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ABSTRACT 

Cluster Computing is based on the concept that an application 

can be divided into smaller subtasks which when distributed 

to different nodes on a cluster (using MPI) will enhance the 

performance of the application. We can further enhance the 

performance of that application using a shared programming 

interface like OpenMP. The Self-Organizing Maps which are 

extensively used in domains like speech recognition and data 

classification require considerable amount of time in the 

training process. This paper proposes a parallel algorithm on a 

MPI - OpenMP based cluster to reduce the time taken in 

training and enhance the performance of Self-Organizing 

Maps (SOM). The results of the algorithm demonstrated a 

speed-up of 15.316 as compared to the sequential training of 

the SOM.    
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1. INTRODUCTION 
Self-Organizing Map (SOM)[3][11][12] is a type of Artificial 

Neural Network (ANN) which is an information processing 

paradigm. It is composed of large number of highly 

interconnected processing elements (Neurons) working in 

unison to solve a specific problem. Such a network can be 

used for classifying an output which is received as a response 

to the set of inputs given to the trained network. For training 

the network a huge amount of relevant input sets are required 

which is used to appropriately alter the weights of the 

connecting edges between the neurons. This training can be 

performed in either supervised or unsupervised manner. 

Supervised learning is used when the output for a given set of 

input is known and the mapping function between them is to 

be found, whereas in unsupervised learning the classification 

of the outcome is not known. Among neural networks, the 

Self-Organizing maps use unsupervised learning algorithms 

where it creates its own representation of the information it 

receives during the learning time. Self-Organizing Maps or 

Kohonen Maps are used to project high dimensional data onto 

a lower dimensional representation of the input training 

samples. 

This paper proposes a parallel algorithm for training SOM on 

a MPI-OpenMP based cluster. The paper is organized in the 

manner in which, first the existing frame works are described. 

Then the sequential SOM algorithm and Batch SOM 

algorithm are discussed along with their differences. The 

paper then introduces a parallel algorithm followed by the 

performance evaluation of Batch SOM and the proposed 

parallel algorithms.  

2. RELATED WORKS 
The paradigm of using MPI[6] based cluster of machines with 

multi-core processing capabilities recently has been 

extensively used to parallelize algorithms for better 

performance. One such instance of work was done by Atanas 

Radenski[10] where he measured the performance of parallel 

merge sort on a hybrid cluster setup. He then measured the 

performance on a pure MPI cluster and similarly on an 

OpenMP[8] environment. He compared all of these different 

implementations based on parameters like number of 

OpenMP threads, MPI processes, nodes used and cores used. 

He concluded that when the entire array was small enough to 

fit in the RAM, the OpenMP version of the algorithm showed 

better results than the MPI implementation, while the 

performance shown by the OpenMP - MPI hybrid algorithm 

fell between that of the pure versions of OpenMP and MPI 

implementations.  

Teuvo Kohonen in his original paper titled “The Self-

Organizing Maps”[11] introduced the idea of Self-Organizing 

maps along with its working. In his another work along with 

Erkki Oja, Olli Simula, Ari Visa, and Jari Kangas in paper 

titled “Engineering applications of the self-organizing map.” 

he has discussed various applications of Self-Organizing maps 

in various engineering fields and domains. A scalable parallel 

algorithm for SOM has been proposed by R.D. Lawrence, 

G.S. Almasi and H.E. Rushmeier in their paper titled “A 

scalable parallel algorithm for self-organizing maps with 

applications to sparse data mining problems.”[1]. They have 

explained various versions of SOM like sparse batch SOM, 

online SOM and sequential SOM. Then they went on to 

compare the methodologies of network-partitioned Sequential 

SOM and data-partitioned Batch SOM. Acknowledging better 

performance by the data partitioned SOM, they evaluated its 

performance over a MPI based cluster only. Silva, Bruno and 

N. C. Marques have proposed a hybrid parallel algorithm for 

SOM which combines the advantages of the network-

partitioned SOM and the data-partitioned SOM in their paper 

titled “A hybrid parallel SOM algorithm for large maps in 

data-mining.”[2]. This paper extends the work by 

implementing parallel Batch SOM on a MPI - OpenMP based 

cluster. 
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3. FRAMEWORKS USED 
The proposed idea in this paper deals with the implementation 

and performance evaluation of Self-Organizing Maps under 

MPI (using MPICH[7]) and OpenMP as a hybrid model. 

