems [2]. There are a 

number of weather systems which are chaotic in nature. The 

Sunspot time series, the Sea clutter, the Venice. lagoon time 

series, the North Atlantic Oscillations etc are a few  examples.  

In  the  present  paper  the  North  Atlantic Oscillations is 

modeled and analyzed with a Recurrent Neural Network 

(RNN) model trained with Particle Filter algorithm According 

to the universal approximation theorem [3]  any non-linear  

dynamical  system  can  be  approximated  to  any accuracy by 

a recurrent neural network, with no restrictions on the 

compactness of the state space, provided that the network has 

enough sigmoidal hidden units. From the analysis important 

features are extracted and certain observations are made on 

the three weather systems which will contribute to the further 

analysis of these systems.   

2. RECURRENT NEURAL NETWORKS 
Recurrent neural networks could be built with multi-layer 

networks, adding feedback in their hidden layer.  The 

Information flow is multidirectional. Such networks 

inherently possess sense of time and memory. Hence the 

networks could be used in creating models of highly nonlinear 

and chaotic systems [4]. The simplest form of fully recurrent 

neural network simply has the previous set of hidden unit 

activations feeding back into the network along with the 

inputs. Any non-linear dynamical system can be approximated 

to any accuracy by a recurrent neural network, with no 

restrictions on the compactness of the state space, provided 

that the network has enough sigmoid hidden units. This 

underlies the computational power of recurrent neural 

networks. The recurrent networks have the potential to be 

used in unison in systems with dynamic elements and 

feedback [5] feedback. 

 

Figure 1: Recurrent neural network 

3. TRAINING THE RNN 
There are many efficient training algorithms for training 

RNN. Back propagation, Least mean square algorithm 

,conjugate gradient, Kalman Filter, Particle Filter etc are a few 

to mention [6] [7]. In the work reported here the Particle Filter 

algorithm along with Sampling Importance Resampling(SIR) 

technique is tested for chaotic system modeling. The 

parameters of the neural network are estimated using the SIR 

Particle Filter algorithm, by choosing the weights of the 

neural network as the particles. 

3.1 System representation 
Consider a discrete time non linear dynamic system, 

described by a vector difference equation with additive white 

Gaussian noise that models “unpredictable” disturbances. The 

dynamic system equation is given by the following nonlinear 

equations 

xk   f ( xk 1 , uk , wk 1 )                                               (1) 
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where xk is an n dimensional state vector uk,  is an m 

dimensional known input vector, and wk is a sequence of 

independent and identically distributed zero mean white 

Gaussian process noise with covariance 

E ( ww
T
 )  Q                 (2) 

The measurement equation is 

zk   h( xk , vk )                 (3) 

where vk is the measurement noise with covariance 

E (vv
T
 )  R                 (4) 

The functions f and h and the matrices Q and R are assumed 

to be known. The neural network models the chaotic time 

series and the state variables continue to generate the state 

space evolution of the system, responsible for generating the 

time series. Once the training error comes down to an 

acceptable limit, the system driven by exogenous noise free 

wheels to generate the state space. The Lyapunov exponents, 

which characterize the behavior of the system are also 

calculated from the state space evolution and verified. The 

presence of feedback loops has a profound impact on the 

learning capability of the network and its performance.  

3.2 Particle filters 
Particle filters are suboptimal filters. They perform Sequential 

Monte Carlo (SMC) estimation based on point mass (or 

“particle”) representation of probability densities. The SMC 

ideas in the form of sequential importance sampling had been 

introduced in statistic back in the 1950s. Although these ideas 

continued to be explored during the 1960s and 1970s, they 

were largely overlooked and ignored. Most likely the reason 

for this was the modest computational power available at the 

time. In addition, all these early implementations were based 

on plain sequential importance sampling, which degenerates 

over time. The major contribution to the development of the 

SMC method was the inclusion of the re-sampling step, 

which, coupled with ever faster computers, made the particle 

filters useful in practice. [8] Since then research activity in the 

field has dramatically increased, resulting in many 

improvements of particle filters and their numerous 

applications. 

