
International Journal of Computer Applications (0975 – 8887)

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)

5

An Efficient Parallel Algorithm for Self-Organizing Maps

using MPI - OpenMP based Cluster

Bhavik Patel
Department of Computer Engineering

College of Engineering Pune
Pune 411 005, India

Yash Tibrewal

Department of Computer Engineering
College of Engineering Pune

Pune 411 005, India

Anurag Jajoo
Department of Computer Engineering

College of Engineering Pune
Pune 411 005, India

Amit Joshi

Department of Computer Engineering
College of Engineering Pune

Pune 411 005, India

ABSTRACT

Cluster Computing is based on the concept that an application

can be divided into smaller subtasks which when distributed

to different nodes on a cluster (using MPI) will enhance the

performance of the application. We can further enhance the

performance of that application using a shared programming

interface like OpenMP. The Self-Organizing Maps which are

extensively used in domains like speech recognition and data

classification require considerable amount of time in the

training process. This paper proposes a parallel algorithm on a

MPI - OpenMP based cluster to reduce the time taken in

training and enhance the performance of Self-Organizing

Maps (SOM). The results of the algorithm demonstrated a

speed-up of 15.316 as compared to the sequential training of

the SOM.

General Terms

Cluster Computing, Parallel Algorithm, Neural Network.

Keywords

Self-Organizing Maps, MPI, OpenMP, Hybrid Programming.

1. INTRODUCTION
Self-Organizing Map (SOM)[3][11][12] is a type of Artificial

Neural Network (ANN) which is an information processing

paradigm. It is composed of large number of highly

interconnected processing elements (Neurons) working in

unison to solve a specific problem. Such a network can be

used for classifying an output which is received as a response

to the set of inputs given to the trained network. For training

the network a huge amount of relevant input sets are required

which is used to appropriately alter the weights of the

connecting edges between the neurons. This training can be

performed in either supervised or unsupervised manner.

Supervised learning is used when the output for a given set of

input is known and the mapping function between them is to

be found, whereas in unsupervised learning the classification

of the outcome is not known. Among neural networks, the

Self-Organizing maps use unsupervised learning algorithms

where it creates its own representation of the information it

receives during the learning time. Self-Organizing Maps or

Kohonen Maps are used to project high dimensional data onto

a lower dimensional representation of the input training

samples.

This paper proposes a parallel algorithm for training SOM on

a MPI-OpenMP based cluster. The paper is organized in the

manner in which, first the existing frame works are described.

Then the sequential SOM algorithm and Batch SOM

algorithm are discussed along with their differences. The

paper then introduces a parallel algorithm followed by the

performance evaluation of Batch SOM and the proposed

parallel algorithms.

2. RELATED WORKS
The paradigm of using MPI[6] based cluster of machines with

multi-core processing capabilities recently has been

extensively used to parallelize algorithms for better

performance. One such instance of work was done by Atanas

Radenski[10] where he measured the performance of parallel

merge sort on a hybrid cluster setup. He then measured the

performance on a pure MPI cluster and similarly on an

OpenMP[8] environment. He compared all of these different

implementations based on parameters like number of

OpenMP threads, MPI processes, nodes used and cores used.

He concluded that when the entire array was small enough to

fit in the RAM, the OpenMP version of the algorithm showed

better results than the MPI implementation, while the

performance shown by the OpenMP - MPI hybrid algorithm

fell between that of the pure versions of OpenMP and MPI

implementations.

Teuvo Kohonen in his original paper titled “The Self-

Organizing Maps”[11] introduced the idea of Self-Organizing

maps along with its working. In his another work along with

Erkki Oja, Olli Simula, Ari Visa, and Jari Kangas in paper

titled “Engineering applications of the self-organizing map.”

he has discussed various applications of Self-Organizing maps

in various engineering fields and domains. A scalable parallel

algorithm for SOM has been proposed by R.D. Lawrence,

G.S. Almasi and H.E. Rushmeier in their paper titled “A

scalable parallel algorithm for self-organizing maps with

applications to sparse data mining problems.”[1]. They have

explained various versions of SOM like sparse batch SOM,

online SOM and sequential SOM. Then they went on to

compare the methodologies of network-partitioned Sequential

SOM and data-partitioned Batch SOM. Acknowledging better

performance by the data partitioned SOM, they evaluated its

performance over a MPI based cluster only. Silva, Bruno and

N. C. Marques have proposed a hybrid parallel algorithm for

SOM which combines the advantages of the network-

partitioned SOM and the data-partitioned SOM in their paper

titled “A hybrid parallel SOM algorithm for large maps in

data-mining.”[2]. This paper extends the work by

implementing parallel Batch SOM on a MPI - OpenMP based

cluster.