3.1 MPI (Message Passing Interface) 
De facto standard for communication between nodes using 

message passing. MPI is a specification which was 

enumerated as a result of community effort to put forth the 

definition and syntax of a message passing library that would 

be implemented by many libraries and used by people for a 

wide range of massively parallel processor systems over 

varying platforms. 

3.2 MPICH 
A freely available, highly efficient and portable 

implementation of the MPI standard. It is one of the most 

popular implementations that has been successfully used for 

many projects.  

3.3 OpenMP 
OpenMP provides an API that supports multiprocessing 

programming using a shared memory model. Also allows for 

multi-platform processing. 

4. SYSTEM CONFIGURATION 

4.1   Hardware Configuration 
1)      Processor: Intel Core i5-2400 CPU @ 3.10GHz   4 

2)      RAM: 4 GB 

3)      Network: TCP/IP LAN (100 Mbps) 

4.2   Software Configuration 
1)      Operating System: Linux 

2)      Version: Ubuntu 12.04 LTS 

3)      Compiler: GCC 

4)      Network protocol: Secure Shell 

5)      Communication protocols: MPI (MPICH) and OpenMP  

4.3   System Architecture 
The system architecture uses MPI and OpenMP in order to 

parallelize the Self-Organizing Maps. The master node first 

divides the task into different subtasks which can be 

parallelized. Using MPI i.e. Message Passing Interface, the 

Master node then distributes the subtasks among various slave 

nodes.  

When the slave nodes receive the subtask assigned to them by 

the master node, they use the OpenMP library to divide the 

subtask further so as to implement the tasks in parallel on 

various cores of that slave node as shown in the figure. 

5. ALGORITHM 

5.1 SOM 
Self-Organizing Maps algorithm for training the map consists 

of first initializing the map with random values. Then, from 

the data set we select a data vector and find the corresponding 

best matching neuron from the map. The best matching 

neuron and its neighbours are updated so that that particular 

region of the map is pulled closer to the data space. This is 

repeated for all the data vectors in the data set. One iteration 

of the data set is called an epoch. To get better results, we 

train the map with many such epochs. 

 

Figure 1: System Design 

5.1.1 Best Matching Neuron 
To find the best matching neuron for a particular data vector, 

we traverse all the neurons of the map while finding the 

Euclidean distance between the data vector and that neuron. 

The neuron with the smallest Euclidean distance is said to be 

the best matching unit. 

5.1.2 Neighbourhood function 
When a best matching unit is found, we update the neuron and 

its neighbourhood region. To calculate this neighbourhood 

region, we use the exponential Gaussian neighbourhood 

function which is a decreasing function of time. Hence, the 

radius of the neighbourhood gradually decreases as the 

algorithm progresses. The function is represented in eq (2). 

5.1.3 Learning Rate 
It is a decreasing function of time which is used to control the 

adaptation rate of the map to the input data. This can be taken 

as either an exponential or a linear function. (Learning rate 

does not feature in the Batch SOM algorithm.) 

5.2 Batch SOM 
SOM has different implementations which use either 

Sequential or Batch approach. This paper implements Batch 

SOM instead of Sequential SOM, since in Sequential SOM 

the updates to the map are made after each step which would 

result in a lot of latency delays being incurred due to 

communication between the cluster nodes[1]. In Batch SOM, 

on the other hand, the updates are only made at the end of an 

entire iteration of the input data samples (epoch). 

x Set of input data vectors 

σ(t) Radius of neighbourhood function hci(t) 

σ(0) Grid length 

t Current epoch iteration 

t' Index of input data vector 

i Index of current node 

c Index of best matching node 

ri Spatial co-ordinates of node i 

rc Spatial co-ordinates of best match node c 

Wi Weight vector of node i 

t0 Start of current epoch iteration 

tf End of current epoch iteration 
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𝜎(𝑡) =  𝜎 0 ×  1 −

𝑡

𝑡𝑜𝑡𝑎𝑙_𝑒𝑝𝑜𝑐ℎ
  (1) 

 

ℎ𝑐𝑖 𝑡 =  𝑒
−

|𝑟𝑖 − 𝑟𝑐|2

𝜎 𝑡 2
 

(2) 

 