3.2.1 Monte Carlo Integration 
Monte Carlo integration is the basis of SMC methods. 

Suppose we want to numerically evaluate a multidimensional 

integral 

( ) (5)I g x dx 
 Where .

nxx R . Monte Carlo (MC) methods for numerical 

integration factorize  g(x) =f(x).(x) In such a way that (x) is 

interpreted as a probability density satisfying (x) 0 and 
(x) dx =1.  The assumption is that it is possible to draw 

>>1 samples xi; i = 1… Ndistributed according to (x).  

The MC estimate of integral 

I =   f(x) (x)dx                (6)    

Is the sample mean  

1

1

( ) (7)
N

i

N N

i

I f x


                                                                                                      

If the samples xi  are independent then IN is an unbiased 

estimate and according to the law of large numbers IN will 

almost surely converge to I.  If the variance of f(x), 

2 2( ( ) ) ( ) (7)f x I x dx  

 
Is finite, then the central limit theorem holds and the 

estimation error converges in distribution: 
2lim ( 1) ~ (0, ) (8)N

n
N I N 




  The error of the MC estimate, e = IN-I, is of order 0(N-1/2), 

meaning that the rate of convergence of the estimate is 

independent of the dimension of the integrand.  In contrast, 

any deterministic numerical integration has a rate of 

convergence that decreases as the dimensions  nx   increases. 

This useful and important property of MC integration is due to 

the choice of samples {xi, i  =1… N}, as they automatically 

come from regions of the state space that are important for the 

integration result.  In the Bayesian estimation context, density 

(x) is posterior density.  Unfortunately, usually it is not 

possible to sample effectively from the posterior distribution, 

being multivariate, nonstandard, and only known up to a 

proportionality constant [8]. A possible solution is to apply 

the importance sampling method. 

3.2.2  Importance Sampling  
Ideally we want to generate samples directly from (x) and 

estimate I using (7).  Suppose we can only generate samples 

from a density q(x), which is similar to (x).  Then a correct 

weighting of the sample set still makes the MC estimation 

possible.  The PDF q(x) is referred to as the importance or 

proposal density.  Its “similarity” to (x) can be expressed by 

the following condition: 

(x)>0q(x)>0 for all
nxx R                 (9)                                                                                                        

which means that q(x) and (x) have the same support. I can 

be written as 

 
( )

( )
( ) ( ) ( )( ) (10)

x

q x
I f x x dx f x dx

               

provided that (x)/q (x) is upper bounded.  A Monte Carlo 

estimate of I is computed by generating N>>1 independent 

sample  x i ,i   = 1… Ndistributed according to q(x) and 

forming the weighted sum: 

''
1

1

( ) ( ) (11)
N

i i

N N

i

I f x w x


                                         

where 

''
( )

( )
( )

xi

q x
w x


    are the importance weights. If  the 

normalizing factor of the desired density (x) is unknown, we 

need to perform normalization of the importance weights.  

Then we estimate IN as follows; 

,,

1

1

1
,,

( )

1

( ) ( )
(12)

N
i

N
i

N
iN w xi

i

f x

N

iw x
I 





                                            

where the normalized importance weights are given by: 

,,

,,

1

( )

( )

( ) (13)
i

N
j

j

w xi

w x

w x






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This technique is applied  to the Bayesian framework, where 

(x) is the posterior density. 