International Journal of Computer Applications (0975 – 8887)

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)

6

3. FRAMEWORKS USED
The proposed idea in this paper deals with the implementation

and performance evaluation of Self-Organizing Maps under

MPI (using MPICH[7]) and OpenMP as a hybrid model.

3.1 MPI (Message Passing Interface)
De facto standard for communication between nodes using

message passing. MPI is a specification which was

enumerated as a result of community effort to put forth the

definition and syntax of a message passing library that would

be implemented by many libraries and used by people for a

wide range of massively parallel processor systems over

varying platforms.

3.2 MPICH
A freely available, highly efficient and portable

implementation of the MPI standard. It is one of the most

popular implementations that has been successfully used for

many projects.

3.3 OpenMP
OpenMP provides an API that supports multiprocessing

programming using a shared memory model. Also allows for

multi-platform processing.

4. SYSTEM CONFIGURATION

4.1 Hardware Configuration
1) Processor: Intel Core i5-2400 CPU @ 3.10GHz 4

2) RAM: 4 GB

3) Network: TCP/IP LAN (100 Mbps)

4.2 Software Configuration
1) Operating System: Linux

2) Version: Ubuntu 12.04 LTS

3) Compiler: GCC

4) Network protocol: Secure Shell

5) Communication protocols: MPI (MPICH) and OpenMP

4.3 System Architecture
The system architecture uses MPI and OpenMP in order to

parallelize the Self-Organizing Maps. The master node first

divides the task into different subtasks which can be

parallelized. Using MPI i.e. Message Passing Interface, the

Master node then distributes the subtasks among various slave

nodes.

When the slave nodes receive the subtask assigned to them by

the master node, they use the OpenMP library to divide the

subtask further so as to implement the tasks in parallel on

various cores of that slave node as shown in the figure.

5. ALGORITHM

5.1 SOM
Self-Organizing Maps algorithm for training the map consists

of first initializing the map with random values. Then, from

the data set we select a data vector and find the corresponding

best matching neuron from the map. The best matching

neuron and its neighbours are updated so that that particular

region of the map is pulled closer to the data space. This is

repeated for all the data vectors in the data set. One iteration

of the data set is called an epoch. To get better results, we

train the map with many such epochs.

Figure 1: System Design

5.1.1 Best Matching Neuron
To find the best matching neuron for a particular data vector,

we traverse all the neurons of the map while finding the

Euclidean distance between the data vector and that neuron.

The neuron with the smallest Euclidean distance is said to be

the best matching unit.

5.1.2 Neighbourhood function
When a best matching unit is found, we update the neuron and

its neighbourhood region. To calculate this neighbourhood

region, we use the exponential Gaussian neighbourhood

function which is a decreasing function of time. Hence, the

radius of the neighbourhood gradually decreases as the

algorithm progresses. The function is represented in eq (2).

5.1.3 Learning Rate
It is a decreasing function of time which is used to control the

adaptation rate of the map to the input data. This can be taken

as either an exponential or a linear function. (Learning rate

does not feature in the Batch SOM algorithm.)

5.2 Batch SOM
SOM has different implementations which use either

Sequential or Batch approach. This paper implements Batch

SOM instead of Sequential SOM, since in Sequential SOM

the updates to the map are made after each step which would

result in a lot of latency delays being incurred due to

communication between the cluster nodes[1]. In Batch SOM,

on the other hand, the updates are only made at the end of an

entire iteration of the input data samples (epoch).

x Set of input data vectors

σ(t) Radius of neighbourhood function hci(t)

σ(0) Grid length

t Current epoch iteration

t' Index of input data vector

i Index of current node

c Index of best matching node

ri Spatial co-ordinates of node i

rc Spatial co-ordinates of best match node c

Wi Weight vector of node i

t0 Start of current epoch iteration

tf End of current epoch iteration

International Journal of Computer Applications (0975 – 8887)

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)

7

𝜎(𝑡) = 𝜎 0 × 1 −

𝑡

𝑡𝑜𝑡𝑎𝑙_𝑒𝑝𝑜𝑐ℎ
 (1)

ℎ𝑐𝑖 𝑡 = 𝑒
−

|𝑟𝑖 − 𝑟𝑐|2

𝜎 𝑡 2

(2)

𝑾𝒊 𝒕 =
 𝒉𝒄𝒊 𝒕

′ 𝒙 𝒕′
𝒕′ = 𝒕𝒇

𝒕′ = 𝒕𝟎

 𝒉𝒄𝒊 𝒕′
𝒕′ = 𝒕𝒇

𝒕′ = 𝒕𝟎

 (3)

5.3 Pure OpenMP Batch SOM
In this approach, we consider a single machine with a

processor with multiple cores. This algorithm aims to fully

utilize all of the cores for SOM training. We allocate separate

memory locations for numerator vectors and denominator of

each OpenMP thread. For each epoch, the data set is

distributed among the threads, with the threads accumulating

their respective numerator vectors and denominators. At the

end of each epoch, these values from each thread are

combined into an intermediate result. The map is updated with

this result.