𝑾𝒊 𝒕 =  
 𝒉𝒄𝒊 𝒕

′ 𝒙 𝒕′ 
𝒕′ = 𝒕𝒇

𝒕′ = 𝒕𝟎

 𝒉𝒄𝒊 𝒕′ 
𝒕′ = 𝒕𝒇

𝒕′ = 𝒕𝟎

 (3) 

5.3 Pure OpenMP Batch SOM 
In this approach, we consider a single machine with a 

processor with multiple cores. This algorithm aims to fully 

utilize all of the cores for SOM training. We allocate separate 

memory locations for numerator vectors and denominator of 

each OpenMP thread. For each epoch, the data set is 

distributed among the threads, with the threads accumulating 

their respective numerator vectors and denominators. At the 

end of each epoch, these values from each thread are 

combined into an intermediate result. The map is updated with 

this result. 

5.4 Pure MPI Batch SOM 
In pure MPI Batch SOM, MPI processes are created and data 

set is equally divided between them. Each MPI process, trains 

the map by following the Batch SOM method, with the only 

exception being that at the end of an epoch, MPI_Allreduce is 

performed to gather the numerator vectors and denominators 

of each process. Each MPI process then continues the general 

Batch SOM algorithm with the update of the map based on 

the gathered values. 

5.5 Proposed Parallel MPI - OpenMP 

Batch SOM 
To make Batch SOM a scalable parallel algorithm that will 

work on a MPI-OpenMP environment, we propose the 

following algorithm. 

Algorithm 1: Batch SOM 

Initialize the map with random values 

For each epoch do 

σ2 = square of sigma function using Eq. (1) 

For each neuron do 

Initialize numerator vector and the denominator to zero 

End for 

For each data vector do 

Find position of the best matching neuron 

For each neuron do 

dist = Euclidean distance between current and best 

matching neuron 

hci_exp = dist / (2 × σ2) 

hci = expf(-hci_exp) using Eq. (2) 

Accumulate numerator vector and the denominator 

using Eq. (3) 

End for 

End for 

For each neuron do 

weight_vector = numerator_vector / denominator 

End for 

End for  

Algorithm 2: Pure OpenMP Batch SOM 

Initialize the map with random values 

For each epoch do 

σ2 = square of sigma function using Eq. (1) 

#pragma omp parallel for default(shared) 

For each neuron do 

Initialize individual numerator vectors and the 

denominators of the threads to zero 

End for 

#pragma omp parallel for default(shared) private(dist, 

hci_exp, hci) 

For each data vector do 

Find position of the best matching neuron 

For each neuron do 

dist = Euclidean distance between current and best 

matching neuron 

hci_exp = dist / (2 × σ2) 

hci = expf(-hci_exp) using Eq. (2) 

Accumulate numerator vector and the denominator 

specific to each thread using Eq. (3) 

End for 

End for 

#pragma omp parallel for default(shared) 

For each neuron do 

Gather the numerator vectors and denominators of the 

threads 

End for 

#pragma omp parallel for default(shared) 

For each neuron do 

weight_vector = numerator_vector / denominator 

End for 

End for  

Algorithm 3: Pure MPI Batch SOM 

Initialize the map with random values 

Divide the entire data set between the MPI processes 

For each epoch do 

σ2 = square of sigma function using Eq. (1) 

For each neuron do 

Initialize numerator vectors and the denominators to 

zero 

End for 
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For each data vector do 

Find position of the best matching neuron 

For each neuron do 

dist = Euclidean distance between current and best 

matching neuron 

hci_exp = dist / (2 × σ2) 

hci = expf(-hci_exp) using Eq. (2) 

Accumulate numerator vector and the denominator 

using Eq. (3) 

End for 

End for 

MPI_Allreduce for numerator vectors of the MPI 

processes 

MPI_Allreduce for denominators of the MPI processes 

For each neuron do 

weight_vector = numerator_vector / denominator 

End for 

End for  

Our approach involves partitioning the data for achieving 

parallel execution. After the MPI processes are created, we 

divide the data set among the MPI processes so that each 

process has to traverse equal number of data vectors. The data 

set so created for each MPI process is further distributed 

among the threads which will be made to run on separate 

cores of the machine executing that MPI process. At the end 

of each epoch, the numerator vectors and denominators of the 

threads for each MPI process are gathered to get accumulated 

numerators vectors and denominators for that MPI process. 