3.2.3 Sequential Importance Sampling (SIS) 
 Importance sampling is a general MC integration method that 

we now apply to perform nonlinear filtering specified by the 

conceptual solution.  The resulting sequential importance 

sampling (SIS) algorithm is a Monte Carlo method that forms 

the basis for most sequential MC filters developed over the 

past decades; this sequential Monte Carlo approach is known 

variously as bootstrap filtering, the condensation algorithm, 

particle filtering, interacting particle approximation, and 

survival of the fittest.  It is a technique for implementing a 

recursive Bayesian filter by Monte Carlo simulations.  The 

key idea is to represent the required posterior density function 

by a set of random samples with associated weights and to 

compute estimates based on these examples and weights.  As 

the number of samples becomes very large, this Monte Carlo 

characterization becomes an equivalent representation to the 

usual functional description of the posterior PDF, and the SIS 

filter approaches the optimal Bayesian estimator: 

SIS Particle Filter Algorithm [9] 

1 1 1

1 1 1 1

1: 1

1: 1 1: 1 1:

1:

1

( )

( ) ( )

2

( | )

( ) ( ) ( )

( )

i

i i

i i

n n n n

i i i

n n n n n n

i i

n n n

At time n

Sample X q x

Computethe weights w X and w X

At time n

Sample X q x X

Computethe weights

w X w X X

w w X





 












  

Algorithm .1 

3.2.4  Resampling 
SIS provides estimates whose variance increases with „n‟. 

Employing the technique of resampling this problem can be 

solved. Consider an IS approximation  
1:( )n nx



 of the target 

distribution 
1:( )n nx .This approximation is based on the 

weighted samples from 
1:( )n nq x . This approximation does not 

provide samples distributed according to 
1:( )n nx .To 

obtain approximate samples from 
1:( )n nx , sample from 

its IS approximation 
1:( )n nx



.This operation is called 

resampling as it corresponds to sampling from an 

approximation 
1:( )n nx



 which was itself obtained from 

sampling. In order to obtain N samples from 
1:( )n nx



 resample 

N times from 
1:( )n nx



 and associate a weight of 
1

N
with each 

sample. The approximate measure of 
1:( )n nx



 is given by 

_

1: 1: 1:

1

( ) ( ) (14)

i

N
in

n n n

i

N
x x x

N
 





 

 Sequential Importance Sampling – Resampling (SIR) 

Particle Filter Algorithm [10] 

 
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( ) ( | )
( ) ( )

( | )

1
Re , ,

1

2
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i
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i
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At time n

Sample X q x y

X g y X
Computethe weights w X and W w X

q X y

isample W X to obtain N equally weighted particles
N

At time n

Sample X q x y X and set X

X



 



 

  
 
  








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1
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1
Re , ,

i i

n n
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n n n

i i i

n n

X X

g y X f X X
Computethe weights X and W w X

q X y X

sample W X to obtain N equally weighted particles X
N




 



  

 
 
 

Algorithm .2 

4. MINIMUM EMBEDDING 

DIMENSION 
There are three important dimensions for a dynamic system- 

geometric dimension or box counting dimension, attractor 

dimension or state space dimension and embedding dimension 

(de). The first two are invariant sets, calculated from the 

dynamic equations of the system. The embedding dimension 

of a dynamic system is the smallest integer for which the 

system states can be embedded into, without intersecting itself 

[13]. An efficient model of a dynamic system can be derived 

by selecting a proper embedding dimension capable of 

embedding all the properties of actual dynamic system [14]. 

Reconstructed system may preserve only some of the 

properties, if the selected dimension is not optimum and does 

not preserve the geometric shape of structures in phase space.  

Taken‟s theorem [13] [14] states that the original dynamic 

properties of the attractor can be retained as long as the 

embedding dimension de > 2d+1 where d is the correlation 

dimension of the attractor, equivalent to Kaplan Yorke 

dimension. It is sufficient to find the minimum embedding 

dimension so as to reconstruct the dynamic system with all the 

properties. The minimum embedding dimension can be 

obtained from the following algorithm based on The Method 

of False Nearest Neighbours [15]: 

1. Dimension of the attractor is assumed as„d=1‟ and 

the kth state is assumed as „x(k)‟. 

2. Each state x(k) is sampled, in dimension „d‟, into 

time lagged set - {(s(k), s(k+T), s(k+2T), . . . , 

s(k+(d-1)T)} - where T is a small time lag. 