5.4 Pure MPI Batch SOM
In pure MPI Batch SOM, MPI processes are created and data

set is equally divided between them. Each MPI process, trains

the map by following the Batch SOM method, with the only

exception being that at the end of an epoch, MPI_Allreduce is

performed to gather the numerator vectors and denominators

of each process. Each MPI process then continues the general

Batch SOM algorithm with the update of the map based on

the gathered values.

5.5 Proposed Parallel MPI - OpenMP

Batch SOM
To make Batch SOM a scalable parallel algorithm that will

work on a MPI-OpenMP environment, we propose the

following algorithm.

Algorithm 1: Batch SOM

Initialize the map with random values

For each epoch do

σ2 = square of sigma function using Eq. (1)

For each neuron do

Initialize numerator vector and the denominator to zero

End for

For each data vector do

Find position of the best matching neuron

For each neuron do

dist = Euclidean distance between current and best

matching neuron

hci_exp = dist / (2 × σ2)

hci = expf(-hci_exp) using Eq. (2)

Accumulate numerator vector and the denominator

using Eq. (3)

End for

End for

For each neuron do

weight_vector = numerator_vector / denominator

End for

End for

Algorithm 2: Pure OpenMP Batch SOM

Initialize the map with random values

For each epoch do

σ2 = square of sigma function using Eq. (1)

#pragma omp parallel for default(shared)

For each neuron do

Initialize individual numerator vectors and the

denominators of the threads to zero

End for

#pragma omp parallel for default(shared) private(dist,

hci_exp, hci)

For each data vector do

Find position of the best matching neuron

For each neuron do

dist = Euclidean distance between current and best

matching neuron

hci_exp = dist / (2 × σ2)

hci = expf(-hci_exp) using Eq. (2)

Accumulate numerator vector and the denominator

specific to each thread using Eq. (3)

End for

End for

#pragma omp parallel for default(shared)

For each neuron do

Gather the numerator vectors and denominators of the

threads

End for

#pragma omp parallel for default(shared)

For each neuron do

weight_vector = numerator_vector / denominator

End for

End for

Algorithm 3: Pure MPI Batch SOM

Initialize the map with random values

Divide the entire data set between the MPI processes

For each epoch do

σ2 = square of sigma function using Eq. (1)

For each neuron do

Initialize numerator vectors and the denominators to

zero

End for

International Journal of Computer Applications (0975 – 8887)

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)

8

For each data vector do

Find position of the best matching neuron

For each neuron do

dist = Euclidean distance between current and best

matching neuron

hci_exp = dist / (2 × σ2)

hci = expf(-hci_exp) using Eq. (2)

Accumulate numerator vector and the denominator

using Eq. (3)

End for

End for

MPI_Allreduce for numerator vectors of the MPI

processes

MPI_Allreduce for denominators of the MPI processes

For each neuron do

weight_vector = numerator_vector / denominator

End for

End for

Our approach involves partitioning the data for achieving

parallel execution. After the MPI processes are created, we

divide the data set among the MPI processes so that each

process has to traverse equal number of data vectors. The data

set so created for each MPI process is further distributed

among the threads which will be made to run on separate

cores of the machine executing that MPI process. At the end

of each epoch, the numerator vectors and denominators of the

threads for each MPI process are gathered to get accumulated

numerators vectors and denominators for that MPI process.

MPI_Allreduce is performed on the numerator vectors and

denominators so that each MPI process gets the final

accumulated numerator vectors and denominators. Each MPI

process then individually updates the map depending on the

numerator vectors and denominators effectively maintaining

the same copy of the map across all cluster nodes.

6. VISUALIZING SOM
To visualize SOM, a method called as U-Matrix is used[4][5].

It calculates the Euclidean distances between the adjacent

neurons in the SOM map and these distances are represented

with different colours to form a RGB image (intensity map) or

with varying intensities of black colour to form a gray scale

image. A dark colouring signifies that the neighbouring

neurons are close to each other while light colouring signifies

that there is a large distance between neurons and thus

represents a partition. Hence, dark colours are viewed as

clusters whereas light colours are viewed as cluster separators.

Figure 2 shows the visualization of SOM using the Statlog

(Shuttle) data set[9].