MPI_Allreduce is performed on the numerator vectors and 

denominators so that each MPI process gets the final 

accumulated numerator vectors and denominators. Each MPI 

process then individually updates the map depending on the 

numerator vectors and denominators effectively maintaining 

the same copy of the map across all cluster nodes. 

6. VISUALIZING SOM 
To visualize SOM, a method called as U-Matrix is used[4][5]. 

It calculates the Euclidean distances between the adjacent 

neurons in the SOM map and these distances are represented 

with different colours to form a RGB image (intensity map) or 

with varying intensities of black colour to form a gray scale 

image. A dark colouring signifies that the neighbouring 

neurons are close to each other while light colouring signifies 

that there is a large distance between neurons and thus 

represents a partition. Hence, dark colours are viewed as 

clusters whereas light colours are viewed as cluster separators. 

Figure 2 shows the visualization of SOM using the Statlog 

(Shuttle) data set[9]. 

Algorithm 4: Proposed Parallel MPI – OpenMP Batch 

SOM 

Initialize the map with random values 

Divide the entire data set between the MPI processes 

For each epoch do 

σ2 = square of sigma function using Eq. (1) 

#pragma omp parallel for default(shared) 

For each neuron do 

Initialize individual numerator vectors and the 

denominators of the threads to zero 

End for 

#pragma omp parallel for default(shared) private(dist, 

hci_exp, hci) 

For each data vector do 

Find position of the best matching neuron 

For each neuron do 

dist = Euclidean distance between current and best 

matching neuron 

hci_exp = dist / (2 × σ2) 

hci = expf(-hci_exp) using Eq. (2) 

Accumulate numerator vector and the denominator 

specific to each thread using Eq. (3) 

End for 

End for 

#pragma omp parallel for default(shared) 

For each neuron do 

Gather the numerator vectors and denominators of the 

threads 

End for 

MPI_Allreduce for numerator vectors of the MPI 

processes 

MPI_Allreduce for denominators of the MPI processes 

#pragma omp parallel for default(shared) 

For each neuron do 

weight_vector = numerator_vector / denominator 

End for 

End for  

 

Figure 2: Visualization result for Statlog (Shuttle) Data 

Set 

7. RESULTS 

7.1 Data set 
The data set used for testing was the Statlog (Shuttle) data set 

which was taken from the UCI Machine Learning 

repository[9]. The data set contains 43,500 records with each 

record having nine attributes, all of which are numerical. The 

records are divided into seven classes out of which 

approximately eighty percent belong to class one. Before 

feeding the data to the SOM training algorithm, it is first 

normalized by Variable (column) Normalization. The 

algorithm used in the paper is based on Euclidean distances. 



International Journal of Computer Applications (0975 – 8887)  

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014) 

9 

As a result, one attribute can have greater impact on the result 

as compared to other attributes. Normalization is used to 

counter this effect. 

7.2 Performance 
The neurons of the SOM were arranged in a rectangular grid 

pattern. The number of epochs was set to 250 in all the cases. 

The algorithms in the paper are implemented and tested on a 

cluster of five machines with each having a processor with 

four cores. The pure OpenMP algorithm was executed on a 

single machine using four threads. The pure MPI algorithm 

was executed on five machines with one process on each 

whereas the MPI-OpenMP based algorithm was executed 

using five MPI processes with each process creating four 

threads. Figure 3 shows the performance graph. Table 1 

shows the average speedup of the discussed implementations. 

 

Figure 3: Performance Graph 

Table 1: Average Speed-up 

 OpenMP MPI Hybrid 

Average Speed-up 3.36 4.80 15.32 

7.3 Parallel Efficiency 
The parallel efficiency graphs for each algorithm are shown in 

Figures 4, 5 and 6. 

8. CONCLUSION 
In this paper, we proposed a parallel algorithm for Batch 

SOM for the MPI - OpenMP based cluster environment. We 

evaluated the performance of the algorithm and compared it 

with that demonstrated by the Batch SOM. The results are 

encouraging showing that the proposed algorithm gives 

considerable gains over Batch SOM.  

For future work, we intend to test other algorithms in domains 

such as Artificial Intelligence and data analysis on the MPI - 

OpenMP based cluster and determine whether a similar 

approach can be applied to increase the performance of those 

algorithms in such an environment. 

 

Figure 4: Parallel Efficiency – OpenMP 

 

Figure 5: Parallel Efficiency – MPI 

 

Figure 6: Parallel Efficiency - Hybrid 
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