3.  Each state x(k) has a Nearest Neighbour (NN), xNN(k) 

with nearness in the sense of distance function  

norm, i.e, 
2 ( )dR k = [x(k)-xNN(k)]2 

4. 
2 ( )dR k is calculated in terms of time lagged sets 

as. 

 

 

 

 

2 2 2

2

( ) [ ( ) ( )] [ ( ) ( )]

. . .

[ ( ( 1) ( ( 1) ] (15)

NN NN

d

NN

R k s k s k s k T s k T

s k d T s k d T

     

 

    
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5.  Dimension is incremented asd=d+1.Corerespondingly 

the new state is  x(k+dT) and its nearest  neighbour 

is xNN(k+dT). Then the distance is changed due to 

the (d+1)st samples as  s(k+dT) and sNN(k+dT) The 

new distance is calculated as 

 

 

Relative change in distance can be used to check 

whether the points are really close together or a 

projection from a higher state space. 

6. The  criteria for false nearest neighbours is chosen 

as the threshold given by 

 

 

 Using this criterion all the sequence of samples is tested. The 

sample where percentage of   false nearest neighbours goes to 

zero is calculated. A graph is plotted between the percentage 

of false nearest neighbours and embedding dimension. The 

lowest point in the graph gives the minimum embedding 

dimension [2]. 

5. PHASE PLOTS AND STRANGE 

ATTRACTORS 
The phase plot of a dynamical system is the plot of the state 

variables of the system. In such a diagram time is implicit and 

each axis represents one dimension of the state. The trajectory 

traversed by the states is called a phase trajectory [1]. A phase 

plot for a given system may depend on the system parameters 

and initial conditions. The geometrical shape of phase plots 

give valuable information about the nature of the system. It 

can be points, circle-like curves called limit cycles or strange 

attractors. Once a trajectory enters the attractor, it will stay in 

it forever if there is no external perturbation. The attractor of a 

system is an invariant set [18]. The state space analysis is 

done and change in dynamics of the systems is described in 

the different time intervals. The states of the systems are 

exactly reproduced by the RNN Particle Filter model. 

6. LYAPUNOV EXPONENTS (LE) 
The Lyapunov Exponents of a system are a set of invariant 

geometric measures that describe the dynamical content of the 

system. It is the most important quantity of chaotic systems.. 

Lyapunov Exponents quantify the average rate of 

convergence or divergence of nearby trajectories in a global 

sense. A positive exponent implies divergence of trajectories 

and a negative one implies convergence [20]. The more 

positive the exponent, the faster the trajectories move apart. 

Similarly, for negative exponents, the trajectories move 

together. If there are both positive and negative exponents, it 

indicates that neighboring orbits separate exponentially in 

average, so it is a signature of chaos. [21]. The number of 

exponents is equal to the number of states of the system. A 

system with m states has m Lyapunov exponents with λ1, 

λ2,..., ,l λm in descending order. As such, it can be seen that 

the Lyapunov Exponents describe the average rate of 

exponential change in the distance between trajectories in a 

set of orthonormal directions within the embedding space 

sense. 

Mathematically Lyapunov Exponent can be defined by 

 1

0

1
lim ln (18)

i
k

i
n

k k

f x

n x







 
  

 
  

7. NORTH ATLANTIC OSCILLATIONS 
 The NAO is characterized by an oscillation of atmospheric 

mass between the Arctic and the subtropical Atlantic [21]. It 

is usually defined through changes in surface pressure. A 

permanent low-pressure system over Iceland (the Icelandic 

Low) and a permanent high-pressure system over the Azores 

(the Azores High) control the direction and streng and 

positions of these systems vary from year to year and this 

variation is known as the NAO NAO measures the strength 

ofthe westerly winds blowing across the North Atlantic Ocean 

between 40oN and 60oN. Studies reveal that the NAOaccounts 

for 31% of the variance in hemispheric winter surface air 

temperature north of 20oN. There is an index for the NAO as 

the difference between normalised mean winter (December to 

February) sea level pressure (SLP)anomalies at Ponta 

Delgadas, Azores and Akureyri, Iceland. The normalisation is 

achieved by dividing the SLP anomalies at each station by the 

long term (1864-2014) standard deviation[28][29]. A large 

difference in the pressure at the two stations ( NAO+) leads to 

increased westerlies and, consequently, cool summers and 

mild and wet winters in Central Europe and Atlantic areas. In 

contrast, if the index is low (NAO-), westerlies are 

suppressed, these areas suffer cold winters and storms[23]. 