Algorithm 4: Proposed Parallel MPI – OpenMP Batch

SOM

Initialize the map with random values

Divide the entire data set between the MPI processes

For each epoch do

σ2 = square of sigma function using Eq. (1)

#pragma omp parallel for default(shared)

For each neuron do

Initialize individual numerator vectors and the

denominators of the threads to zero

End for

#pragma omp parallel for default(shared) private(dist,

hci_exp, hci)

For each data vector do

Find position of the best matching neuron

For each neuron do

dist = Euclidean distance between current and best

matching neuron

hci_exp = dist / (2 × σ2)

hci = expf(-hci_exp) using Eq. (2)

Accumulate numerator vector and the denominator

specific to each thread using Eq. (3)

End for

End for

#pragma omp parallel for default(shared)

For each neuron do

Gather the numerator vectors and denominators of the

threads

End for

MPI_Allreduce for numerator vectors of the MPI

processes

MPI_Allreduce for denominators of the MPI processes

#pragma omp parallel for default(shared)

For each neuron do

weight_vector = numerator_vector / denominator

End for

End for

Figure 2: Visualization result for Statlog (Shuttle) Data

Set

7. RESULTS

7.1 Data set
The data set used for testing was the Statlog (Shuttle) data set

which was taken from the UCI Machine Learning

repository[9]. The data set contains 43,500 records with each

record having nine attributes, all of which are numerical. The

records are divided into seven classes out of which

approximately eighty percent belong to class one. Before

feeding the data to the SOM training algorithm, it is first

normalized by Variable (column) Normalization. The

algorithm used in the paper is based on Euclidean distances.

International Journal of Computer Applications (0975 – 8887)

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)

9

As a result, one attribute can have greater impact on the result

as compared to other attributes. Normalization is used to

counter this effect.

7.2 Performance
The neurons of the SOM were arranged in a rectangular grid

pattern. The number of epochs was set to 250 in all the cases.

The algorithms in the paper are implemented and tested on a

cluster of five machines with each having a processor with

four cores. The pure OpenMP algorithm was executed on a

single machine using four threads. The pure MPI algorithm

was executed on five machines with one process on each

whereas the MPI-OpenMP based algorithm was executed

using five MPI processes with each process creating four

threads. Figure 3 shows the performance graph. Table 1

shows the average speedup of the discussed implementations.

Figure 3: Performance Graph

Table 1: Average Speed-up

 OpenMP MPI Hybrid

Average Speed-up 3.36 4.80 15.32

7.3 Parallel Efficiency
The parallel efficiency graphs for each algorithm are shown in

Figures 4, 5 and 6.

8. CONCLUSION
In this paper, we proposed a parallel algorithm for Batch

SOM for the MPI - OpenMP based cluster environment. We

evaluated the performance of the algorithm and compared it

with that demonstrated by the Batch SOM. The results are

encouraging showing that the proposed algorithm gives

considerable gains over Batch SOM.

For future work, we intend to test other algorithms in domains

such as Artificial Intelligence and data analysis on the MPI -

OpenMP based cluster and determine whether a similar

approach can be applied to increase the performance of those

algorithms in such an environment.

Figure 4: Parallel Efficiency – OpenMP

Figure 5: Parallel Efficiency – MPI

Figure 6: Parallel Efficiency - Hybrid

9. REFERENCES
[1] Lawrence, Richard D., George S. Almasi, and Holly E.

Rushmeier. “A scalable parallel algorithm for self-

organizing maps with applications to sparse data mining

problems.” Data Mining and Knowledge Discovery 3.2

pp. 171-195, 1999.

[2] Silva, Bruno, and N. C. Marques. “A hybrid parallel

SOM algorithm for large maps in data-mining.” New

Trends in Artificial Intelligence (2007).

[3] Ultsch, Alfred, and H. Peter Siemon. “Kohonen's Self

Organizing Feature Maps for Exploratory Data

Analysis.” Proc. INNC'90, Int. Neural Network Conf. pp.

305-308, 1990.

[4] Ultsch, Alfred. “Maps for the visualization of high-

dimensional data spaces.” Proc. Workshop on Self

organizing Maps. pp. 225-230, 2003.

[5] Stefanovic, Pavel, and Olga Kurasova. “Visual analysis

of self-organizing maps.” Nonlinear Analysis 16.4 pp.

488-504, 2011.

[6] Message Passing Interface: MPI http://www.mpi-

forum.org

[7] MPICH http://www.mpich.org

[8] OpenMP http://www.openmp.org/

[9] UCI Machine Learning Repository

http://http://archive.ics.uci.edu/ml/

[10] Radenski, Atanas. “Shared memory, message passing,

and hybrid merge sorts for standalone and clustered

smps.” Proc. PDPTA vol. 11, pp. 367-373, 2011.

[11] Kohonen, Teuvo. “The self-organizing map.”

Proceedings of the IEEE 78, no. 9 pp. 1464-1480, 1990.

[12] Kohonen, Teuvo, Erkki Oja, Olli Simula, Ari Visa, and

Jari Kangas. “Engineering applications of the self-

organizing map.” Proceedings of the IEEE 84, no. 10 pp.

1358-1384, 1996.