The NAO strongly affects the Atlantic ocean by inducing 

substantial changes in surface wind patterns .Changes in NAO 

have a wide range of effects on marine and terrestrial 

ecosystems, including distribution and population of fish, 

flowering dates of plants, growth, reproduction and 

demography of many land animals.[25] The modelling and 

analysis of NAO index considered as a time series is an 

important problem. In the forthcoming section the modelling 

and analysis of chaotic origins of the NAO is presented.  

 

Figure 2: NAO time series 

[ ( ) ( )]
(17)

( )

NN

T

d

x k dT x k dT
R

R k

  


2 2 2

1( ) ( ) [ ( ) ( )] (16)NN

d dR k R k s k dT s k dT     
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7.1 Estimation of minimum embedding 

dimension of NAO time series  
In order to model the NAO time series with RNN Partcle 

Filter model structure, it is required to estimate the minimum 

embedding dimension. As explained in section 4 the 

minimum embedding dimension of the NAO timeseries is 

estimated using the method of false nearest neighbours. 

 

Figure 3. Minimum embedding dimension-NAO 

7.2 Phase plots of NAO time series  
After estimating the minimum embedding dimension the 

given timeseries is modeled using the RNN Particle Filter 

model structure. The system is modeled with three states. The 

recurrent neural networks are trained with a single channel 

time series data of the NAO time series. All the three sets of 

weights are updated using the SIR Particle Filter equations.. 

The training is continued until the modelling error comes to 

an appreciable level of 2.54x10
-6

 as shown in Figure.4 

Further, the phase plots of the three states of the given time 

series are plotted. 

.

 

Figure 4.  Mean square error-NAO 

 

 

 

Figure 5. Phase plots: states 1&2- NAO 

 

Figure 6. Phase plots: states 2&3- NAO 

 

Fig.7.Phase plots states 1 and 3 NAO 
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Figure 8. Phase plots: states 1, 2& 3: NAO 

The phase plots of NAO time series reveals strange attractors 

revealing chaotic nature. 

7.3 Lyapunov Exponents of NAO 
The The Lyapunov Exponents of the NAO time series is 

calculated using the method described in section 6 and is 

given in table 1. 

Table 1. Lyapunov Exponents: NAO 

-15.2446 0 0.00127 

It can be seen that one of Lyapunov exponent is negative, one 

is zero and the other one is positive and very small . Thus it 

can be proved that the NAO time series is  chaotic in nature. 

8. CONCLUSIONS AND FUTURE 

SCOPES 
 The analysis and characterization of an important weather 

system is presented in this paper. The North Atlantic 

Oscillations are an important atmospheric index which control 

the climate of Europe. The NOA  is modelled using the RNN 

Particle Filter model structure with a very low modelling 

error. The important characteristics of these systems like 

embedding dimension, phase plots, strange attractors and 

Lyapunov exponents are calculated.. It is seen that the NAO 

index time series is found to have an embedding dimension of 

three. Its phase plots show strange attractors signifying a 

chaotic nature. While calculating the three Lyapunov 

exponents it was noticed that one  gives  a large negative 

value, one is zero and third one is a small positive value 

verifying the chaotic nature as observed from the phase 

plots.With the observations at hand, the analysis of NAO can 

be extended to prediction. Also use of other efficient learning 

algorithms like Rao Blackwellised particle filter, auxiliary 

particle filter, Kalman filter etc. can be used for training the 

RNN. Another important feature worth exploring is the 

frequency domain behaviour of chaotic systems. 
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